51
|
Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab 2016; 4:11. [PMID: 27275383 PMCID: PMC4893840 DOI: 10.1186/s40170-016-0151-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool. In this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients undergoing colonic resection. Metabolic pathway analyses further revealed relationships between complex networks of metabolites. Methods Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm proximal to the tumor, and stool. Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). All of the library standard identifications were confirmed and further analyzed via MetaboLyncTM for metabolic network interactions. Results There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices. Nineteen metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort. Glucose-6-phosphate and fructose-6-phosphate demonstrated 0.64-fold and 0.75-fold lower expression in CRC compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and adenylosuccinate had 2.68-fold and 1.88-fold higher relative abundance in CRC. Eleven of the 19 metabolites had not previously been reported for CRC relevance. Metabolic pathway analysis revealed significant perturbations of short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and pyruvate metabolism. In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of those stool metabolites were also detected in tissue. This CRC and stool metabolome investigation identified novel metabolites that may serve as key small molecules in CRC pathogenesis, confirmed the results from previously reported CRC metabolome studies, and showed networks for metabolic pathway aberrations. In addition, we found differences between the CRC and stool metabolomes. Conclusions Stool metabolite profiles were limited for direct associations with CRC and adjacent mucosa, yet metabolic pathways were conserved across both matrices. Larger patient-matched CRC, adjacent non-cancerous colonic mucosa, and stool cohort studies for metabolite profiling are needed to validate these small molecule differences and metabolic pathway aberrations for clinical application to CRC control, treatment, and prevention. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0151-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, 200 West Lake Street, 1680 Campus Delivery, Fort Collins, CO 80523 USA
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523 USA
| | - Joanne O'Malia
- University of Colorado Health-North, Fort Collins, CO 80522 USA
| | - Marlon Bazan
- University of Colorado Health-North, Fort Collins, CO 80522 USA
| | - Regina J Brown
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, 200 West Lake Street, 1680 Campus Delivery, Fort Collins, CO 80523 USA ; Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
52
|
Rasmussen SL, Krarup HB, Sunesen KG, Pedersen IS, Madsen PH, Thorlacius-Ussing O. Hypermethylated DNA as a biomarker for colorectal cancer: a systematic review. Colorectal Dis 2016; 18:549-61. [PMID: 26998585 DOI: 10.1111/codi.13336] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
AIM Improved methods for early detection of colorectal cancer (CRC) are essential for increasing survival. Hypermethylated DNA in blood or stool has been proposed as a biomarker for CRC. Biochemical methods have improved in recent years, and several hypermethylated genes that are sensitive and specific for CRC have been proposed. Articles describing the use of hypermethylated promoter regions in blood or stool as biomarkers for CRC were systematically reviewed. METHOD A systematic literature search was performed using the Medline, Web of Science and Embase databases. Studies were included if they analysed hypermethylated genes from stool or blood samples in correlation with CRC. Studies in languages other than English and those based on animal models or cell lines were excluded. RESULTS The literature search yielded 74 articles, including 43 addressing blood samples and 31 addressing stool samples. In blood samples, hypermethylated ALX4, FBN2, HLTF, P16, TMEFF1 and VIM were associated with poor prognosis, hypermethylated APC, NEUROG1, RASSF1A, RASSF2A, SDC2, SEPT9, TAC1 and THBD were detected in early stage CRC and hypermethylated P16 and TFPI2 were associated with CRC recurrence. In stool samples, hypermethylated BMP3, PHACTR3, SFRP2, SPG20, TFPI2 and TMEFF2 were associated with early stage CRC. CONCLUSION Hypermethylation of the promoters of specific genes measured in blood or stool samples could be used as a CRC biomarker and provide prognostic information. The majority of studies, however, include only a few patients with poorly defined control groups. Further studies are therefore needed before hypermethylated DNA can be widely applied as a clinical biomarker for CRC detection and prognosis.
Collapse
Affiliation(s)
- S L Rasmussen
- Department of Gastrointestinal Surgery and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - H B Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - K G Sunesen
- Department of Gastrointestinal Surgery and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - I S Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - P H Madsen
- Section of Molecular Diagnostics, Clinical Biochemistry and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - O Thorlacius-Ussing
- Department of Gastrointestinal Surgery and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
53
|
Amacher DE. A 2015 survey of established or potential epigenetic biomarkers for the accurate detection of human cancers. Biomarkers 2016; 21:387-403. [PMID: 26983778 DOI: 10.3109/1354750x.2016.1153724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context The silencing or activation of cancer-associated genes by epigenetic mechanisms can ultimately lead to the clonal expansion of cancer cells. Objective The aim of this review is to summarize all relevant epigenetic biomarkers that have been proposed to date for the diagnosis of some prevalent human cancers. Methods A Medline search for the terms epigenetic biomarkers, human cancers, DNA methylation, histone modifications and microRNAs was performed. Results One hundred fifty-seven relevant publications were found and reviewed. Conclusion To date, a significant number of potential epigenetic cancer biomarkers of human cancer have been investigated, and some have advanced to clinical implementation.
Collapse
|
54
|
Epigenetics in diagnosis of colorectal cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2016; 5:49-57. [PMID: 27844020 PMCID: PMC5019333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Colorectal cancer (CRC) is a third most common epithelial carcinoma. CRC is known to develop from the early precancerous lesion to full blown malignancy via definite phases due to cumulative mutations and aberrant methylation of number of genes. The use of serum biomarkers that is non-invasive to discriminate cancer patients from healthy persons will prove to be an important tool to improve the early diagnosis of CRC. This will serve as the boon to the clinical management of the disease.
Collapse
|
55
|
Shinjo K, Kondo Y. Targeting cancer epigenetics: Linking basic biology to clinical medicine. Adv Drug Deliv Rev 2015; 95:56-64. [PMID: 26494398 DOI: 10.1016/j.addr.2015.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023]
Abstract
Recent studies provide compelling evidence that epigenetic dysregulation is involved in almost every step of tumor development and progression. Differences in tumor behavior, which ultimately reflects clinical outcome, can be explained by variations in gene expression patterns generated by epigenetic mechanisms, such as DNA methylation. Therefore, epigenetic abnormalities are considered potential biomarkers and therapeutic targets. DNA methylation is stable at certain specific loci in cancer cells and predominantly reflects the characteristic clinicopathological features. Thus, it is an ideal biomarker for cancer screening, classification and prognostic purposes. Epigenetic treatment for cancers is based on the pharmacologic targeting of various core transcriptional programs that sustains cancer cell identity. Therefore, targeting aberrant epigenetic modifiers may be effective for multiple processes compared with using a selective inhibitor of aberrant single signaling pathway. This review provides an overview of the epigenetic alterations in human cancers and discusses about novel therapeutic strategies targeting epigenetic alterations.
Collapse
Affiliation(s)
- Keiko Shinjo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yutaka Kondo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
56
|
Abstract
Investigations focused on the interplay between the human microbiome and cancer development, herein termed the 'oncobiome', have been growing at a rapid rate. However, these studies to date have primarily demonstrated associative relationships rather than causative ones. We pose the question of whether this emerging field of research is a 'mirage' without a clear picture, or truly represents a paradigm shift for cancer research. We propose the necessary steps needed to answer crucial questions and push the field forward to bring the mirage into a tangible reality.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA ; Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
57
|
Mohammed FMA, Rezaee Khorasany AR, Mosaieby E, Houshmand M. Mitochondrial A12308G alteration in tRNA(Leu(CUN)) in colorectal cancer samples. Diagn Pathol 2015; 10:115. [PMID: 26189042 PMCID: PMC4506765 DOI: 10.1186/s13000-015-0337-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 06/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer is the third most common type of cancer in men and women and the second leading cause of cancer-related deaths in the United States and UK. Colorectal cancer is strongly related to age, with almost three-quarters of cases occurring in people aged 65 or over. Pre-symptomatic screening is one of the most powerful tools for preventing colorectal cancer. Recently, the use of mitochondrial tRNA genes mutation or polymorphism patterns as a biomarker is rapidly expanding in different cancers because tRNA genes perform several functions including processing and translation which are essential components of mitochondrial protein synthesis. The aim of the present study was to find out the association of mitochondrial A12308G alteration in tRNALeu(CUN) in colorectal cancer and its usage as a new biomarker screening test. Methods A tumor tissues from 30 patients who had colorectal cancer were selected randomly. The A12308G alteration in tRNALeu (CUN) was screened in the 30 colorectal tumor tissues. For comparison, 100 blood samples of healthy controls using PCR-sequencing methods were selected and the following results were found. Result The A12308G, a polymorphic mutation in V-loop tRNALeu(CUN), was found in 6 Colorectal tumor tissues and 3 healthy controls. A statistical significant difference was found between cases and control regarding the association of the A12308G mutation with the colorectal tumor (P < 0.05). Conclusions The A12308G, a polymorphic mutation in V-loop tRNALeu(CUN), could be considered as pathogenic mutation in combination with mitochondrial external conditions and other mitochondrial genes in developing different diseases especially cancers and could be used as one of the diagnostic tool. Also it seems that maybe there is relevance between A12308G mutation and other mutations that it can cause various phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13000-015-0337-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fawziah M A Mohammed
- Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | - Ali Reza Rezaee Khorasany
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Elaheh Mosaieby
- Department of cellular and molecular biology, Mazandaran university, Babolsar, Iran.
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
58
|
Barat A, Ruskin HJ. Comparative Correlation Structure of Colon Cancer Locus Specific Methylation: Characterisation of Patient Profiles and Potential Markers across 3 Array-Based Datasets. J Cancer 2015; 6:795-811. [PMID: 26185542 PMCID: PMC4504116 DOI: 10.7150/jca.9883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 04/02/2015] [Indexed: 12/18/2022] Open
Abstract
Abnormal DNA-methylation is well known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Recent years have seen the increased use of large-scale technologies, (such as methylation microarray assays or specific sequencing of methylated DNA), to determine whole genome profiles of CpG island methylation in tissue samples. Comprehensive study of methylation array data from transcriptome high-throughput platforms permits determination of gene methylation markers, important for cancer profiling. Here, three large-scale methylation datasets for colon cancer have been compared to determine locus-specific methylation agreement. These data are from the GEO database, where colon cancer and apparently healthy adjacent tissues are represented by sample sizes 125 and 29 respectively in the first dataset, 24 of each in the second and 118 of each in the third. Several data analysis techniques have been employed, including Clustering, Discriminant Principal Component Analysis, Discriminant Analysis and ROC curves, in order (i) to obtain a better insight on the locus-specific concomitant methylation structures for these diverse data and (ii) to determine a robust potential marker set for indicative screening, drawn from all data taken together. The extent of the agreement between the analysed datasets is reported. Further, potential screening methylation markers, for which methylation profiles are consistent across tissue samples and several datasets, are highlighted and discussed.
Collapse
Affiliation(s)
- Ana Barat
- Centre for Scientific Computing and Complex Systems Modelling (Sci-Sym), School of Computing, Dublin City University, Ireland
| | - Heather J Ruskin
- Centre for Scientific Computing and Complex Systems Modelling (Sci-Sym), School of Computing, Dublin City University, Ireland
| |
Collapse
|
59
|
Paska AV, Hudler P. Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb) 2015; 25:161-76. [PMID: 26110029 PMCID: PMC4470106 DOI: 10.11613/bm.2015.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets.
Collapse
Affiliation(s)
- Alja Videtic Paska
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
60
|
Zhang X, Song YF, Lu HN, Wang DP, Zhang XS, Huang SL, Sun BL, Huang ZG. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J Gastroenterol 2015; 21:2629-2637. [PMID: 25759530 PMCID: PMC4351212 DOI: 10.3748/wjg.v21.i9.2629] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate GATA5, SFRP2, and ITGA4 methylation in plasma DNA as noninvasive biomarkers for colorectal cancer (CRC) or adenomas.
METHODS: There were 57 CRC patients, 30 adenomas patients, and 47 control patients enrolled in this study. Methylation-specific polymerase chain reaction was used to determine the promoter methylation status of GATA5, SFRP2, and ITGA4 genes in plasma DNA, and their association with clinical outcome in CRC. The predictive ability of GATA5, SFRP2, and ITGA4 methylation, individually or in combination, to detect CRC or adenomas was further analyzed.
RESULTS: Hypermethylated GATA5 was detected in plasma in 61.4% (35/57) of CRC cases, 43.33% (13/30) of adenoma cases, and 21.28% (10/47) of control cases. The hypermethylation of SFRP2 was detected in 54.39% (31/57), 40.00% (12/30), and 27.66% (13/47) in plasma samples from CRC, adenomas, and controls, respectively. ITGA4 methylation was detected in 36.84% (21/57) of plasma samples of CRC patients and in 30.00% (9/30) of plasma samples from patients with colorectal adenomas, and the specificity of this individual biomarker was 80.85% (9/47). Moreover, GATA5 methylation in the plasma was significantly correlated with larger tumor size (P = 0.019), differentiation status (P = 0.038), TNM stage (P = 0.008), and lymph node metastasis (P = 0.008). SFRP2 and ITGA4 methylation in plasma significantly correlated with differentiation status (SFRP2, P = 0.012; ITGA4, P = 0.007), TNM stage (SFRP2, P = 0.034; ITGA4, P = 0.021), and lymph node metastasis (SFRP2, P = 0.034; ITGA4, P = 0.021). From the perspective of predictive power and cost-performance, using GATA5 and SFRP2 together as methylation markers seemed the most favorable predictor for CRC (OR = 8.06; 95%CI: 2.54-25.5; P < 0.01) and adenomas (OR = 3.35; 95%CI: 1.29-8.71; P = 0.012).
CONCLUSION: A combination of GATA5 and SFRP2 methylation could be promising as a marker for the detection and diagnosis of CRC and adenomas.
Collapse
|
61
|
Esplin ED, Snyder MP. Genomic era diagnosis and management of hereditary and sporadic colon cancer. World J Clin Oncol 2014; 5:1036-1047. [PMID: 25493239 PMCID: PMC4259930 DOI: 10.5306/wjco.v5.i5.1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/21/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
The morbidity and mortality attributable to heritable and sporadic carcinomas of the colon are substantial and affect children and adults alike. Despite current colonoscopy screening recommendations colorectal adenocarcinoma (CRC) still accounts for almost 140000 cancer cases yearly. Familial adenomatous polyposis (FAP) is a colon cancer predisposition due to alterations in the adenomatous polyposis coli gene, which is mutated in most CRC. Since the beginning of the genomic era next-generation sequencing analyses of CRC continue to improve our understanding of the genetics of tumorigenesis and promise to expand our ability to identify and treat this disease. Advances in genome sequence analysis have facilitated the molecular diagnosis of individuals with FAP, which enables initiation of appropriate monitoring and timely intervention. Genome sequencing also has potential clinical impact for individuals with sporadic forms of CRC, providing means for molecular diagnosis of CRC tumor type, data guiding selection of tumor targeted therapies, and pharmacogenomic profiles specifying patient specific drug tolerances. There is even a potential role for genomic sequencing in surveillance for recurrence, and early detection, of CRC. We review strategies for diagnostic assessment and management of FAP and sporadic CRC in the current genomic era, with emphasis on the current, and potential for future, impact of genome sequencing on the clinical care of these conditions.
Collapse
|
62
|
Vedeld HM, Andresen K, Eilertsen IA, Nesbakken A, Seruca R, Gladhaug IP, Thiis-Evensen E, Rognum TO, Boberg KM, Lind GE. The novel colorectal cancer biomarkers CDO1, ZSCAN18 and ZNF331 are frequently methylated across gastrointestinal cancers. Int J Cancer 2014; 136:844-53. [PMID: 24948044 PMCID: PMC4277335 DOI: 10.1002/ijc.29039] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/27/2014] [Indexed: 01/11/2023]
Abstract
We have previously shown that gastrointestinal cancers display similar epigenetic aberrations. In a recent study, we identified frequently methylated genes for cholangiocarcinoma (CDO1, DCLK1, SFRP1 and ZSCAN18), where one of these genes, DCLK1, was also confirmed to be highly methylated in colorectal cancer. The aim of the present study was to determine whether these four genes, in addition to one gene found to be methylated in colon cancer cell lines (ZNF331), are commonly methylated across gastrointestinal malignancies, as well as explore their role as potential biomarkers. Quantitative methylation specific PCR (qMSP) of colorectal cancer (n = 164) and normal colorectal mucosa (n = 106) samples showed that all genes were frequently methylated in colorectal cancer (71–92%) with little or no methylation in normal mucosa (0–3%). Methylation of minimum two of these five genes identified 95% of the tumors with a specificity of 98%, and an area under the receiver operating characteristics curve (AUC) of 0.98. For gastric (n = 25) and pancreatic (n = 20) cancer, the same panel detected 92% and 90% of the tumors, respectively. Seventy-four cancer cell lines were further analyzed by qMSP and real time RT-PCR. In addition to the previously reported DCLK1, a high negative correlation between promoter DNA methylation and gene expression was observed for CDO1, ZNF331 and ZSCAN18. In conclusion, the high methylation frequency of these genes in colorectal- as well as in gastric-, pancreatic- and bile duct cancer confirmed an epigenetic similarity between gastrointestinal cancer types, and simultaneously demonstrated their potential as biomarkers, particularly for colorectal cancer detection.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital- Norwegian Radium Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Xiao Z, Li B, Wang G, Zhu W, Wang Z, Lin J, Xu A, Wang X. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms. Clin Chim Acta 2014; 431:154-63. [PMID: 24518356 DOI: 10.1016/j.cca.2014.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/18/2014] [Accepted: 01/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Methylation-sensitive high-resolution melting (MS-HRM) is a new technique for assaying DNA methylation, but its feasibility for assaying stool in patients with colorectal cancer (CRC) is unknown. METHODS First, the MS-HRM and methylation-specific PCR (MSP) detection limits were tested. Second, the methylation statuses of SFRP2 and VIM were analyzed in stool samples by MS-HRM, and in matching tumor and normal colon tissues via bisulfite sequencing PCR (BSP). Third, a case-control study evaluated the diagnostic sensitivity and specificity of MS-HRM relative to results obtained with MSP and the fecal immunochemical test (FIT). Finally, the linearity and reproducibility of MS-HRM were assessed. RESULTS The detection limits of MS-HRM and MSP were 1% and 5%, respectively. The diagnostic sensitivities of MS-HRM (87.3%, 55/63) in stool and BSP in matching tumor tissue (92.1%, 58/63) were highly consistent (κ=0.744). The MS-HRM assay detected 92.5% (37/40) methylation in CRCs, 94.4% (34/36) in advanced adenomas, and 8.8% (5/57) in normal controls. The results of MS-HRM analysis were stable and reliable and showed fairly good linearity for both SFRP2 (P<0.001, R(2)=0.957) and VIM (P<0.001, R(2)=0.954). CONCLUSIONS MS-HRM shows potential for CRC screening.
Collapse
Affiliation(s)
- Zhujun Xiao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Bingsheng Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Gastroenterology, Huizhou First Hospital, Huizhou 516003, China
| | - Guozhen Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Weisi Zhu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Zhongqiu Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Jinfeng Lin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China
| | - Angao Xu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Huizhou Medicine Institute, Huizhou 516003, China.
| | - Xinying Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Gastroenterology, Guangzhou 510515, China.
| |
Collapse
|
64
|
Berg M, Hagland HR, Søreide K. Comparison of CpG island methylator phenotype (CIMP) frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels. PLoS One 2014; 9:e86657. [PMID: 24466191 PMCID: PMC3897740 DOI: 10.1371/journal.pone.0086657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023] Open
Abstract
Background In colorectal cancer a distinct subgroup of tumours demonstrate the CpG island methylator phenotype (CIMP). However, a consensus of how to score CIMP is not reached, and variation in definition may influence the reported CIMP prevalence in tumours. Thus, we sought to compare currently suggested definitions and cut-offs for methylation markers and how they influence CIMP classification in colon cancer. Methods Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), with subsequent fragment analysis, was used to investigate methylation of tumour samples. In total, 31 CpG sites, located in 8 different genes (RUNX3, MLH1, NEUROG1, CDKN2A, IGF2, CRABP1, SOCS1 and CACNA1G) were investigated in 64 distinct colon cancers and 2 colon cancer cell lines. The Ogino gene panel includes all 8 genes, in addition to the Weisenberger panel of which only 5 of the 8 genes included were investigated. In total, 18 alternative combinations of scoring of CIMP positivity on probe-, gene-, and panel-level were analysed and compared. Results For 47 samples (71%), the CIMP status was constant and independent of criteria used for scoring; 34 samples were constantly scored as CIMP negative, and 13 (20%) consistently scored as CIMP positive. Only four of 31 probes (13%) investigated showed no difference in the numbers of positive samples using the different cut-offs. Within the panels a trend was observed that increasing the gene-level stringency resulted in a larger difference in CIMP positive samples than increasing the probe-level stringency. A significant difference between positive samples using ‘the most stringent’ as compared to ‘the least stringent’ criteria (20% vs 46%, respectively; p<0.005) was demonstrated. Conclusions A statistical significant variation in the frequency of CIMP depending on the cut-offs and genes included in a panel was found, with twice as many positives samples by least compared to most stringent definition used.
Collapse
Affiliation(s)
- Marianne Berg
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Centre of Organelle Research, University of Stavanger, Stavanger, Norway
| | - Hanne R. Hagland
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
65
|
Gyparaki MT, Basdra EK, Papavassiliou AG. DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer. J Mol Med (Berl) 2013; 91:1249-56. [PMID: 24057814 DOI: 10.1007/s00109-013-1088-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer and is responsible for 9 % of cancer deaths in both men and women in the USA for 2013. It is a heterogenous disease, and its three classification types are microsatellite instability, chromosomal instability, and CpG island methylator phenotype. Biomarkers are molecules, which can be used as indicators of cancer. They have the potential to achieve great sensitivities and specificities in diagnosis and prognosis of CRC. DNA methylation biomarkers are epigenetic markers, more specifically genes that become silenced after aberrant methylation of their promoter in CRC. Some methylation biomarkers like SEPT9 (ColoVantage®) and vimentin (ColoSure(TM)) are already commercially available. Other blood and fecal-based biomarkers are currently under investigation and clinical studies so that they can be used in the near future. Biomarker panels are also currently being studied since they show great potential in diagnosis as they can combine robust biomarkers to achieve even greater sensitivities than single markers. Finally, methylation-sensitive microRNAs (miRNAs) are very promising markers, and their investigation as biomarkers, is only at primitive stage.
Collapse
Affiliation(s)
- Melina-Theoni Gyparaki
- Department of Biological Chemistry, University of Athens Medical School, 11527, Athens, Greece
| | | | | |
Collapse
|
66
|
Carmona FJ, Azuara D, Berenguer-Llergo A, Fernández AF, Biondo S, de Oca J, Rodriguez-Moranta F, Salazar R, Villanueva A, Fraga MF, Guardiola J, Capellá G, Esteller M, Moreno V. DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. Cancer Prev Res (Phila) 2013; 6:656-65. [PMID: 23694962 DOI: 10.1158/1940-6207.capr-12-0501] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer (CRC) and precursor lesions have been extensively studied. Different panels have been reported attempting to improve current protocols in clinical practice, although no definite biomarkers have been established. In the present study, we have examined patient biopsies starting from a comprehensive analysis of DNA methylation differences between paired normal and tumor samples in known cancer-related genes aiming to select the best performing candidates informative for CRC diagnosis in stool samples. Five selected markers were considered for subsequent analyses in independent biologic cohorts and in silico data sets. Among the five selected genes, three of them (AGTR1, WNT2 and SLIT2) were validated in stool DNA of affected patients with a detection sensitivity of 78% [95% confidence interval (CI), 56%-89%]. As a reference, DNA methylation of VIM and SEPT9 was evaluated in a subset of stool samples yielding sensitivities of 55% and 20%, respectively. Moreover, our panel may complement histologic and endoscopic diagnosis of inflammatory bowel disease (IBD)-associated neoplasia, as it was also efficient detecting aberrant DNA methylation in non-neoplastic tissue samples from affected patients. This novel panel of specific methylation markers can be useful for early diagnosis of CRC using stool DNA and may help in the follow-up of high-risk patients with IBD.
Collapse
Affiliation(s)
- F Javier Carmona
- Cancer Epigenetics and Biology Program (PEBC), Catalan Institute of Oncology (ICO-IDIBELL), Barcelona 08908, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Detection and differential diagnosis of colon cancer by a cumulative analysis of promoter methylation. Nat Commun 2013; 3:1206. [PMID: 23149750 DOI: 10.1038/ncomms2209] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
Alterations in the methylation of promoters of cancer-related genes are promising biomarkers for the early detection of disease. Compared with single methylation alteration, assessing combined methylation alterations can provide higher association with specific cancer. Here we use cationic conjugated polymer-based fluorescence resonance energy transfer to quantitatively analyse DNA methylation levels of seven colon cancer-related genes in a Chinese population. Through a stepwise discriminant analysis and cumulative detection of methylation alterations, we acquire high accuracy and sensitivity for colon cancer detection (86.3 and 86.7%) and for differential diagnosis (97.5 and 94%). Moreover, we identify a correlation between the CpG island methylator phenotype and clinically important parameters in patients with colon cancer. The cumulative analysis of promoter methylation alterations by the cationic conjugated polymer-based fluorescence resonance energy transfer may be useful for the screening and differential diagnosis of patients with colon cancer, and for performing clinical correlation analyses.
Collapse
|
68
|
Conley YP, Biesecker LG, Gonsalves S, Merkle CJ, Kirk M, Aouizerat BE. Current and emerging technology approaches in genomics. J Nurs Scholarsh 2013; 45:5-14. [PMID: 23294727 DOI: 10.1111/jnu.12001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To introduce current and emerging approaches that are being utilized in the field of genomics so the reader can conceptually evaluate the literature and appreciate how these approaches are advancing our understanding of health-related issues. ORGANIZING CONSTRUCT Each approach is described and includes information related to how it is advancing research, its potential clinical utility, exemplars of current uses, challenges related to technologies used for these approaches, and when appropriate information related to understanding the evidence base for clinical utilization of each approach is provided. Web-based resources are included for the reader who would like more in-depth information and to provide opportunity to stay up to date with these approaches and their utility. CONCLUSIONS The chosen approaches-genome sequencing, genome-wide association studies, epigenomics, and gene expression-are extremely valuable approaches for collecting research data to help us better understand the pathophysiology of a variety of health-related conditions, but they are also gaining in utility for clinical assessment and testing purposes. CLINICAL RELEVANCE Our increased understanding of the molecular underpinnings of disease will assist with better development of screening tests, diagnostic tests, tests that allow us to prognosticate, tests that allow for individualized treatments, and tests to facilitate post-treatment surveillance.
Collapse
|
69
|
Ulirsch J, Fan C, Knafl G, Wu MJ, Coleman B, Perou CM, Swift-Scanlan T. Vimentin DNA methylation predicts survival in breast cancer. Breast Cancer Res Treat 2012; 137:383-96. [PMID: 23239149 DOI: 10.1007/s10549-012-2353-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/21/2012] [Indexed: 11/30/2022]
Abstract
The Vimentin gene plays a pivotal role in epithelial-to-mesenchymal transition and is known to be overexpressed in the prognostically poor basal-like breast cancer subtype. Recent studies have reported Vimentin DNA methylation in association with poor clinical outcomes in other solid tumors, but not in breast cancer. We therefore quantified Vimentin DNA methylation using MALDI-TOF mass spectrometry in breast tumors and matched normal pairs in association with gene expression and survival in a hospital-based study of breast cancer patients. Gene expression data via qRT-PCR in cell lines and oligomicroarray data from breast tissues were correlated with percent methylation in the Vimentin promoter. A threshold of 20 percent average methylation compared with matched normal pairs was set for bivariate and multivariate tests of association between methylation and tumor subtype, tumor histopathology, and survival. Vimentin was differentially methylated in luminal breast cancer cell lines, and in luminal A, luminal B, and HER2-enriched breast tumor subtypes, but was rare in basal-like cell lines and tumors. Increased methylation was strongly correlated with decreased mRNA expression in cell lines, and had a moderate inverse correlation in breast tumors. Vimentin methylation predicted poor overall survival independent of race, subtype, stage, nodal status, or metastatic disease and holds promise as a new prognostic biomarker for breast cancer patients.
Collapse
Affiliation(s)
- Jacob Ulirsch
- The University of North Carolina at Chapel Hill School of Nursing, Lab 013, Carrington Hall, CB #7460, Chapel Hill, NC 27599-7460, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Ahmed D, Danielsen SA, Aagesen TH, Bretthauer M, Thiis-Evensen E, Hoff G, Rognum TO, Nesbakken A, Lothe RA, Lind GE. A tissue-based comparative effectiveness analysis of biomarkers for early detection of colorectal tumors. Clin Transl Gastroenterol 2012; 3:e27. [PMID: 23324654 PMCID: PMC3535074 DOI: 10.1038/ctg.2012.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES: We recently identified a six-gene methylation-based biomarker panel suitable for early detection of colorectal cancer (CRC). In this study, we compared the performance of this novel epi-panel with that of previously identified DNA methylation markers in the same clinical tissue sample sets. METHODS: Quantitative methylation-specific PCR was used to analyze the promoter region of SEPT9 and VIM in a total of 485 tissue samples, divided into test and validation sets. ITGA4, NTRK2, OSMR, and TUBG2 were also included in the analyses. Receiver operating characteristic (ROC) curves were used to compare the performances of the individual biomarkers with that of the novel epi-panel. RESULTS: SEPT9 and VIM were methylated in 82 and 67% of CRCs (n=169) and in 88 and 54% of the adenomas (n=104). Only 3% of the normal mucosa samples (n=107) were methylated for these genes, confirming that the methylation was highly cancer-specific. Areas under the ROC curve (AUC), distinguishing CRCs from normal mucosa, were 0.94 for SEPT9 and 0.81 for VIM. AUC values for separating adenomas from normal mucosa samples were 0.96 and 0.81 for the same genes. In comparison, the novel epi-panel achieved an AUC of 0.98 (CRC) and 0.97 (adenomas). ITGA4, OSMR, NTRK2, and TUBG2 were methylated in 90, 78, 7, and 1% of the CRCs, and in 76, 77, 3, and 0% of the adenomas. Between 0 and 2% of the normal mucosa samples were methylated for the same genes. ITGA4 and OSMR achieved an AUC of 0.96 and 0.92 (CRC vs. normal mucosa), and 0.93 and 0.92 (adenomas vs. normal mucosa). CONCLUSIONS: We have confirmed the high performance of some of the previously identified DNA methylation markers. Furthermore, we showed that a recently reported epi-panel performed better than the individual DNA methylation biomarkers when analyzed in the same tissue samples. This observation was also true for VIM and SEPT9, which are included in commercially available noninvasive tests for CRC. These results further underscore the value of combining a manageable number of individual markers into a panel, which in addition to having a higher sensitivity and specificity might provide a more profound robustness to a noninvasive test compared with single markers.
Collapse
Affiliation(s)
- Deeqa Ahmed
- 1] Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway [2] Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Draht MXG, Riedl RR, Niessen H, Carvalho B, Meijer GA, Herman JG, van Engeland M, Melotte V, Smits KM. Promoter CpG island methylation markers in colorectal cancer: the road ahead. Epigenomics 2012; 4:179-94. [PMID: 22449189 DOI: 10.2217/epi.12.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite increasing knowledge on the biology, detection and treatment of colorectal cancer (CRC), the disease is still a major health problem. Hypermethylation of promoter regions of genes has been studied extensively as a contributor in CRC carcinogenesis. In addition, it is the topic of many studies focusing on biomarkers for the early detection, prediction of prognosis and treatment outcome. Methylation markers may be preferred over current screening and test methods as they are stable and easy to detect. However, almost no methylation marker is currently being used in clinical practice, often due to a lack of sensitivity, specificity, or validation of the results. This review summarizes the current knowledge of hypermethylation biomarkers for CRC detection, progression and treatment outcome.
Collapse
Affiliation(s)
- Muriel X G Draht
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Berg M, Søreide K. Genetic and epigenetic traits as biomarkers in colorectal cancer. Int J Mol Sci 2011; 12:9426-39. [PMID: 22272141 PMCID: PMC3257138 DOI: 10.3390/ijms12129426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/28/2011] [Accepted: 12/07/2011] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is a major health burden, and a leading cause of cancer-related deaths in industrialized countries. The steady improvements in surgery and chemotherapy have improved survival, but the ability to identify high- and low-risk patients is still somewhat poor. Molecular biology has, over the years, given insight into basic principles of colorectal cancer initiation and development. These findings include aberrations increasing risk of tumor development, genetic changes associated with the stepwise progression of the disease, and errors predicting response to a specific treatment. Potential biomarkers in colorectal cancer are extensively studied, and how the molecular aberrations relate to clinical features. Yet, little of this knowledge has been possible to transfer into clinical practice. In this review, an overview of colorectal cancer genetics will be given, as well as how aberrations found in this tumor type are proposed as biomarkers for risk prediction, as diagnostic tools, for prognosis or prediction of treatment outcome.
Collapse
Affiliation(s)
- Marianne Berg
- Department of Surgery, Stavanger University Hospital, P O Box 8100, N-4068 Stavanger, Norway
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +47-51-51-80-00; Fax: +47-51-88-08-95
| | - Kjetil Søreide
- Department of Surgery, Stavanger University Hospital, P O Box 8100, N-4068 Stavanger, Norway
- Department of Surgical Sciences, University of Bergen, 5021 Bergen, Norway; E-Mail:
| |
Collapse
|
73
|
Fecal molecular markers for colorectal cancer screening. Gastroenterol Res Pract 2011; 2012:184343. [PMID: 22969796 PMCID: PMC3226355 DOI: 10.1155/2012/184343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023] Open
Abstract
Despite multiple screening techniques, including colonoscopy, flexible sigmoidoscopy, radiological imaging, and fecal occult blood testing, colorectal cancer remains a leading cause of death. As these techniques improve, their sensitivity to detect malignant lesions is increasing; however, detection of precursor lesions remains problematic and has generated a lack of general acceptance for their widespread usage. Early detection by an accurate, noninvasive, cost-effective, simple-to-use screening technique is central to decreasing the incidence and mortality of this disease. Recent advances in the development of molecular markers in faecal specimens are encouraging for its use as a screening tool. Genetic mutations and epigenetic alterations that result from the carcinogenetic process can be detected by coprocytobiology in the colonocytes exfoliated from the lesion into the fecal matter. These markers have shown promising sensitivity and specificity in the detection of both malignant and premalignant lesions and are gaining popularity as a noninvasive technique that is representative of the entire colon. In this paper, we summarize the genetic and epigenetic fecal molecular markers that have been identified as potential targets in the screening of colorectal cancer.
Collapse
|