51
|
Ramos LDS, Silva LN, de Mello TP, Frota HF, Branquinha MH, Dos Santos ALS. Prospective Medicines against the Widespread, Emergent and Multidrug-Resistant Opportunistic Fungal Pathogen Candida auris: A Breath of Hope. Curr Top Med Chem 2022; 22:1297-1305. [PMID: 35619311 DOI: 10.2174/1568026622666220520153748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
The emergence of the pathogen Candida auris is a real concern worldwide, especially due to its multidrug resistance profile, besides the difficulties in establishing the correct identification by conventional laboratory methods and its capacity of causing outbreaks in healthcare settings. The limited arsenal of available antifungal drugs, coupled with the lack of momentum for the development of new reagents, represent a challenge in the management of such a pathogen. In this perspective, we have focused on discussing new, promising treatment options for C. auris infections. These novel drugs include an antifungal agent already approved for medical use in the United States of America, compounds that are already in clinical trials and those with potential for repurposing use against this important fungal pathogen.
Collapse
Affiliation(s)
- Lívia de Souza Ramos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Nunes Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heloísa Freire Frota
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ - FAPERJ
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ - FAPERJ.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
52
|
El-Kamand S, Steiner M, Ramirez C, Halliday C, Chen SCA, Papanicolaou A, Morton CO. Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens 2022; 11:pathogens11040428. [PMID: 35456102 PMCID: PMC9029132 DOI: 10.3390/pathogens11040428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk to transplant patients and those with respiratory diseases. Host immune suppression is considered the most important factor for the development of IA. Less is known about the importance of fungal virulence in the development of IA including the significance of variation between isolates. In this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no evidence of IA) were compared in assays to measure isolate virulence. These assays included the measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious differences in virulence between the two groups of isolates; this provided the impetus to conduct genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A. fumigatus virulence is challenging, but the findings of this study indicate that further research into the response to oxidative stress and azole exposure are required to understand the development of IA.
Collapse
Affiliation(s)
- Sam El-Kamand
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Martina Steiner
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Carl Ramirez
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, NSW 2753, Australia
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| |
Collapse
|
53
|
Bohner F, Papp C, Gácser A. The effect of antifungal resistance development on the virulence of Candida species. FEMS Yeast Res 2022; 22:6552956. [PMID: 35325128 PMCID: PMC9466593 DOI: 10.1093/femsyr/foac019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, the relevance of diseases associated with fungal pathogens increased worldwide. Members of the Candida genus are responsible for the greatest number of fungal bloodstream infections every year. Epidemiological data consistently indicate a modest shift toward non-albicans species, albeit Candidaalbicans is still the most recognizable species within the genus. As a result, the number of clinically relevant pathogens has increased, and, despite their distinct pathogenicity features, the applicable antifungal agents remained the same. For bloodstream infections, only three classes of drugs are routinely used, namely polyenes, azoles and echinocandins. Antifungal resistance toward all three antifungal drug classes frequently occurs in clinical settings. Compared with the broad range of literature on virulence and antifungal resistance of Candida species separately, only a small portion of studies examined the effect of resistance on virulence. These studies found that resistance to polyenes and echinocandins concluded in significant decrease in the virulence in different Candida species. Meanwhile, in some cases, resistance to azole type antifungals resulted in increased virulence depending on the species and isolates. These findings underline the importance of studies aiming to dissect the connections of virulence and resistance in Candida species.
Collapse
Affiliation(s)
- Flora Bohner
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
54
|
Iyer KR, Robbins N, Cowen LE. The role of Candida albicans stress response pathways in antifungal tolerance and resistance. iScience 2022; 25:103953. [PMID: 35281744 PMCID: PMC8905312 DOI: 10.1016/j.isci.2022.103953] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human fungal pathogens are the causative agents of devastating diseases across the globe, and the increasing prevalence of drug resistance threatens to undermine the already limited treatment options. One prominent pathogen is the opportunistic fungus Candida albicans, which can cause both superficial and serious systemic infections in immunocompromised individuals. C. albicans antifungal drug resistance and antifungal tolerance are supported by diverse and expansive cellular stress response pathways. Some of the major players are the Ca2+-calmodulin-activated phosphatase calcineurin, the protein kinase C cell wall integrity pathway, and the molecular chaperone heat shock protein 90. Beyond these core signal transducers, several other enzymes and transcription factors have been implicated in both tolerance and resistance. Here, we highlight some of the major stress response pathways, key advances in identifying chemical matter to inhibit these pathways, and implications for C. albicans persistence in the host. Candida albicans can cause superficial and serious systemic infections in humans Stress response pathways regulate C. albicans antifungal resistance and tolerance Stress response regulators include calcineurin, Pkc1, Hsp90, and many others Stress response inhibitors could reduce the likelihood of fungi persisting in humans
Collapse
Affiliation(s)
- Kali R. Iyer
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
- Corresponding author
| |
Collapse
|
55
|
El-Ganiny AM, Kamel HA, Yossef NE, Mansour B, El-Baz AM. Repurposing pantoprazole and haloperidol as efflux pump inhibitors in azole resistant clinical Candida albicans and non-albicans isolates. Saudi Pharm J 2022; 30:245-255. [PMID: 35498219 PMCID: PMC9051972 DOI: 10.1016/j.jsps.2022.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Candida species have a major role in nosocomial infections leading to high morbidity and mortality. Increased resistance to various antifungals, especially azoles is a significant problem. One of the main mechanisms for azole resistance is the up-regulation of efflux pump genes including CDR1 and MDR1. In the current study, clinical Candida isolates were identified to the species level and the antifungal susceptibility (AFS) of different Candida species was determined by disk diffusion method. Furthermore, the main mechanisms of azole resistance were investigated. Finally, haloperidol and pantoprazole were tested for their potential synergistic effect against fluconazole-resistant isolates. One hundred and twenty-two Candida clinical isolates were used in this study. 70 isolates were Candida albicans (57.4%), the non-albicans Candida species include: C. krusei (20.5%), C. tropicalis (6.6%), C. parapsilosis (5.7%), C. dubliniensis (4.9%) and C. glabrata (4.9%). The AFS testing showed that resistance to fluconazole and voriconazole were 13.1% (n = 16) and 9.8% (n = 12), respectively. Among the 16 resistant isolates, eight isolates (50%) were strong biofilm producers, seven (43.8 %) formed intermediate biofilm and one had no biofilm. All resistant strains overexpressed efflux pumps. Using RT-PCR, the efflux genes CDR1, MDR1 and ABC2 were over-expressed in azole resistant isolates. Haloperidol-fluconazole and pantoprazole-fluconazole combinations reduced the MIC of fluconazole in resistant isolates. The current study showed an increase in azole resistance of Candida species. The majority of resistant isolates form biofilm, and overexpress efflux pumps. Pantoprazole and Haloperidol showed a noteworthy effect as efflux pump inhibitors which oppose the fluconazole resistance in different Candida species.
Collapse
Affiliation(s)
- Amira M. El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| | - Hend A. Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
- Microbiology Department, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Kantara, Egypt
| | - Nehal E. Yossef
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed M. El-Baz
- Microbiology and Biotechnology Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
56
|
Baghirova AA, Kasumov KM. Antifungal Macrocycle Antibiotic Amphotericin B-Its Present and Future. Multidisciplinary Perspective for the Use in the Medical Practice. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2022; 16:1-12. [PMID: 35194486 PMCID: PMC8853366 DOI: 10.1134/s1990750822010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
This review is devoted to a broad analysis of the results of studies of the effect of macrocyclic antifungal polyene antibiotic amphotericin B on cell membranes. A detailed study of polyenes has shown that some of them can have not only antifungal, but also antiviral and antitumor effects. Under conditions of global pandemic fungal pathology develops especially quickly and in this case leads to invasive aspergillosis, which contributes to the complication of coronavirus infection in the lungs and even secondary infection with invasive aspergillosis. The treatment of an invasive form of bronchopulmonary aspergillosis is directly related to the immunomodulatory and immunostimulating properties of the macrocyclic polyene drug amphotericin B. The article presents experimental data on the study of the biological activity and membrane properties of amphotericin B and the effect of its chemically modified derivatives, as well as liposomal forms of amphotericin B on viral, bacterial and fungal infections. The mechanism of action of amphotericin B and its analogues is based on their interaction with cellular and lipid membranes, followed by formation of ion channels of molecular size in the membranes. The importance of these studies is that polyenes are sensitive to membranes that contain sterols of a certain structure. The analysis showed that pathogenic fungal cells containing ergosterol were 10-100 times more sensitive to polyene antibiotics than host cell membranes containing cholesterol. The high sterol selectivity of the action of polyenes opens broad prospects for the use of polyene antifungal drugs in practical medicine and pharmacology in the treatment of invasive mycoses and the prevention of atherosclerosis. In this context, it should be noted that polyene antibiotics are the main tool in the study of the biochemical mechanism of changes in the permeability of cell membranes for energy-dependent substrates. Chemical and genetic engineering transformation of the structure of polyene antibiotic molecules opens prospects for the identification and creation of new biologically active forms of the antibiotic that have a high selectivity of action in the treatment of pathogenic infections.
Collapse
Affiliation(s)
- A. A. Baghirova
- Institute of Botany, Azerbaijan National Academy of Sciences, Patamdartskoe shosse 40, AZ1004 Baku, Azerbaijan
| | - Kh. M. Kasumov
- Institute of Botany, Azerbaijan National Academy of Sciences, Patamdartskoe shosse 40, AZ1004 Baku, Azerbaijan
| |
Collapse
|
57
|
Tortorano AM, Prigitano A, Morroni G, Brescini L, Barchiesi F. Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infect Drug Resist 2022; 14:5543-5553. [PMID: 34984009 PMCID: PMC8702982 DOI: 10.2147/idr.s274872] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Candidemia and invasive candidiasis are the most common healthcare-associated invasive fungal infections, with a crude mortality rate of 25–50%. Candida albicans remains the most frequent etiology, followed by C. glabrata, C. parapsilosis and C. tropicalis. With the exception of a limited number of species (ie: C. krusei, C. glabrata and rare Candida species), resistance to fluconazole and other triazoles are quite uncommon. However, recently fluconazole-resistant C. parapsilosis, echinocandin-resistant C. glabrata and the multidrug resistant C. auris have emerged. Resistance to amphotericin B is even more rare due to the reduced fitness of resistant isolates. The mechanisms of antifungal resistance in Candida (altered drug-target interactions, reduced cellular drug concentrations, and physical barriers associated with biofilms) are analyzed. The choice of the antifungal therapy for candidemia must take into account several factors such as type of patient, presence of devices, severity of illness, recent exposure to antifungals, local epidemiology, organs involvement, and Candida species. The first-line therapy in non-neutropenic critical patient is an echinocandin switching to fluconazole in clinically stable patients with negative blood cultures and azole susceptible isolate. Similarly, an echinocandin is the drug of choice also in neutropenic patients. The treatment duration is 14 days after the first negative blood culture or longer in cases of organ involvement. An early removal of vascular catheter improves the outcome. The promising results of new antifungal molecules, such as the terpenoid derivative ibrexafungerp, the novel echinocandin with an enhanced half-life rezafungin, oteseconazole and fosmanogepix, representative of new classes of antifungals, are discussed.
Collapse
Affiliation(s)
- Anna Maria Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy.,Clinic of Infectious Diseases, Azienda Ospedaliero Universitaria, Ospedali Riuniti Umberto I-Lancisi-Salesi, Ancona, Italy
| | - Francesco Barchiesi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy.,Clinic of Infectious Diseases, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| |
Collapse
|
58
|
Agarwal A, Kar B. Amphotericin-B in dermatology. Indian Dermatol Online J 2022; 13:152-158. [PMID: 35198495 PMCID: PMC8809177 DOI: 10.4103/idoj.idoj_573_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022] Open
|
59
|
Ribeiro GF, Denes E, Heaney H, Childers DS. What 'Omics Can Tell Us About Antifungal Adaptation. FEMS Yeast Res 2021; 21:6484793. [PMID: 34958354 PMCID: PMC8755904 DOI: 10.1093/femsyr/foab070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Invasive candidiasis, the most frequent healthcare-associated invasive fungal infection, is commonly caused by Candida albicans. However, in recent years other antifungal-resistant Candida species—namely Candida glabrata and Candidaauris—have emerged as a serious matter of concern. Much of our understanding of the mechanisms regulating antifungal resistance and tolerance relies on studies utilizing C. albicans, C. glabrataand the model yeast Saccharomyces cerevisiae. ‘Omics studies have been used to describe alterations in metabolic, genomic and transcriptomic expression profiles upon antifungal treatment of fungal cells. The physiological changes identified by these approaches could significantly affect fungal fitness in the host and survival during antifungal challenge, as well as provide further understanding of clinical resistance. Thus, this review aims to comparatively address ‘omics data for C. albicans, C. glabrata andS. cerevisiae published from 2000 to 2021 to identify what these technologies can tell us regarding cellular responses to antifungal therapy. We will also highlight possible effects on pathogen survival and identify future avenues for antifungal research.
Collapse
Affiliation(s)
- Gabriela Fior Ribeiro
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Eszter Denes
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Helen Heaney
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Delma S Childers
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| |
Collapse
|
60
|
Norris HL, Kumar R, Edgerton M. A Novel Role for Histatin 5 in Combination with Zinc to Promote Commensalism in C. albicans Survivor Cells. Pathogens 2021; 10:pathogens10121609. [PMID: 34959564 PMCID: PMC8703888 DOI: 10.3390/pathogens10121609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is maintained as a commensal by immune mechanisms at the oral epithelia. Oral antifungal peptide Histatin 5 (Hst 5) may function in innate immunity, but the specific role Hst 5 plays in C. albicans commensalism is unclear. Since Zn-binding potentiates the candidacidal activity of Hst 5, we hypothesized that Hst 5+Zn would elicit a unique fungal stress response to shape interactions between C. albicans and oral epithelial cells (OECs). We found that Hst 5+Zn but not Hst 5 alone resulted in the activation of cell wall integrity (CWI) signaling, and deletion mutants were then used to determine that CWI-mediated chitin synthesis was protective against killing. Using flow cytometry, we confirmed that Hst 5+Zn-treated cells had significantly elevated levels of cell-wall chitin, mannan and β-1,3 glucan compared to Hst 5-treated cells. We then tested the activation of host signaling components involved in C. albicans cell-wall recognition. The immunoblot assay of C. albicans-exposed oral epithelial cells showed increased activation of EphA2 and NF-κB but not EGFR. Interestingly, C. albicans treated with Hst 5+Zn induced the global suppression of pro-inflammatory cytokine release from OECs, but an increase in negative regulator IL-10. Hst 5+Zn-treated cells were more adherent but ultimately less invasive to OECs than control cells, thus indicating lowered virulence. Therefore, Hst 5+Zn-treated C. albicans cells are discerned by epithelial monolayers, but are less virulent and promote anti-inflammatory signaling, suggesting that Hst 5+Zn in combination could play a role in regulating commensalism of oral C. albicans through cell wall reorganization.
Collapse
|
61
|
DeJarnette C, Meyer CJ, Jenner AR, Butts A, Peters T, Cheramie MN, Phelps GA, Vita NA, Loudon-Hossler VC, Lee RE, Palmer GE. Identification of Inhibitors of Fungal Fatty Acid Biosynthesis. ACS Infect Dis 2021; 7:3210-3223. [PMID: 34786940 DOI: 10.1021/acsinfecdis.1c00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal fatty acid (FA) synthase and desaturase enzymes are essential for the growth and virulence of human fungal pathogens. These enzymes are structurally distinct from their mammalian counterparts, making them attractive targets for antifungal development. However, there has been little progress in identifying chemotypes that target fungal FA biosynthesis. To accomplish this, we applied a whole-cell-based method known as Target Abundance-based FItness Screening using Candida albicans. Strains with varying levels of FA synthase or desaturase expression were grown in competition to screen a custom small-molecule library. Hit compounds were defined as preferentially inhibiting the growth of the low target-expressing strains. Dose-response experiments confirmed that 16 hits (11 with an acyl hydrazide core) differentially inhibited the growth of strains with an altered desaturase expression, indicating a specific chemical-target interaction. Exogenous unsaturated FAs restored C. albicans growth in the presence of inhibitory concentrations of the most potent acyl hydrazides, further supporting the primary mechanism being inhibition of FA desaturase. A systematic analysis of the structure-activity relationship confirmed the acyl hydrazide core as essential for inhibitory activity. This collection demonstrated broad-spectrum activity against Candida auris and mucormycetes and retained the activity against azole-resistant candida isolates. Finally, a preliminary analysis of toxicity to mammalian cells identified potential lead compounds with desirable selectivities. Collectively, these results establish a scaffold that targets fungal FA biosynthesis with a potential for development into novel therapeutics.
Collapse
Affiliation(s)
- Christian DeJarnette
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38163, United States
| | - Chris J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Alexander R. Jenner
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Arielle Butts
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| | - Tracy Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| | - Martin N. Cheramie
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Gregory A. Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis Tennessee 38103, United States
| | - Nicole A. Vita
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee 38163, United States
| | - Victoria C. Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Glen E. Palmer
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
62
|
Dalyan Cilo B, Ener B. Comparison of Clinical Laboratory Standards Institute (CLSI) Microdilution Method and VITEK 2 Automated Antifungal Susceptibility System for the Determination of Antifungal Susceptibility of Candida Species. Cureus 2021; 13:e20220. [PMID: 35004039 PMCID: PMC8733416 DOI: 10.7759/cureus.20220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Changes in the epidemiology of Candida infections, increasing resistance, and advances in treatment have increased the need to perform antifungal susceptibility testing in clinical laboratories. Standardized reference, the microbroth dilution method, and various commercial antifungal susceptibility test systems are used to determine antifungal susceptibility. This study aims to determine and compare the antifungal susceptibility of various Candida species isolated from blood cultures in our laboratory with the CLSI M27 microdilution reference method and VITEK 2 automated system (bioMérieux, Marcy-l'Étoile, France). Methods The antifungal susceptibility of a total of 140 Candida strains to fluconazole, voriconazole, and amphotericin B, and a total of 92 strains to anidulafungin was tested with the CLSI M27 method and the VITEK 2 automated system. For fluconazole, voriconazole, and amphotericin B, essential and categorical agreement percentages were calculated between the two methods. Because there is no anidulafungin in the VITEK 2 system, anidulafungin results obtained with CLSI were compared with micafungin only in terms of categorical agreement. In the category comparison, CLSI clinical breakpoints were used; the epidemiological cut-off values were used when they were not available. Very major error, major error, and minor error rates were calculated. Results In general, the minimum inhibitory concentration (MIC) values obtained with VITEK 2 for azole group drugs were found to be one-fold higher than the CLSI MICs read at the 24th hour. While the essential agreement between the two methods was >90% for amphotericin B and voriconazole, it remained at 85% for fluconazole. Overall, the best categorical agreement was obtained with amphotericin B (99.3%), and the least categorical agreement was obtained with voriconazole (85.7%). A very major error was seen with amphotericin B (0.7%) and fluconazole (0.7%) in one C. parapsilosis strain each. No resistance was detected with VITEK 2 in one C. glabrata strain found to be resistant to fluconazole by the reference method. Major and minor error rates were higher for azole drugs than amphotericin B and anidulafungin/micafungin. Conclusion The VITEK 2 system is a fast and highly applicable system, and with these features, it is advantageous for routine laboratories. In this study, although the error rate was not very high, one fluconazole-resistant C. parapsilosis and C. glabrata strain could not be detected with VITEK 2. The increase in data on the antifungal performance of the VITEK 2 system, which is available in many routine laboratories due to its ability to be used for bacteria identification and sensitivity, will contribute to the usability of the system for this purpose. In this study, data that will support the literature information in terms of the antifungal performance of the VITEK 2 system are presented.
Collapse
Affiliation(s)
- Burcu Dalyan Cilo
- Clinical Microbiology, University of Health Sciences, Bursa Yuksek Ihtisas Training & Research Hospital, Bursa, TUR
| | - Beyza Ener
- Microbiology, Microbiology, Uludag University Medical Faculty, Bursa, TUR
| |
Collapse
|
63
|
Hosfelt J, Richards A, Zheng M, Adura C, Nelson B, Yang A, Fay A, Resager W, Ueberheide B, Glickman JF, Lupoli TJ. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Cell Chem Biol 2021; 29:854-869.e9. [PMID: 34818532 DOI: 10.1016/j.chembiol.2021.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
DnaK is the bacterial homolog of Hsp70, an ATP-dependent chaperone that helps cofactor proteins to catalyze nascent protein folding and salvage misfolded proteins. In the pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), DnaK and its cofactors are proposed antimycobacterial targets, yet few small-molecule inhibitors or probes exist for these families of proteins. Here, we describe the repurposing of a drug called telaprevir that is able to allosterically inhibit the ATPase activity of DnaK and to prevent chaperone function by mimicking peptide substrates. In mycobacterial cells, telaprevir disrupts DnaK- and cofactor-mediated cellular proteostasis, resulting in enhanced efficacy of aminoglycoside antibiotics and reduced resistance to the frontline TB drug rifampin. Hence, this work contributes to a small but growing collection of protein chaperone inhibitors, and it demonstrates that these molecules disrupt bacterial mechanisms of survival in the presence of different antibiotic classes.
Collapse
Affiliation(s)
- Jordan Hosfelt
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meng Zheng
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Insitute, New York, NY 10065, USA
| | - William Resager
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Departments of Biochemistry and Molecular Pharmacology, Neurology and Director Proteomics Lab, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
64
|
M El-Ganiny A, E Yossef N, A Kamel H. Prevalence and antifungal drug resistance of nosocomial Candida species isolated from two university hospitals in Egypt. Curr Med Mycol 2021; 7:31-37. [PMID: 34553095 PMCID: PMC8443875 DOI: 10.18502/cmm.7.1.6181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose: There is a significant rise in morbidity and mortality of infections caused by Candida. Candida spp. infections are currently ranked fourth among nosocomial infections which are difficult
to diagnose and refractory to therapy. Given the differences in susceptibility among various spp., identification of Candida spp. is an important step that leads to the selection of a suitable antifungal. Materials and Methods: A prevalence study was conducted on 122 Candida isolates. The Candida spp. were identified using Chromogenic agar and polymerase chain reaction (PCR).
The antifungal susceptibility (AFS) of Candida spp. to amphotericin B, fluconazole, voriconazole, and caspofungin was determined by the disc diffusion method. Results: In total, 122 Candida clinical isolates were investigated in this study. Candida albicans with 57.4% (70 isolates) had the highest prevalence rate,
while 52 isolates (42.6%) were non-albicansCandida species (NAC). The NAC include Candida krusei (20.4%), Candida tropicalis (6.5%), Candida parapsilolsis (5.7%),
Candida dubliniensis (4.9%), and Candida glabrata (4.9%). The AFS showed that the resistance rates of Candida spp. to fluconazole and voriconazole were 13.1% (16 isolates)
and 9.8% (12 isolates), respectively. Moreover, only five isolates (4.1%) were resistant to caspofungin. Furthermore, there was no resistance against amphotericin B. The spp.
that showed the highest resistance were C. glabrata and C. tropicalis, while the lowest resistance was observed in C. albicans and C. dubliniensis. Conclusion: In conclusion, rapid identification of clinical Candida isolates and standard AFS are essential procedures for controlling the rise of resistant NAC spp. in clinical settings.
Usage of fluconazole should be restricted, especially in patients with recurrent Candida infections.
Collapse
Affiliation(s)
- Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nehal E Yossef
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hend A Kamel
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Microbiology Department, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, Kantara, Egypt
| |
Collapse
|
65
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
66
|
Gavilanes-Martínez MA, Coral-Garzón A, Cáceres DH, García AM. Antifungal activity of boric acid, triclosan and zinc oxide against different clinically relevant Candida species. Mycoses 2021; 64:1045-1052. [PMID: 33969547 PMCID: PMC8373697 DOI: 10.1111/myc.13302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The genus Candida includes about 200 different species, but only a few are able to produce disease in humans. The species responsible for the highest proportion of human infections is Candida albicans. However, in the last two decades there has been an increase in the proportion of infections caused by other Candida species, including C. glabrata (Nakaseomyces glabrata), C. parapsilosis, C. tropicalis, C. krusei (Pichia kudriavzevi) and more recently C. auris. Decolonisation of patients has been used as an infection control strategy for bacterial infections, but information about decolonisation products used in clinical practice for Candida and other fungal pathogens is limited. Compounds with antimicrobial activity, such as triclosan (TR), boric acid (BA) and zinc oxide (ZO), are mainly used in personal care products. These products can be used for long periods of time without an abrasive skin effect and are a possible alternative for patient decolonisation in healthcare settings. OBJECTIVE The aim of this study was to evaluate the antifungal activity of boric acid (BA), triclosan (TR) and zinc oxide (ZO), individually and combined, against clinically relevant Candida species. MATERIALS AND METHODS Compounds to be screened for antifungal activity were evaluated at different concentrations, alone, and combined, using a well diffusion assay. The statistical evaluation was performed using analysis of variance (ANOVA) and a post hoc analysis using the multiple comparisons method. RESULTS Individually, BA and TR showed antifungal activity against all Candida species evaluated but ZO did not show any antifungal activity. Mixtures of BA [5%]-TR [0.2%]; BA [5%]-TR [0.3%]; BA [5%]-TR [0.2%]-ZO [8.6%]; and BA [5%]-TR [0.2%]-ZO [25%] yielded the highest antifungal activity. An increased antifungal effect was observed in some mixtures when compared with individual compounds. CONCLUSIONS We demonstrated antifungal activity of BA and TR against multiple Candida species, including against a clade of the emerging healthcare-associated pathogen C. auris. Additionally, this study shows enhancement of the antifungal effect and no antagonism among the mixtures of these compounds. Further research is needed to determine whether these compounds can reduce the burden of Candida on skin.
Collapse
Affiliation(s)
- Marly Alejandra Gavilanes-Martínez
- Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas -CIB, Medellín, Colombia
| | - Alejandra Coral-Garzón
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas -CIB, Medellín, Colombia
| | - Diego H Cáceres
- Mycotic Diseases Branch, Centers for Disease Control and Prevention - CDC, Atlanta, GA, USA
- Department of Medical Microbiology, Radboud University Medical Center and Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Ana María García
- Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas -CIB, Medellín, Colombia
| |
Collapse
|
67
|
Du J, Ma W, Fan J, Liu X, Wang Y, Zhou X. The A756T Mutation of the ERG11 Gene Associated With Resistance to Itraconazole in Candida Krusei Isolated From Mycotic Mastitis of Cows. Front Vet Sci 2021; 8:634286. [PMID: 34458346 PMCID: PMC8385537 DOI: 10.3389/fvets.2021.634286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
Candida krusei (C. krusei) has been recently recognized as an important pathogen involved in mycotic mastitis of cows. The phenotypic and molecular characteristics of 15 C. krusei clinical isolates collected from cows with clinical mastitis in three herds of Yinchuan, Ningxia, were identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry. In addition to sequencing analysis, the ERG11 gene that encodes 14α-demethylases, the expression of the ERG11 gene, and efflux transporters ABC1 and ABC2 in itraconazole-susceptible (S), itraconazole-susceptible dose dependent (SDD), and itraconazole-resistant (R) C. krusei isolates was also quantified by a quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay. Sequencing analysis revealed three synonymous codon substitutions of the ERG11 gene including T939C, A756T, and T642C in these C. krusei clinical isolates. Among them, T642C and T939C mutations were detected in itraconazole-resistant and -susceptible C. krusei isolates, but the A756T substitution was found only in itraconazole-resistant isolates. Importantly, the expression of the ERG11 gene in itraconazole-resistant isolates was significantly higher compared with itraconazole-SDD and itraconazole-susceptible isolates (p = 0.052 and p = 0.012, respectively), as determined by the qRT-PCR assay. Interestingly, the expression of the ABC2 gene was also significantly higher in itraconazole-resistant isolates relative to the itraconazole-SDD and itraconazole-susceptible strains. Notably, the expression of ERG11 was positively associated with resistance to itraconazole (p = 0.4177 in SDD compared with S, p = 0.0107 in SDD with R, and p = 0.0035 in S with R, respectively). These data demonstrated that mutations of the ERG11 gene were involved in drug resistance in C. krusei. The A756T synonymous codon substitution of the ERG11 gene was correlated with an increased expression of drug-resistant genes including ERG11 and ABC2 in itraconazole-resistant C. krusei isolates examined in this study.
Collapse
Affiliation(s)
- Jun Du
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Wenshuang Ma
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Jiaqi Fan
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
68
|
Liang T, Chen W, Yang X, Wang Q, Wan Z, Li R, Liu W. The Elevated Endogenous Reactive Oxygen Species Contribute to the Sensitivity of the Amphotericin B-Resistant Isolate of Aspergillus flavus to Triazoles and Echinocandins. Front Microbiol 2021; 12:680749. [PMID: 34413836 PMCID: PMC8369828 DOI: 10.3389/fmicb.2021.680749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Aspergillus flavus has been frequently reported as the second cause of invasive aspergillosis (IA), as well as the leading cause in certain tropical countries. Amphotericin B (AMB) is a clinically important therapy option for a range of invasive fungal infections including invasive aspergillosis, and in vitro resistance to AMB was associated with poor outcomes in IA patients treated with AMB. Compared with the AMB-susceptible isolates of A. terreus, the AMB-resistant isolates of A. terreus showed a lower level of AMB-induced endogenous reactive oxygen species (ROS), which was an important cause of AMB resistance. In this study, we obtained one AMB-resistant isolate of A. flavus, with an AMB MIC of 32 μg/mL, which was sensitive to triazoles and echinocandins. This isolate presented elevated endogenous ROS levels, which strongly suggested that no contribution of decreased AMB-induced endogenous ROS for AMB-resistance, opposite to those observed in A. terreus. Further, we confirmed that the elevated endogenous ROS contributed to the sensitivity of the AMB-resistant A. flavus isolate to triazoles and echinocandins. Further investigation is needed to elucidate the causes of elevated endogenous ROS and the resistance mechanism to AMB in A. flavus.
Collapse
Affiliation(s)
- Tianyu Liang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Chen
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xinyu Yang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
69
|
Baghirova AA, Kasumov KM. [Antifungal macrocycle antibiotic amphotericin B - its present and future. Multidisciplinary perspective for the use in the medical practice]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:311-322. [PMID: 34414889 DOI: 10.18097/pbmc20216704311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to a broad analysis of the results of studies of the effect of macrocyclic antifungal polyene antibiotic amphotericin B on cell membranes. A multi-prolonged study of polyenes showed that some of them can have not only antifungal, but also antiviral and antitumor action. Fungal pathology develops especially quickly and in this case leads to invasive aspergillosis, which contributes to the complication of coronavirus infection in the lungs and even secondary infection with invasive aspergillosis in the context of a global pandemic. The treatment of an invasive form of bronchopulmonary aspergillosis is directly related to the immunomodulatory and immunostimulating properties of the macrocyclic polyene drug amphotericin B. The article presents experimental data on the study of the biological activity and membrane properties of amphotericin B and the effect of its chemically modified derivatives, as well as liposomal forms of amphotericin B on viral, bacterial and fungal infections. The mechanism of action of amphotericin B and its analogues is based on their interaction with cellular and lipid membranes, by forming ion channels of molecular size in them. The importance of these studies is that polyenes are sensitive to membranes that contain sterols of a certain structure. The analysis showed that pathogenic fungal cells containing ergosterol were 10-100 times more sensitive to polyene antibiotics than host cell membranes containing cholesterol. The high sterol selectivity of the action of polyenes opens up broad prospects for the use of polyene antifungal drugs in practical medicine and pharmacology in the treatment of invasive mycoses and the prevention of atherosclerosis. In this connection, it should be noted that polyene antibiotics are the main tool in the study of the biochemical mechanism of changes in the permeability of cell membranes for energy-dependent substrates. Chemical and genetic engineering transformation of the structure of polyene antibiotic molecules opens up prospects for the identification and creation of new biologically active forms of the antibiotic that have a high selectivity of action in the treatment of pathogenic infections.
Collapse
Affiliation(s)
- A A Baghirova
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Kh M Kasumov
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| |
Collapse
|
70
|
Maphanga TG, Naicker SD, Kwenda S, Muñoz JF, van Schalkwyk E, Wadula J, Nana T, Ismail A, Coetzee J, Govind C, Mtshali PS, Mpembe RS, Govender NP. In Vitro Antifungal Resistance of Candida auris Isolates from Bloodstream Infections, South Africa. Antimicrob Agents Chemother 2021; 65:e0051721. [PMID: 34228535 PMCID: PMC8370198 DOI: 10.1128/aac.00517-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 11/20/2022] Open
Abstract
Candida auris is a multidrug-resistant fungal pathogen that is endemic in South African hospitals. We tested bloodstream C. auris isolates that were submitted to a reference laboratory for national laboratory-based surveillance for candidemia in 2016 and 2017. We confirmed the species identification by phenotypic/molecular methods. We tested susceptibility to amphotericin B, anidulafungin, caspofungin, micafungin, itraconazole, posaconazole, voriconazole, fluconazole, and flucytosine using broth microdilution and Etest methods. We interpreted MICs using tentative breakpoints. We sequenced the genomes of a subset of isolates and compared them to the C. auris B8441 reference strain. Of 400 C. auris isolates, 361 (90%) were resistant to at least one antifungal agent, 339 (94%) to fluconazole alone (MICs of ≥32 µg/ml), 19 (6%) to fluconazole and amphotericin B (MICs of ≥2 µg/ml), and 1 (0.3%) to amphotericin B alone. Two (0.5%) isolates from a single patient were pan-resistant (resistant to fluconazole, amphotericin B, and echinocandins). Of 92 isolates selected for whole-genome sequencing, 77 clustered in clade III, including the pan-resistant isolates, 13 in clade I, and 2 in clade IV. Eighty-four of the isolates (91%) were resistant to at least one antifungal agent; both resistant and susceptible isolates had mutations. The common substitutions identified across the different clades were VF125AL, Y132F, K177R, N335S, and E343D in ERG11; N647T in MRR1; A651P, A657V, and S195G in TAC1b; S639P in FKS1HP1; and S58T in ERG3. Most South African C. auris isolates were resistant to azoles, although resistance to polyenes and echinocandins was less common. We observed mutations in resistance genes even in phenotypically susceptible isolates.
Collapse
Affiliation(s)
- Tsidiso G. Maphanga
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
| | - Serisha D. Naicker
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stanford Kwenda
- National Institute for Communicable Diseases, Sequencing Core Facility, National Health Laboratory Service, Johannesburg, South Africa
| | - Jose F. Muñoz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Erika van Schalkwyk
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
| | - Jeannette Wadula
- National Health Laboratory Service, Chris Hani Baragwaneth Academic Hospital, Soweto, South Africa
| | - Trusha Nana
- National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Arshad Ismail
- National Institute for Communicable Diseases, Sequencing Core Facility, National Health Laboratory Service, Johannesburg, South Africa
| | | | | | - Phillip S. Mtshali
- National Institute for Communicable Diseases, Sequencing Core Facility, National Health Laboratory Service, Johannesburg, South Africa
| | - Ruth S. Mpembe
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P. Govender
- National Institute for Communicable Diseases, Centre for Healthcare-Associated Infections, Antimicrobial Resistance, and Mycoses, National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
71
|
Morelle C, Mukherjee A, Zhang J, Fani F, Khandelwal A, Gingras H, Trottier J, Barbier O, Leprohon P, Burke MD, Ouellette M. Well-Tolerated Amphotericin B Derivatives That Effectively Treat Visceral Leishmaniasis. ACS Infect Dis 2021; 7:2472-2482. [PMID: 34282886 DOI: 10.1021/acsinfecdis.1c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy against the neglected tropical disease visceral leishmaniasis (VL) is suboptimal with only four licensed drugs. Amphotericin B (AmB), despite its toxicity, remained a second line drug for a long time. However, the demonstration that liposomal AmB is highly effective against VL propelled it, despite its cost, to a first line drug in many countries. While several ongoing efforts are aiming at finding cheaper and stable AmB-formulations, an alternative strategy is the development of less-toxic AmB derivatives. We show here that two less-toxic AmB derivatives with the carboxylate at position 16 of AmB derivatized to a methyl urea (AmB-MU) or amino urea (AmB-AU) are active in vitro against Leishmania donovani, both as free-living parasites as well as their intracellular form. Both less-toxic derivatives, similarly to AmB, target the ergosterol pathway of L. donovani. While the AmB-AU derivative showed female-specific liver toxicity in vivo, the AmB-MU derivative was well-tolerated and more effective than AmB against experimental VL. These studies are an important step for improving AmB-based therapy against a prevalent parasitic disease.
Collapse
Affiliation(s)
- Christelle Morelle
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Angana Mukherjee
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jiabao Zhang
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fereshteh Fani
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Anuj Khandelwal
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hélène Gingras
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Philippe Leprohon
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Martin D. Burke
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Marc Ouellette
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| |
Collapse
|
72
|
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol 2021; 59:14-30. [PMID: 32400853 DOI: 10.1093/mmy/myaa031] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Although Candida albicans remains the main cause of candidiasis, in recent years a significant number of infections has been attributed to non-albicans Candida (NAC) species, including Candida krusei. This epidemiological change can be partly explained by the increased resistance of NAC species to antifungal drugs. C. krusei is a diploid, dimorphic ascomycetous yeast that inhabits the mucosal membrane of healthy individuals. However, this yeast can cause life-threatening infections in immunocompromised patients, with hematologic malignancy patients and those using prolonged azole prophylaxis being at higher risk. Fungal infections are usually treated with five major classes of antifungal agents which include azoles, echinocandins, polyenes, allylamines, and nucleoside analogues. Fluconazole, an azole, is the most commonly used antifungal drug due to its low host toxicity, high water solubility, and high bioavailability. However, C. krusei possesses intrinsic resistance to this drug while also rapidly developing acquired resistance to other antifungal drugs. The mechanisms of antifungal resistance of this yeast involve the alteration and overexpression of drug target, reduction in intracellular drug concentration and development of a bypass pathway. Antifungal resistance menace coupled with the paucity of the antifungal arsenal as well as challenges involved in antifungal drug development, partly due to the eukaryotic nature of both fungi and humans, have left researchers to exploit alternative therapies. Here we briefly review our current knowledge of the biology, pathophysiology and epidemiology of a potential multidrug-resistant fungal pathogen, C. krusei, while also discussing the mechanisms of drug resistance of Candida species and alternative therapeutic approaches.
Collapse
Affiliation(s)
- A T Jamiu
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - J Albertyn
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - O M Sebolai
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| | - C H Pohl
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa, 9301
| |
Collapse
|
73
|
Abstract
Introduction: Invasive fungal infection carries a high morbidity, mortality and economic cost. In recent times, a rising incidence of fungal infection and antifungal resistance is occurring which has prompted the development of novel antifungal agents.Areas covered:In this perspective, the authors describe the current status of registered antifungals and their limitations in the treatment of invasive fungal infection. They also go on to describe the new antifungal agents that are in the clinical stage of development and how they might be best utilized in patient care in the future.Expert opinion: The antifungal drug development pipeline has responded to a growing need for new agents to effectively treat fungal disease without concomitant toxicity or issues with drug tolerance. Olorofim (F901318), ibrexafungerp (SCY-078), fosmanogepix (APX001), rezafungin (CD101), oteseconazole (VT-1161), encochleated amphotericin B (MAT2203), nikkomycin Z (NikZ) and ATI-2307 are all in the clinical stage of development and offer great promise in offering clinicians better agents to treat these difficult infections.
Collapse
Affiliation(s)
- Adam G Stewart
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| | - David L Paterson
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| |
Collapse
|
74
|
Kato H, Hagihara M, Shibata Y, Asai N, Yamagishi Y, Iwamoto T, Mikamo H. Comparison of mortality between echinocandins and polyenes for an initial treatment of candidemia: A systematic review and meta-analysis. J Infect Chemother 2021; 27:1562-1570. [PMID: 34217605 DOI: 10.1016/j.jiac.2021.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Current guidelines recommend echinocandins for the initial treatment of candidemia. However, polyenes are often chosen in clinical settings because of their fungicidal and anti-biofilm effects. Therefore, we performed a systematic review and meta-analysis to evaluate whether echinocandins are superior to polyenes in terms of mortality for the initial treatment of candidemia. METHODS We systematically searched the Scopus, EMBASE, Cochrane Central Register of Controlled Trials, PubMed, and CINAHL databases until July 1, 2020. We compared the mortality rates of patients who received echinocandins and polyenes. As a subgroup analysis, we compared the mortality rates following the use of echinocandins versus liposomal amphotericin B. RESULTS Fifteen studies involving 854 patients were included. Various Candida species were detected, and the rates of resistance of echinocandins and polyenes against the overall detected isolates were 1.0% and 0%, respectively. The overall mortality recorded in 15 studies was 41.0%, and the mortality was significantly higher for polyenes than echinocandins (odd ratios [OR] 1.68, 95% confidential interval [CI] 1.17-2.42). Furthermore, liposomal amphotericin B showed higher mortality in the initial treatment than echinocandins (OR 1.42; 95% CI 0.84-2.39). CONCLUSIONS We revealed an association between echinocandin treatment and reduced mortality in the initial treatment of candidemia when causative fungi were not considered. Our findings partially support current guidelines recommending echinocandins for the treatment of candidemia.
Collapse
Affiliation(s)
- Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Pharmacy, Mie University Hospital, Mie, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University Hospital, Aichi, Japan
| | - Yuichi Shibata
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Mie, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan.
| |
Collapse
|
75
|
Abstract
Pathogenic fungi have several mechanisms of resistance to antifungal drugs, driven by the genetic plasticity and versatility of their homeostatic responses to stressful environmental cues. We critically review the molecular mechanisms of resistance and cellular adaptations of pathogenic fungi in response to antifungals and discuss the factors contributing to such resistance. We offer suggestions for the translational and clinical research agenda of this rapidly evolving and medically important field. A better understanding of antifungal resistance should assist in developing better detection tools and inform optimal strategies for preventing and treating refractory mycoses in the future.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Infectious Diseases Department, Sackler School of Medicine, Tel Aviv University, Tel Aviv Sourasky Medical Center, 6 Weizmann, Tel Aviv 64239, Israel
| | - Dimitrios P Kontoyiannis
- Infectious Diseases, University of Texas M D Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA.
| |
Collapse
|
76
|
Revie NM, Cowen LE. Glycosylated Polyene Macrolides Kill Fungi via a Conserved Sterol Sponge Mechanism of Action. ACS CENTRAL SCIENCE 2021; 7:706-708. [PMID: 34079890 PMCID: PMC8161489 DOI: 10.1021/acscentsci.1c00520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Nicole M. Revie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
77
|
Germination of a Field: Women in Candida albicans Research. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
78
|
Carolus H, Pierson S, Muñoz JF, Subotić A, Cruz RB, Cuomo CA, Van Dijck P. Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance. mBio 2021; 12:e03333-20. [PMID: 33820824 PMCID: PMC8092288 DOI: 10.1128/mbio.03333-20] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
Collapse
Affiliation(s)
- Hans Carolus
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - José F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ana Subotić
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Rita B Cruz
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Patrick Van Dijck
- VIB Center for Microbiology, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
79
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
80
|
Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem Rev 2021; 121:3390-3411. [PMID: 32441527 PMCID: PMC8519031 DOI: 10.1021/acs.chemrev.0c00199] [Citation(s) in RCA: 351] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
81
|
Zhang M, Lu J, Duan X, Chen J, Jin X, Lin Z, Pang Y, Wang X, Lou H, Chang W. Rimonabant potentiates the antifungal activity of amphotericin B by increasing cellular oxidative stress and cell membrane permeability. FEMS Yeast Res 2021; 21:6168383. [PMID: 33705544 DOI: 10.1093/femsyr/foab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Amphotericin B (AmB) is a very effective antifungal agent, and resistance in clinical isolates is rare. However, clinical treatment with AmB is often associated with severe side effects. Reducing the administration dose of AmB by combining it with other agents is a promising strategy to minimize this toxicity. In this study, we screened a small compound library and observed that the anti-obesity drug rimonabant exhibited synergistic antifungal action with AmB against Candida species and Cryptococcus neoformans. Moreover, the combination of AmB and rimonabant exhibited synergistic or additive effects against Candida albicans biofilm formation and cell viability in preformed biofilms. The effects of this combination were further confirmed in vivo using a murine systemic infection model. Exploration of the mechanism of synergy revealed that rimonabant enhances the fungicidal activity of AmB by increasing cellular oxidative stress and cell membrane permeability. These findings provide a foundation for the possible development of AmB-rimonabant polytherapies for fungal infections.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jinghui Lu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ximeng Duan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jinyao Chen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaomin Lin
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuexiang Wang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
82
|
Bibi M, Murphy S, Benhamou RI, Rosenberg A, Ulman A, Bicanic T, Fridman M, Berman J. Combining Colistin and Fluconazole Synergistically Increases Fungal Membrane Permeability and Antifungal Cidality. ACS Infect Dis 2021; 7:377-389. [PMID: 33471513 PMCID: PMC7887753 DOI: 10.1021/acsinfecdis.0c00721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/17/2022]
Abstract
The increasing emergence of drug-resistant fungal pathogens, together with the limited number of available antifungal drugs, presents serious clinical challenges to treating systemic, life-threatening infections. Repurposing existing drugs to augment the antifungal activity of well-tolerated antifungals is a promising antifungal strategy with the potential to be implemented rapidly. Here, we explored the mechanism by which colistin, a positively charged lipopeptide antibiotic, enhances the antifungal activity of fluconazole, the most widely used orally available antifungal. In a range of susceptible and drug-resistant isolates and species, colistin was primarily effective at reducing fluconazole tolerance, a property of subpopulations of cells that grow slowly in the presence of a drug and may promote the emergence of persistent infections and resistance. Clinically relevant concentrations of colistin synergized with fluconazole, reducing fluconazole minimum inhibitory concentration 4-fold. Combining fluconazole and colistin also increased survival in a C. albicans Galleria mellonella infection, especially for a highly fluconazole-tolerant isolate. Mechanistically, colistin increased permeability to fluorescent antifungal azole probes and to intracellular dyes, accompanied by an increase in cell death that was dependent upon pharmacological or genetic inhibition of the ergosterol biosynthesis pathway. The positive charge of colistin is critical to its antifungal, and antibacterial, activity: colistin directly binds to several eukaryotic membrane lipids (i.e., l-α-phosphatidylinositol, l-α-phosphatidyl-l-serine, and l-α-phosphatidylethanolamine) that are enriched in the membranes of ergosterol-depleted cells. These results support the idea that colistin binds to fungal membrane lipids and permeabilizes fungal cells in a manner that depends upon the degree of ergosterol depletion.
Collapse
Affiliation(s)
- Maayan Bibi
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Sarah Murphy
- Institute
for Infection and Immunity, St George’s
University, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Raphael I. Benhamou
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Alex Rosenberg
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Adi Ulman
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Tihana Bicanic
- Institute
for Infection and Immunity, St George’s
University, Cranmer Terrace, London SW17 0RE, United Kingdom
- Clinical
Academic Group in Infection, St George’s
Hospital NHS Trust, London SW17 0QT, United Kingdom
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Judith Berman
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| |
Collapse
|
83
|
Yadav A, Singh A, Wang Y, van Haren MHI, Singh A, de Groot T, Meis JF, Xu J, Chowdhary A. Colonisation and Transmission Dynamics of Candida auris among Chronic Respiratory Diseases Patients Hospitalised in a Chest Hospital, Delhi, India: A Comparative Analysis of Whole Genome Sequencing and Microsatellite Typing. J Fungi (Basel) 2021; 7:jof7020081. [PMID: 33530297 PMCID: PMC7910912 DOI: 10.3390/jof7020081] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 01/23/2023] Open
Abstract
Candida auris is a nosocomial pathogen responsible for an expanding global public health threat. This ascomycete yeast has been frequently isolated from hospital environments, representing a significant reservoir for transmission in healthcare settings. Here, we investigated the relationships among C. auris isolates from patients with chronic respiratory diseases admitted in a chest hospital and from their fomites, using whole-genome sequencing (WGS) and multilocus microsatellite genotyping. Overall, 37.5% (n = 12/32) patients developed colonisation by C. auris including 9.3% of the screened patients that were colonised at the time of admission and 75% remained colonised till discharge. Furthermore, 10% of fomite samples contained C. auris in rooms about 8.5 days after C. auris colonised patients were admitted. WGS and microsatellite typing revealed that multiple strains contaminated the fomites and colonised different body sites of patients. Notably, 37% of C. auris isolates were resistant to amphotericin B and a novel amino acid substitution, G145D in ERG2 gene, was detected in all amphotericin B resistant isolates. In addition, 55% of C. auris isolates had two copies of the MDR1 gene. Our results suggest significant genetic and ecological diversities of C. auris in healthcare setting. The WGS and microsatellite genotyping methods provided complementary results in genotype identification.
Collapse
Affiliation(s)
- Anamika Yadav
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India; (A.Y.); (A.S.); (A.S.)
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Anubhav Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India; (A.Y.); (A.S.); (A.S.)
| | - Yue Wang
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.W.); (J.X.)
| | - Merlijn HI van Haren
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (M.H.v.H.); (T.d.G.); (J.F.M.)
| | - Ashutosh Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India; (A.Y.); (A.S.); (A.S.)
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (M.H.v.H.); (T.d.G.); (J.F.M.)
- Centre of Expertise in Mycology Radboudumc/CWZ, 6532 SZ Nijmegen, The Netherlands
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (M.H.v.H.); (T.d.G.); (J.F.M.)
- Centre of Expertise in Mycology Radboudumc/CWZ, 6532 SZ Nijmegen, The Netherlands
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.W.); (J.X.)
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India; (A.Y.); (A.S.); (A.S.)
- Correspondence:
| |
Collapse
|
84
|
Piqueras A, Ganapathi L, Carpenter JF, Rubio T, Sandora TJ, Flett KB, Köhler JR. Trends in Pediatric Candidemia: Epidemiology, Anti-Fungal Susceptibility, and Patient Characteristics in a Children's Hospital. J Fungi (Basel) 2021; 7:78. [PMID: 33499285 PMCID: PMC7911199 DOI: 10.3390/jof7020078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Candida bloodstream infections (CBSIs) have decreased among pediatric populations in the United States, but remain an important cause of morbidity and mortality. Species distributions and susceptibility patterns of CBSI isolates diverge widely between children and adults. The awareness of these patterns can inform clinical decision-making for empiric or pre-emptive therapy of children at risk for candidemia. CBSIs occurring from 2006-2016 among patients in a large children's hospital were analyzed for age specific trends in incidence rate, risk factors for breakthrough-CBSI, and death, as well as underlying conditions. Candida species distributions and susceptibility patterns were evaluated in addition to the anti-fungal agent use. The overall incidence rate of CBSI among this complex patient population was 1.97/1000 patient-days. About half of CBSI episodes occurred in immunocompetent children and 14% in neonatal intensive care unit (NICU) patients. Anti-fungal resistance was minimal: 96.7% of isolates were fluconazole, 99% were micafungin, and all were amphotericin susceptible. Liposomal amphotericin was the most commonly prescribed anti-fungal agent included for NICU patients. Overall, CBSI-associated mortality was 13.7%; there were no deaths associated with CBSI among NICU patients after 2011. Pediatric CBSI characteristics differ substantially from those in adults. The improved management of underlying diseases and antimicrobial stewardship may further decrease morbidity and mortality from CBSI, while continuing to maintain low resistance rates among Candida isolates.
Collapse
Affiliation(s)
- Anabel Piqueras
- Pediatric Infectious Disease Unit, Pediatrics Department, University & Polytechnic Hospital La Fe, E-46026 Valencia, Spain;
| | - Lakshmi Ganapathi
- Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.G.); (J.F.C.); (T.J.S.); (K.B.F.)
| | - Jane F. Carpenter
- Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.G.); (J.F.C.); (T.J.S.); (K.B.F.)
| | - Thomas Rubio
- Lombardi Cancer Center, Georgetown University Hospital, Washington, DC 20007, USA;
| | - Thomas J. Sandora
- Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.G.); (J.F.C.); (T.J.S.); (K.B.F.)
| | - Kelly B. Flett
- Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.G.); (J.F.C.); (T.J.S.); (K.B.F.)
| | - Julia R. Köhler
- Division of Infectious Diseases, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (L.G.); (J.F.C.); (T.J.S.); (K.B.F.)
| |
Collapse
|
85
|
Weldrick PJ, Hardman MJ, Paunov VN. Superenhanced Removal of Fungal Biofilms by Protease‐Functionalized Amphotericin B Nanocarriers. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Paul J. Weldrick
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Matthew J. Hardman
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| |
Collapse
|
86
|
Staniszewska M. Virulence Factors in Candida species. Curr Protein Pept Sci 2021; 21:313-323. [PMID: 31544690 DOI: 10.2174/1389203720666190722152415] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/14/2019] [Indexed: 02/08/2023]
Abstract
Fungal diseases are severe and have very high morbidity as well as up to 60% mortality for patients diagnosed with invasive fungal infection. In this review, in vitro and in vivo studies provided us with the insight into the role of Candida virulence factors that mediate their success as pathogens, such as: membrane and cell wall (CW) barriers, dimorphism, biofilm formation, signal transduction pathway, proteins related to stress tolerance, hydrolytic enzymes (e.g. proteases, lipases, haemolysins), and toxin production. The review characterized the virulence of clinically important C. albicans, C. parapsilosis, C. tropicalis, C. glabrata and C. krusei. Due to the white-opaque transition in the mating-type locus MTL-homozygous cells, C. albicans demonstrates an advantage over other less related species of Candida as a human commensal and pathogen. It was reviewed that Candida ergosterol biosynthesis genes play a role in cellular stress and are essential for Candida pathogenesis both in invasive and superficial infections. Hydrolases associated with CW are involved in the host-pathogen interactions. Adhesins are crucial in colonization and biofilm formation, an important virulence factor for candidiasis. Calcineurin is involved in membrane and CW stress as well as virulence. The hyphae-specific toxin, named candidalysin, invades mucosal cells facilitating fungal invasion into deeper tissues. Expression of this protein promotes resistance to neutrophil killing in candidiasis. The virulence factors provide immunostimulatory factors, activating dendric cells and promoting T cell infiltration and activation. Targeting virulence factors, can reduce the risk of resistance development in Candida infections.
Collapse
Affiliation(s)
- Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
87
|
Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrob Agents Chemother 2020; 65:AAC.01466-20. [PMID: 33077664 DOI: 10.1128/aac.01466-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Candida auris is a newly emerging fungal pathogen of humans and has attracted considerable attention from both the clinical and basic research communities. Clinical isolates of C. auris are often resistant to one or more antifungal agents. To explore how antifungal resistance develops, we performed experimental evolution assays using a fluconazole-susceptible isolate of C. auris (BJCA001). After a series of passages through medium containing increasing concentrations of fluconazole, fungal cells acquired resistance. By sequencing and comparing the genomes of the parental fluconazole-susceptible strain and 26 experimentally evolved strains of C. auris, we found that a portion of fluconazole-resistant strains carried one extra copy of chromosome V. In the absence of fluconazole, C. auris cells rapidly became susceptible and lost the extra copy of chromosome V. Genomic and transcriptome sequencing (RNA-Seq) analyses indicate that this chromosome carries a number of drug resistance-related genes, which were transcriptionally upregulated in the resistant, aneuploid strains. Moreover, missense mutations were identified in the genes TAC1B, RRP6, and SFT2 in all experimentally evolved strains. Our findings suggest that the gain of an extra copy of chromosome V is associated with the rapid acquisition of fluconazole resistance and may represent an important evolutionary mechanism of antifungal resistance in C. auris.
Collapse
|
88
|
Matha K, Calvignac B, Gangneux JP, Benoit JP. The advantages of nanomedicine in the treatment of visceral leishmaniasis: between sound arguments and wishful thinking. Expert Opin Drug Deliv 2020; 18:471-487. [PMID: 33217254 DOI: 10.1080/17425247.2021.1853701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Although life-threatening if left untreated, visceral leishmaniasis (VL) is still a neglected endemic disease in 98 countries worldwide. The number of drugs available is low and few are in clinical trials. In the last decades, efforts have been made on the development of nanocarriers as drug delivery systems to treat VL. Given the preferential intracellular location of the parasite in the liver and spleen macrophages, the rationale is sturdy. In a clinical setting, liposomal amphotericin B displays astonishing cure rates.Areas covered: A literature search was performed through PubMed and Google Scholar. We critically reviewed the main literature highlighting the success of nanomedicine in VL. We also reviewed the hurdles and yet unfulfilled promises rising awareness of potential drawbacks of nanomedicine in VL.Expert opinion: VL is a disease where nanomedicines successes shine through. However, there are a lot of obstacles on the road to developing more efficient strategies such as targeting functionalization, oral formulations, or combined therapies. And those strategies raise many questions.
Collapse
Affiliation(s)
- Kevin Matha
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| | - Brice Calvignac
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset , (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Laboratoire de Parasitologie-Mycologie, CHU de Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Jean-Pierre Benoit
- MINT, Univ Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, 4 Rue Larrey 49933 Angers cedex 9, France.,CHU Angers, département Pharmacie,4 rue Larrey, 49933 Angers cedex 9, France
| |
Collapse
|
89
|
Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin B and Other Polyenes-Discovery, Clinical Use, Mode of Action and Drug Resistance. J Fungi (Basel) 2020; 6:E321. [PMID: 33261213 PMCID: PMC7724567 DOI: 10.3390/jof6040321] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Although polyenes were the first broad spectrum antifungal drugs on the market, after 70 years they are still the gold standard to treat a variety of fungal infections. Polyenes such as amphotericin B have a controversial image. They are the antifungal drug class with the broadest spectrum, resistance development is still relatively rare and fungicidal properties are extensive. Yet, they come with a significant host toxicity that limits their use. Relatively recently, the mode of action of polyenes has been revised, new mechanisms of drug resistance were discovered and emergent polyene resistant species such as Candida auris entered the picture. This review provides a short description of the history and clinical use of polyenes, and focusses on the ongoing debate concerning their mode of action, the diversity of resistance mechanisms discovered to date and the most recent trends in polyene resistance development.
Collapse
Affiliation(s)
- Hans Carolus
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Siebe Pierson
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3001 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
90
|
Alonso-Monge R, Guirao-Abad JP, Sánchez-Fresneda R, Pla J, Yagüe G, Argüelles JC. The Fungicidal Action of Micafungin is Independent on Both Oxidative Stress Generation and HOG Pathway Signaling in Candida albicans. Microorganisms 2020; 8:microorganisms8121867. [PMID: 33256159 PMCID: PMC7768384 DOI: 10.3390/microorganisms8121867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/10/2023] Open
Abstract
In fungi, the Mitogen-Activated Protein kinase (MAPK) pathways sense a wide variety of environmental stimuli, leading to cell adaptation and survival. The HOG pathway plays an essential role in the pathobiology of Candida albicans, including the colonization of the gastrointestinal tract in a mouse model, virulence, and response to stress. Here, we examined the role of Hog1 in the C. albicans response to the clinically relevant antifungal Micafungin (MF), whose minimum inhibitory concentration (MIC) was identical in the parental strain (RM100) and in the isogenic homozygous mutant hog1 (0.016 mg/L). The cell viability was impaired without significant differences between the parental strain, the isogenic hog1 mutant, and the Hog1+ reintegrant. This phenotype was quite similar in a collection of hog1 mutants constructed in a different C. albicans background. MF-treated cells failed to induce a relevant increase of both reactive oxygen species (ROS) formation and activation of the mitochondrial membrane potential in parental and hog1 cells. MF was also unable to trigger any significant activation of the genes coding for the antioxidant activities catalase (CAT1) and superoxide dismutase (SOD2), as well as on the corresponding enzymatic activities, whereas a clear induction was observed in the presence of Amphotericin B (AMB), introduced as a positive control of Hog1 signaling. Furthermore, Hog1 was not phosphorylated by the addition of MF, but, notably, this echinocandin caused Mkc1 phosphorylation. Our results strongly suggest that the toxic effect of MF on C. albicans cells is not mediated by the Hog1 MAPK and is independent of the generation of an internal oxidative stress in C. albicans.
Collapse
Affiliation(s)
- Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Unidad de Microbiología, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.P.G.-A.); (J.P.)
- Correspondence: (R.A.-M.); (J.C.A.); Tel.: +34-91-3941888 (R.A.-M.); +34-868-887131 (J.C.A.); Fax: +34-91-3941745 (R.A.-M.); Phone: Fax: +34-868-993963 (J.C.A.)
| | - José P. Guirao-Abad
- Departamento de Microbiología y Parasitología-IRYCIS, Unidad de Microbiología, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.P.G.-A.); (J.P.)
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071 Murcia, Spain;
| | - Ruth Sánchez-Fresneda
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071 Murcia, Spain;
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Unidad de Microbiología, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (J.P.G.-A.); (J.P.)
| | - Genoveva Yagüe
- Servicio de Microbiología Clínica, Hospital Universitario Virgen de la Arrixaca, IMIB, 30120 Murcia, Spain;
| | - Juan Carlos Argüelles
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30071 Murcia, Spain;
- Correspondence: (R.A.-M.); (J.C.A.); Tel.: +34-91-3941888 (R.A.-M.); +34-868-887131 (J.C.A.); Fax: +34-91-3941745 (R.A.-M.); Phone: Fax: +34-868-993963 (J.C.A.)
| |
Collapse
|
91
|
Misas E, Chow NA, Gómez OM, Muñoz JF, McEwen JG, Litvintseva AP, Clay OK. Mitochondrial Genome Sequences of the Emerging Fungal Pathogen Candida auris. Front Microbiol 2020; 11:560332. [PMID: 33193142 PMCID: PMC7652928 DOI: 10.3389/fmicb.2020.560332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
Candida auris is an emerging fungal pathogen capable of causing invasive infections in humans. Since its first appearance around 1996, it has been isolated in countries spanning five continents. C. auris is a yeast that has the potential to cause outbreaks in hospitals, can survive in adverse conditions, including dry surfaces and high temperatures, and has been frequently misidentified by traditional methods. Furthermore, strains have been identified that are resistant to two and even all three of the main classes of antifungals currently in use. Several nuclear genome assemblies of C. auris have been published representing different clades and continents, yet until recently, the mitochondrial genomes (mtDNA chromosomes) of this species and the closely related species of C. haemulonii, C. duobushaemulonii, and C. pseudohaemulonii had not been analyzed in depth. We used reads from PacBio and Illumina sequencing to obtain a de novo reference assembly of the mitochondrial genome of the C. auris clade I isolate B8441 from Pakistan. This assembly has a total size of 28.2 kb and contains 13 core protein-coding genes, 25 tRNAs and the 12S and 16S ribosomal subunits. We then performed a comparative analysis by aligning Illumina reads of 129 other isolates from South Asia, Japan, South Africa, and South America with the B8441 reference. The clades of the phylogenetic tree we obtained from the aligned mtDNA sequences were consistent with those derived from the nuclear genome. The mitochondrial genome revealed a generally low genetic variation within clades, although the South Asian clade displayed two sub-branches including strains from both Pakistan and India. In particular, the 86 isolates from Colombia and Venezuela had mtDNA sequences that were all identical at the base level, i.e., a single conserved haplotype or mitochondrial background that exhibited characteristic differences from the Pakistan reference isolate B8441, such as a unique 25-nt insert that may affect function.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Wisconsin One Health Consortium, Universidad Nacional de Colombia, Medellín, Colombia
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Oscar M. Gómez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Genoma CES, Universidad CES, Medellín, Colombia
| | - José F. Muñoz
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | | | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Translational Microbiology and Emerging Diseases, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
92
|
Gao S, Zhang S, Zhang S. Enhanced in vitro antimicrobial activity of amphotericin B with berberine against dual-species biofilms of Candida albicans and Staphylococcus aureus. J Appl Microbiol 2020; 130:1154-1172. [PMID: 32996236 DOI: 10.1111/jam.14872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
AIMS Multi-species biofilms formed by fungi and bacteria are clinically common and confer the commensal micro-organisms with protection against antimicrobial therapies. Previously, the plant alkaloid berberine was reported to show antimicrobial efficacy to eliminate bacterial and fungal biofilms. In this study, the combination of berberine and amphotericin B, an antifungal agent, was evaluated against dual-species Candida albicans/Staphylococcus aureus biofilms. METHODS AND RESULTS Combinatorial treatment by berberine and amphotericin B significantly reduced the biomass and viability of residing species in biofilms. Moreover, morphological examination revealed hyphal filamentation of C. albicans and coadhesion between C. albicans/S. aureus were considerably impaired by the treatment. These effects coincided with the reduced expression of cell surface components and quorum-sensing-related genes in both C. albicans and S. aureus. Additionally, in C. albicans, the core transcription factors for controlling biofilm formation together with a crucial component of dual-species biofilms were also downregulated. CONCLUSIONS These results demonstrated synergistic effects of berberine and amphotericin B against C. albicans/S. aureus dual-species biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This study confirms the potential of berberine and amphotericin B for treating the C. albicans/S. aureus biofilms related infections and reveals molecular basis for the efficacy of combinatorial treatment.
Collapse
Affiliation(s)
- S Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - S Zhang
- Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - S Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Dermatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
93
|
The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. mSphere 2020; 5:5/5/e00973-20. [PMID: 33055262 PMCID: PMC7565899 DOI: 10.1128/msphere.00973-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections. Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs. IMPORTANCECandida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.
Collapse
|
94
|
Candida metrosideri pro tempore sp. nov. and Candida ohialehuae pro tempore sp. nov., two antifungal-resistant yeasts associated with Metrosideros polymorpha flowers in Hawaii. PLoS One 2020; 15:e0240093. [PMID: 33031481 PMCID: PMC7544143 DOI: 10.1371/journal.pone.0240093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Flowers produce an array of nutrient-rich exudates in which microbes can thrive, making them hotspots for microbial abundance and diversity. During a diversity study of yeasts inhabiting the flowers of Metrosideros polymorpha (Myrtaceae) in the Hawai’i Volcanoes National Park (HI, USA), five isolates were found to represent two novel species. Morphological and physiological characterization, and sequence analysis of the small subunit ribosomal RNA (rRNA) genes, the D1/D2 domains of the large subunit rRNA genes, the internal transcribed spacer (ITS) regions, and the genes encoding the largest and second largest subunits of the RNA polymerase II (RPB1 and RPB2, respectively), classified both species in the family Metschnikowiaceae, and we propose the names Candida metrosideri pro tempore sp. nov. (JK22T = CBS 16091 = MUCL 57821) and Candida ohialehuae pro tempore sp. nov. (JK58.2T = CBS 16092 = MUCL 57822) for such new taxa. Both novel Candida species form a well-supported subclade in the Metschnikowiaceae containing species associated with insects, flowers, and a few species of clinical importance. The ascosporic state of the novel species was not observed. The two novel yeast species showed elevated minimum inhibitory concentrations to the antifungal drug amphotericin B (>4 μg/mL). The ecology and phylogenetic relationships of C. metrosideri and C. ohialehuae are also discussed.
Collapse
|
95
|
Castillo-Castañeda A, Cañas-Duarte SJ, Guevara-Suarez M, Guarro J, Restrepo S, Celis Ramírez AM. Transcriptional response of Fusarium oxysporum and Neocosmospora solani challenged with amphotericin B or posaconazole. MICROBIOLOGY (READING, ENGLAND) 2020; 166:936-946. [PMID: 32644917 PMCID: PMC7660915 DOI: 10.1099/mic.0.000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Some species of fusaria are well-known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resistance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high-throughput RNA-seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We detected significant differences between the transcriptional profiles of the two species and we found that some oxidation-reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A significant up-regulation of the C-22 sterol desaturase (ERG5), the sterol 24-C-methyltransferase (ERG6) gene, the glutathione S-transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to commonly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable tool for identifying causes of failure of treatments.
Collapse
Affiliation(s)
- A. Castillo-Castañeda
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - S. J. Cañas-Duarte
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Harvard University, Boston, MA, USA
| | - M. Guevara-Suarez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - J. Guarro
- Facultat de Medicina I Ciéncies de la Salut, Departament de Ciéncies Médiques Básiques, Unitat de Microbiología. Universitat de Rovira I Virgili, Reus, España
| | - S. Restrepo
- Laboratorio de Micología y Fitopatología (LAMFU), Facultad de Ingeniería, Universidad de Los Andes, Bogotá, Colombia
| | - A. M. Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
96
|
Bermas A, Geddes-McAlister J. Experimental Evolution of Antifungal Resistance in Cryptococcus neoformans. ACTA ACUST UNITED AC 2020; 59:e116. [PMID: 32986290 DOI: 10.1002/cpmc.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryptococcus neoformans, an opportunistic yeast-like fungal pathogen, has demonstrated resistance to all major classes of antifungals used to treat cryptococcal meningitis. However, combatting this fungal disease is an ongoing challenge among clinicians due to the evolution of antifungal-resistant strains. The limited availability of clinically approved antifungals has heightened the urgency to investigate the molecular mechanisms underscoring resistance. Studying how a fungal pathogen evolves to an antifungal drug in vitro using experimental evolution provides a simple, yet powerful approach to study the mechanisms of antifungal resistance. Experimental evolution involves the serial passaging of microbial populations under laboratory conditions, such that adaptive mutations can occur and be monitored in real time. This technique plays a key role in investigating the mechanisms of antifungal resistance in C. neoformans, and this can help in developing novel strategies to combat the emergence of resistance. Here, we outline how to make overnight cultures of C. neoformans and how to perform experimental evolution, and we present a spectrophotometric analysis to evaluate the evolution of antifungal resistance. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth and sample preparation of Cryptococcus neoformans Basic Protocol 2: Experimental evolution of antifungal resistance Basic Protocol 3: Analyzing the evolution of antifungal resistance Basic Protocol 4: Glycerol stock preparation.
Collapse
Affiliation(s)
- Arianne Bermas
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
97
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
98
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
99
|
Chromatin Structure and Drug Resistance in Candida spp. J Fungi (Basel) 2020; 6:jof6030121. [PMID: 32751495 PMCID: PMC7559719 DOI: 10.3390/jof6030121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Anti-microbial resistance (AMR) is currently one of the most serious threats to global human health and, appropriately, research to tackle AMR garnishes significant investment and extensive attention from the scientific community. However, most of this effort focuses on antibiotics, and research into anti-fungal resistance (AFR) is vastly under-represented in comparison. Given the growing number of vulnerable, immunocompromised individuals, as well as the positive impact global warming has on fungal growth, there is an immediate urgency to tackle fungal disease, and the disturbing rise in AFR. Chromatin structure and gene expression regulation play pivotal roles in the adaptation of fungal species to anti-fungal stress, suggesting a potential therapeutic avenue to tackle AFR. In this review we discuss both the genetic and epigenetic mechanisms by which chromatin structure can dictate AFR mechanisms and will present evidence of how pathogenic yeast, specifically from the Candida genus, modify chromatin structure to promote survival in the presence of anti-fungal drugs. We also discuss the mechanisms by which anti-chromatin therapy, specifically lysine deacetylase inhibitors, influence the acquisition and phenotypic expression of AFR in Candida spp. and their potential as effective adjuvants to mitigate against AFR.
Collapse
|
100
|
Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 2020; 8:microorganisms8071024. [PMID: 32664360 PMCID: PMC7409060 DOI: 10.3390/microorganisms8071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a common microorganism of human’s microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host’s innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
Collapse
|