51
|
Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S, Tabata S, Kaneko T, Chaijaruwanich J, Sangsrakru D, Tangphatsornruang S, Chanprasert J, Tongsima S, Kusonmano K, Jeamton W, Dulsawat S, Klanchui A, Vorapreeda T, Chumchua V, Khannapho C, Thammarongtham C, Plengvidhya V, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Meechai A, Senachak J, Tanticharoen M. Draft genome sequence of Arthrospira platensis C1 (PCC9438). Stand Genomic Sci 2012; 6:43-53. [PMID: 22675597 PMCID: PMC3368399 DOI: 10.4056/sigs.2525955] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals. It can be grown in monoculture under highly alkaline conditions, making it attractive for industrial production. Here we describe the complete genome sequence of A. platensis C1 strain and its annotation. The A. platensis C1 genome contains 6,089,210 bp including 6,108 protein-coding genes and 45 RNA genes, and no plasmids. The genome information has been used for further comparative analysis, particularly of metabolic pathways, photosynthetic efficiency and barriers to gene transfer.
Collapse
Affiliation(s)
| | | | - Peerada Prommeenate
- BEC Unit, National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand
| | - Warunee Kaewngam
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Apiluck Musigkain
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Somvong Tragoonrung
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Japan
| | - Jeerayut Chaijaruwanich
- Department of Computer Science, Faculty of Science, Chiangmai University, Chiangmai,Thailand
| | - Duangjai Sangsrakru
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | - Juntima Chanprasert
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Kanthida Kusonmano
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Wattana Jeamton
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Amornpan Klanchui
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Tayvich Vorapreeda
- BEC Unit, National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand
| | - Vasunun Chumchua
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Chiraphan Khannapho
- BEC Unit, National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand
| | - Chinae Thammarongtham
- BEC Unit, National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand
| | | | - Sanjukta Subudhi
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Apiradee Hongsthong
- BEC Unit, National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand
| | | | - Asawin Meechai
- Chemical Engineering Department, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Jittisak Senachak
- BEC Unit, National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand
| | - Morakot Tanticharoen
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| |
Collapse
|
52
|
Vera DMA, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 2012; 88:499-511. [PMID: 22242675 DOI: 10.1111/j.1751-1097.2012.01087.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conventional antimicrobial strategies have become increasingly ineffective due to the emergence of multidrug resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered the exploration of alternative treatments and unconventional approaches towards controlling microbial infections. Photodynamic therapy (PDT) was originally established as an anticancer modality and is currently used in the treatment of age-related macular degeneration. The concept of photodynamic inactivation requires cell exposure to light energy, typically wavelengths in the visible region that causes the excitation of photosensitizer molecules either exogenous or endogenous, which results in the production of reactive oxygen species (ROS). ROS produce cell inactivation and death through modification of intracellular components. The versatile characteristics of PDT prompted its investigation as an anti-infective discovery platform. Advances in understanding of microbial physiology have shed light on a series of pathways, and phenotypes that serve as putative targets for antimicrobial drug discovery. Investigations of these phenotypic elements in concert with PDT have been reported focused on multidrug efflux systems, biofilms, virulence and pathogenesis determinants. In many instances the results are promising but only preliminary and require further investigation. This review discusses the different antimicrobial PDT strategies and highlights the need for highly informative and comprehensive discovery approaches.
Collapse
Affiliation(s)
- Domingo Mariano Adolfo Vera
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The bacterial ABC (ATP-binding cassette) importers mediate nutrient uptake and some are essential for survival in environments where nutrients are limited, such as in the human body. Although ABC importers exhibit remarkable versatility in the substrates that they can transport, they appear to share a similar multisubunit architecture and mechanism of energization by ATP hydrolysis. This chapter will provide both basic understanding and up-to-date information on the structure, mechanism and regulation of this important family of proteins.
Collapse
|
54
|
Youm J, Saier MH. Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:776-97. [PMID: 22179038 DOI: 10.1016/j.bbamem.2011.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 10/15/2022]
Abstract
The co-emergence of multidrug resistant pathogenic bacterial strains and the Human Immunodeficiency Virus pandemic has made tuberculosis a leading public health threat. The causative agent is Mycobacterium tuberculosis (Mtu), a facultative intracellular parasite. Mycobacterium leprae (Mle), a related organism that causes leprosy, is an obligate intracellular parasite. Given that different transporters are required for bacterial growth and persistence under a variety of growth conditions, we conducted comparative analyses of transport proteins encoded within the genomes of these two organisms. A minimal set of genes required for intracellular and extracellular life was identified. Drug efflux systems utilizing primary active transport mechanisms have been preferentially retained in Mle and still others preferentially lost. Transporters associated with environmental adaptation found in Mtu were mostly lost in Mle. These findings provide starting points for experimental studies that may elucidate the dependencies of pathogenesis on transport for these two pathogenic mycobacteria. They also lead to suggestions regarding transporters that function in intra- versus extra-cellular growth.
Collapse
Affiliation(s)
- Jiwon Youm
- University of California, La Jolla, CA, USA
| | | |
Collapse
|
55
|
Tegos GP, Haynes M, Strouse JJ, Khan MMT, Bologa CG, Oprea TI, Sklar LA. Microbial efflux pump inhibition: tactics and strategies. Curr Pharm Des 2011; 17:1291-302. [PMID: 21470111 DOI: 10.2174/138161211795703726] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/21/2011] [Indexed: 11/22/2022]
Abstract
Traditional antimicrobials are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. To overcome these deficiencies, a range of novel approaches to control microbial infections are under investigation as potential alternative treatments. Multidrug efflux is a key target of these efforts. Efflux mechanisms are broadly recognized as major components of resistance to many classes of chemotherapeutic agents as well as antimicrobials. Efflux occurs due to the activity of membrane transporter proteins widely known as Multidrug Efflux Systems (MES). They are implicated in a variety of physiological roles other than efflux and identifying natural substrates and inhibitors is an active and expanding research discipline. One plausible alternative is the combination of conventional antimicrobial agents/antibiotics with small molecules that block MES known as multidrug efflux pump inhibitors (EPIs). An array of approaches in academic and industrial research settings, varying from high-throughput screening (HTS) ventures to bioassay guided purification and determination, have yielded a number of promising EPIs in a series of pathogenic systems. This synergistic discovery platform has been exploited in translational directions beyond the potentiation of conventional antimicrobial treatments. This venture attempts to highlight different tactical elements of this platform, identifying the need for highly informative and comprehensive EPI-discovery strategies. Advances in assay development genomics, proteomics as well as the accumulation of bioactivity and structural information regarding MES facilitates the basis for a new discovery era. This platform is expanding drastically. A combination of chemogenomics and chemoinformatics approaches will integrate data mining with virtual and physical HTS ventures and populate the chemical-biological interface with a plethora of novel chemotypes. This comprehensive step will expedite the preclinical development of lead EPIs.
Collapse
Affiliation(s)
- George P Tegos
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
56
|
Deutschbauer A, Price MN, Wetmore KM, Shao W, Baumohl JK, Xu Z, Nguyen M, Tamse R, Davis RW, Arkin AP. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 2011; 7:e1002385. [PMID: 22125499 PMCID: PMC3219624 DOI: 10.1371/journal.pgen.1002385] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/30/2011] [Indexed: 11/21/2022] Open
Abstract
Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. Many computationally predicted gene annotations in bacteria are incomplete or wrong. Consequently, experimental methods to systematically determine gene function in bacteria are required. Here, we describe a genetic approach to meet this challenge. We constructed a large transposon mutant library in the metal-reducing bacterium Shewanella oneidensis MR-1 and profiled the fitness of this collection in more than 100 diverse experimental conditions. In addition to identifying a phenotype for more than 2,000 genes, we demonstrate that mutant fitness profiles can be used to assign “evidence-based” gene annotations for enzymes, signaling proteins, transporters, and transcription factors, a subset of which we verify experimentally.
Collapse
Affiliation(s)
- Adam Deutschbauer
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kelly M. Wetmore
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wenjun Shao
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jason K. Baumohl
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Zhuchen Xu
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Michelle Nguyen
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Raquel Tamse
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Ronald W. Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Adam P. Arkin
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
57
|
Fologea D, Krueger E, Mazur YI, Stith C, Okuyama Y, Henry R, Salamo GJ. Bi-stability, hysteresis, and memory of voltage-gated lysenin channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2933-9. [PMID: 21945404 DOI: 10.1016/j.bbamem.2011.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/28/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Lysenin, a 297 amino acid pore-forming protein extracted from the coelomic fluid of the earthworm E. foetida, inserts constitutively open large conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels show voltage regulation and slowly close at positive applied voltages. We report on the consequences of slow voltage-induced gating of lysenin channels inserted into a planar Bilayer Lipid Membrane (BLM), and demonstrate that these pore-forming proteins constitute memory elements that manifest gating bi-stability in response to variable external voltages. The hysteresis in macroscopic currents dynamically changes when the time scale of the voltage variation is smaller or comparable to the characteristic conformational equilibration time, and unexpectedly persists for extremely slow-changing external voltage stimuli. The assay performed on a single lysenin channel reveals that hysteresis is a fundamental feature of the individual channel unit and an intrinsic component of the gating mechanism. The investigation conducted at different temperatures reveals a thermally stable reopening process, suggesting that major changes in the energy landscape and kinetics diagram accompany the conformational transitions of the channels. Our work offers new insights on the dynamics of pore-forming proteins and provides an understanding of how channel proteins may form an immediate record of the molecular history which then determines their future response to various stimuli. Such new functionalities may uncover a link between molecular events and macroscopic processing and transmission of information in cells, and may lead to applications such as high density biologically-compatible memories and learning networks.
Collapse
Affiliation(s)
- Daniel Fologea
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Park JM, Kim TY, Lee SY. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC SYSTEMS BIOLOGY 2011; 5:101. [PMID: 21711532 PMCID: PMC3154180 DOI: 10.1186/1752-0509-5-101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/28/2011] [Indexed: 11/28/2022]
Abstract
Background Ralstonia eutropha H16, found in both soil and water, is a Gram-negative lithoautotrophic bacterium that can utillize CO2 and H2 as its sources of carbon and energy in the absence of organic substrates. R. eutropha H16 can reach high cell densities either under lithoautotrophic or heterotrophic conditions, which makes it suitable for a number of biotechnological applications. It is the best known and most promising producer of polyhydroxyalkanoates (PHAs) from various carbon substrates and is an environmentally important bacterium that can degrade aromatic compounds. In order to make R. eutropha H16 a more efficient and robust biofactory, system-wide metabolic engineering to improve its metabolic performance is essential. Thus, it is necessary to analyze its metabolic characteristics systematically and optimize the entire metabolic network at systems level. Results We present the lithoautotrophic genome-scale metabolic model of R. eutropha H16 based on the annotated genome with biochemical and physiological information. The stoichiometic model, RehMBEL1391, is composed of 1391 reactions including 229 transport reactions and 1171 metabolites. Constraints-based flux analyses were performed to refine and validate the genome-scale metabolic model under environmental and genetic perturbations. First, the lithoautotrophic growth characteristics of R. eutropha H16 were investigated under varying feeding ratios of gas mixture. Second, the genome-scale metabolic model was used to design the strategies for the production of poly[R-(-)-3hydroxybutyrate] (PHB) under different pH values and carbon/nitrogen source uptake ratios. It was also used to analyze the metabolic characteristics of R. eutropha when the phosphofructokinase gene was expressed. Finally, in silico gene knockout simulations were performed to identify targets for metabolic engineering essential for the production of 2-methylcitric acid in R. eutropha H16. Conclusion The genome-scale metabolic model, RehMBEL1391, successfully represented metabolic characteristics of R. eutropha H16 at systems level. The reconstructed genome-scale metabolic model can be employed as an useful tool for understanding its metabolic capabilities, predicting its physiological consequences in response to various environmental and genetic changes, and developing strategies for systems metabolic engineering to improve its metabolic performance.
Collapse
Affiliation(s)
- Jong Myoung Park
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
59
|
Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, Yi KY, Rhee JH, Lee SY. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol 2011; 7:460. [PMID: 21245845 PMCID: PMC3049409 DOI: 10.1038/msb.2010.115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/06/2010] [Indexed: 01/01/2023] Open
Abstract
Chromosome 1 of Vibrio vulnificus tends to contain larger portion of essential or housekeeping genes on the basis of the genomic analysis and gene knockout experiments performed in this study, while its chromosome 2 seems to have originated and evolved from a plasmid. The genome-scale metabolic network model of V. vulnificus was reconstructed based on databases and literature, and was used to identify 193 essential metabolites. Five essential metabolites finally selected after the filtering process are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA), which were predicted to be essential in V. vulnificus, absent in human, and are consumed by multiple reactions. Chemical analogs of the five essential metabolites were screened and a hit compound showing the minimal inhibitory concentration (MIC) of 2 μg/ml and the minimal bactericidal concentration (MBC) of 4 μg/ml against V. vulnificus was identified.
Discovering new antimicrobial targets and consequently new antimicrobials is important as drug resistance of pathogenic microorganisms is becoming an increasingly serious problem in human healthcare management (Fischbach and Walsh, 2009). There clearly exists a gap between genomic studies and drug discovery as the accumulation of knowledge on pathogens at genome level has not successfully transformed into the development of effective drugs (Mills, 2006; Payne et al, 2007). In this study, we dissected the genome of a microbial pathogen in detail, and subsequently developed a systems biological strategy of employing genome-scale metabolic modeling and simulation together with metabolite essentiality analysis for effective drug targeting and discovery. This strategy was used for identifying new drug targets in an opportunistic pathogen Vibrio vulnificus CMCP6 as a model. V. vulnificus is a Gram-negative halophilic bacterium that is found in estuarine waters, brackish ponds, or coastal areas, and its Biotype 1 is an opportunistic human pathogen that can attack immune-compromised patients, and causes primary septicemia, necrotized wound infections, and gastroenteritis. We previously found that many metabolic genes were specifically induced in vivo, suggesting that specific metabolic pathways are essential for in vivo survival and virulence of this pathogen (Kim et al, 2003; Lee et al, 2007). These results motivated us to carry out systems biological analysis of the genome and the metabolic network for new drug target discovery. V. vulnificus CMCP6 has two chromosomes. We first re-sequenced genomic regions assembled in low quality and low depth, and subsequently re-annotated the whole genome of V. vulnificus. Horizontal gene transfer was suspected to be responsible for the diversification of each chromosome of V. vulnificus, and the presence of metabolic genes was more biased to chromosome 1 than chromosome 2. Further studies on V. vulnificus genome revealed that chromosome 2 is more prone to diversification for better adaptation to the environment than its chromosome 1, while chromosome 1 tends to expand their genetic repertoire while maintaining the core genes at a constant level. Next, a genome-scale metabolic network VvuMBEL943 was reconstructed based on literature, databases and experiments for systematic studies on the metabolism of this pathogen and prediction of drug targets. The VvuMBEL943 model is composed of 943 reactions and 765 metabolites, and covers 673 genes. The model was validated by comparing its simulated cell growth phenotype obtained by constraints-based flux analysis with the V. vulnificus-specific experimental data previously reported in the literature. In this study, constraints-based flux analysis is an optimization-based simulation method that calculates intracellular fluxes under the specific genetic and environmental condition (Kim et al, 2008). As a result, 17 growth phenotypes were correctly predicted out of 18 cases, which demonstrate the validity of VvuMBEL943. The main objective of constructing VvuMBEL943 in this study is to predict potential drug targets by system-wide analysis of the metabolic network for the effective treatment of V. vulnificus. To achieve this goal, a set of drug target candidates was predicted by taking a metabolite-centric approach. Metabolite essentiality analysis is a concept recently introduced for the study of cellular robustness to complement conventional reaction or gene-centric approach (Kim et al, 2007b). Metabolite essentiality analysis observes changes in flux distribution by removing each metabolite from the in silico metabolic network. Hence, metabolite essentiality predicts essential metabolites whose absence causes cell death. By selecting essential metabolites, it is possible to directly screen only their structural analogs, which substantially reduces the number of chemical compounds to screen from the chemical compound library. As a result of implementing this approach, 193 metabolites were initially identified to be essential to the cell. These essential metabolites were then further filtered based on the predetermined criteria, mainly organism specificity and multiple connectivity associated with each metabolite, in order to reduce the number of initial target candidates towards identifying the most effective ones. Five essential metabolites finally selected are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA). Enzymes that consume these essential metabolites were experimentally verified to be essential, which indeed demonstrates the essentiality of these five metabolites. On the basis of the structural information of these five essential metabolites, whole-cell screening assay was performed using their analogs for possible antibacterial discovery. We screened 352 chemical analogs of the essential metabolites selected from the chemical compound library, and found a hit compound 24837, which shows the minimal inhibitory concentration (MIC) of 2 μg/ml and minimal bactericidal concentration (MBC) of 4 μg/ml, showing good antibacterial activity without further structural modification. Although this study demonstrates a proof-of-concept, the approaches and their rationale taken here should serve as a general strategy for discovering novel antibiotics and drugs based on systems-level analysis of metabolic networks. Although the genomes of many microbial pathogens have been studied to help identify effective drug targets and novel drugs, such efforts have not yet reached full fruition. In this study, we report a systems biological approach that efficiently utilizes genomic information for drug targeting and discovery, and apply this approach to the opportunistic pathogen Vibrio vulnificus CMCP6. First, we partially re-sequenced and fully re-annotated the V. vulnificus CMCP6 genome, and accordingly reconstructed its genome-scale metabolic network, VvuMBEL943. The validated network model was employed to systematically predict drug targets using the concept of metabolite essentiality, along with additional filtering criteria. Target genes encoding enzymes that interact with the five essential metabolites finally selected were experimentally validated. These five essential metabolites are critical to the survival of the cell, and hence were used to guide the cost-effective selection of chemical analogs, which were then screened for antimicrobial activity in a whole-cell assay. This approach is expected to help fill the existing gap between genomics and drug discovery.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Schneider J, Wendisch VF. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 2011; 91:17-30. [PMID: 21552989 DOI: 10.1007/s00253-011-3252-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/26/2022]
Abstract
In Bacteria, the pathways of polyamine biosynthesis start with the amino acids L-lysine, L-ornithine, L-arginine, or L-aspartic acid. Some of these polyamines are of special interest due to their use in the production of engineering plastics (e.g., polyamides) or as curing agents in polymer applications. At present, the polyamines for industrial use are mainly synthesized on chemical routes. However, since a commercial market for polyamines as well as an industry for the fermentative production of amino acid exist, and since bacterial strains overproducing the polyamine precursors L-lysine, L-ornithine, and L-arginine are known, it was envisioned to engineer these amino acid-producing strains for polyamine production. Only recently, researchers have investigated the potential of amino acid-producing strains of Corynebacterium glutamicum and Escherichia coli for polyamine production. This mini-review illustrates the current knowledge of polyamine metabolism in Bacteria, including anabolism, catabolism, uptake, and excretion. The recent advances in engineering the industrial model bacteria C. glutamicum and E. coli for efficient production of the most promising polyamines, putrescine (1,4-diaminobutane), and cadaverine (1,5-diaminopentane), are discussed in more detail.
Collapse
Affiliation(s)
- Jens Schneider
- Genetics of Prokaryotes, Department of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
61
|
An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J Bacteriol 2011; 193:1710-7. [PMID: 21296962 DOI: 10.1128/jb.01218-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass composition, experimentally determined its ability to grow on a broad range of carbon, nitrogen, phosphorus and sulfur sources, and assessed the ability of the model to accurately simulate growth versus no growth on these substrates. The model contains 1,228 genes encoding 1,188 enzymes that catalyze 1,970 reactions and accurately simulates growth on 84% of the substrates tested. Furthermore, quantitative comparison of growth rates between the model and experimental data for nine of the substrates also showed good agreement. The genome-scale metabolic reconstruction for K. pneumoniae presented here thus provides an experimentally validated in silico platform for further studies of this important industrial and biomedical organism.
Collapse
|
62
|
Fologea D, Krueger E, Al Faori R, Lee R, Mazur YI, Henry R, Arnold M, Salamo GJ. Multivalent ions control the transport through lysenin channels. Biophys Chem 2010; 152:40-5. [PMID: 20724059 DOI: 10.1016/j.bpc.2010.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
We report the effect of different ions on the conducting properties of lysenin channels inserted into planar lipid bilayer membranes. Our observations indicated that multivalent ions inhibited the lysenin channels conductance in a concentration dependent manner. The analysis performed on single channels revealed that multivalent ions induced reversible sub-conducting or closed states depending on the ionic charge and size. Good agreement is reported between experimental results and a theoretical model that is proposed to describe the interaction between divalent ions and lysenin channels as a simple isothermal absorption process.
Collapse
Affiliation(s)
- Daniel Fologea
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Perrin E, Fondi M, Papaleo MC, Maida I, Buroni S, Pasca MR, Riccardi G, Fani R. Exploring the HME and HAE1 efflux systems in the genus Burkholderia. BMC Evol Biol 2010; 10:164. [PMID: 20525265 PMCID: PMC2891726 DOI: 10.1186/1471-2148-10-164] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 06/03/2010] [Indexed: 01/05/2023] Open
Abstract
Background The genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i) identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try tracing the evolutionary history of some of these genes in Burkholderia. Results BLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia) as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins)/heavy-metal (HME proteins)] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE1 systems in the Burkholderia genus. Conclusion A complete knowledge of the presence and distribution of RND proteins in Burkholderia species was obtained and an evolutionary model was depicted. Data presented in this work may serve as a basis for future experimental tests, focused especially on HAE1 proteins, aimed at the identification of novel targets in antimicrobial therapy against Burkholderia species.
Collapse
Affiliation(s)
- Elena Perrin
- Lab. of Molecular and Microbial Evolution, Dep. of Evolutionary Biology, University of Florence, 50125 Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010; 5:e10433. [PMID: 20463976 PMCID: PMC2864759 DOI: 10.1371/journal.pone.0010433] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.
Collapse
Affiliation(s)
- Paul J Janssen
- Molecular and Cellular Biology, Belgian Nuclear Research Center SCK*CEN, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kim HU, Kim TY, Lee SY. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. ACTA ACUST UNITED AC 2010; 6:339-48. [DOI: 10.1039/b916446d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Lovejoy KS, Lippard SJ. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting. Dalton Trans 2009:10651-9. [PMID: 20023892 PMCID: PMC2800312 DOI: 10.1039/b913896j] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The five platinum anticancer compounds currently in clinical use conform to structure-activity relationships formulated (M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187-210) shortly after the discovery that cis-diamminedichloroplatinum(II), cisplatin, has antitumor activity in mice. These compounds are neutral platinum(II) species with two am(m)ine ligands or one bidentate chelating diamine and two additional ligands that can be replaced by water through aquation reactions. The resulting cations ultimately form bifunctional adducts on DNA. Information about the chemistry of these platinum compounds and correlations of their structures with anticancer activity have provided guidance for the design of novel anticancer drug candidates based on the proposed mechanisms of action. This article discusses advances in the synthesis and evaluation of such non-traditional platinum compounds, including cationic and tumor-targeting constructs.
Collapse
Affiliation(s)
- Katherine S Lovejoy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
67
|
Alisio A, Mueckler M. Purification and characterization of mammalian glucose transporters expressed in Pichia pastoris. Protein Expr Purif 2009; 70:81-7. [PMID: 19883765 DOI: 10.1016/j.pep.2009.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
The major bottleneck to the application of high-resolution techniques such as crystallographic X-ray diffraction and spectroscopic analyses to resolve the structure of mammalian membrane proteins has been the ectopic expression and purification of sufficient quantities of non-denatured proteins. This has been especially problematic for members of the major facilitator superfamily, which includes the family of mammalian glucose transporters. A simple and rapid method is described for the purification of milligram quantities of recombinant GLUT1 and GLUT4, two of the most intensively studied GLUT isoforms, after ectopic expression in Pichia pastoris. The proteins obtained were >95% pure and exhibited functional transport and ligand-binding activities.
Collapse
Affiliation(s)
- Arturo Alisio
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
68
|
Stubben CJ, Duffield ML, Cooper IA, Ford DC, Gans JD, Karlyshev AV, Lingard B, Oyston PCF, de Rochefort A, Song J, Wren BW, Titball RW, Wolinsky M. Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens. BMC Genomics 2009; 10:501. [PMID: 19874620 PMCID: PMC2774872 DOI: 10.1186/1471-2164-10-501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 10/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New and improved antimicrobial countermeasures are urgently needed to counteract increased resistance to existing antimicrobial treatments and to combat currently untreatable or new emerging infectious diseases. We demonstrate that computational comparative genomics, together with experimental screening, can identify potential generic (i.e., conserved across multiple pathogen species) and novel virulence-associated genes that may serve as targets for broad-spectrum countermeasures. RESULTS Using phylogenetic profiles of protein clusters from completed microbial genome sequences, we identified seventeen protein candidates that are common to diverse human pathogens and absent or uncommon in non-pathogens. Mutants of 13 of these candidates were successfully generated in Yersinia pseudotuberculosis and the potential role of the proteins in virulence was assayed in an animal model. Six candidate proteins are suggested to be involved in the virulence of Y. pseudotuberculosis, none of which have previously been implicated in the virulence of Y. pseudotuberculosis and three have no record of involvement in the virulence of any bacteria. CONCLUSION This work demonstrates a strategy for the identification of potential virulence factors that are conserved across a number of human pathogenic bacterial species, confirming the usefulness of this tool.
Collapse
Affiliation(s)
- Chris J Stubben
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E. TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol 2009; 7:68. [PMID: 19821963 PMCID: PMC2771747 DOI: 10.1186/1741-7007-7-68] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 10/12/2009] [Indexed: 12/22/2022] Open
Abstract
Background Different iron transport systems evolved in Gram-negative bacteria during evolution. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs), a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD). So far, iron chelators (siderophores), oligosaccharides and polypeptides have been identified as substrates of TBDTs. For iron transport, three uptake systems are defined: the lactoferrin/transferrin binding proteins, the porphyrin-dependent transporters and the siderophore-dependent transporters. However, for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates. Results We have screened all publicly available eubacterial genomes for sequences representing (putative) TBDTs. Based on sequence similarity, we identified 195 clusters, where elements of one cluster may possibly recognize similar substrates. For Anabaena sp. PCC 7120 we identified 22 genes as putative TBDTs covering almost all known TBDT subclasses. This is a high number of TBDTs compared to other cyanobacteria. The expression of the 22 putative TBDTs individually depends on the presence of iron, copper or nitrogen. Conclusion We exemplified on TBDTs the power of CLANS-based classification, which demonstrates its importance for future application in systems biology. In addition, the tentative substrate assignment based on characterized proteins will stimulate the research of TBDTs in different species. For cyanobacteria, the atypical dependence of TBDT gene expression on different nutrition points to a yet unknown regulatory mechanism. In addition, we were able to clarify a hypothesis of the absence of TonB in cyanobacteria by the identification of according sequences.
Collapse
Affiliation(s)
- Oliver Mirus
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
70
|
The Repertoire and Evolution of ATP-Binding Cassette Systems in Synechococcus and Prochlorococcus. J Mol Evol 2009; 69:300-10. [PMID: 19756840 DOI: 10.1007/s00239-009-9259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 12/17/2022]
|
71
|
Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 2009; 75:4835-52. [PMID: 19465526 DOI: 10.1128/aem.02874-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) magnetosome island that includes numerous genes that are conserved among all known magnetotactic bacteria, as well as some genes that are unique. Interestingly, certain genes that encode proteins considered to be important in magnetosome assembly (mamJ and mamW) are absent from the genome of MC-1. Magnetotactic cocci exhibit polar magneto-aerotaxis, and the MC-1 genome contains a relatively large number of identified chemotaxis genes. Although MC-1 is capable of both autotrophic and heterotrophic growth, it does not appear to be metabolically versatile, with heterotrophic growth confined to the utilization of acetate. Central carbon metabolism is encoded by genes for the citric acid cycle (oxidative and reductive), glycolysis, and gluconeogenesis. The genome also reveals the presence or absence of specific genes involved in the nitrogen, sulfur, iron, and phosphate metabolism of MC-1, allowing us to infer the presence or absence of specific biochemical pathways in strain MC-1. The pathways inferred from the MC-1 genome provide important information regarding central metabolism in this strain that could provide insights useful for the isolation and cultivation of new magnetotactic bacterial strains, in particular strains of other magnetotactic cocci.
Collapse
|
72
|
Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 2009; 11:2253-70. [PMID: 19453698 DOI: 10.1111/j.1462-2920.2009.01947.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analysed the genome of the aromatic hydrocarbon-degrading, facultatively chemolithotrophic betaproteobacterium, Polaromonas naphthalenivorans strain CJ2. Recent work has increasingly shown that Polaromonas species are prevalent in a variety of pristine oligotrophic environments, as well as polluted habitats. Besides a circular chromosome of 4.4 Mb, strain CJ2 carries eight plasmids ranging from 353 to 6.4 kb in size. Overall, the genome is predicted to encode 4929 proteins. Comparisons of DNA sequences at the individual gene, gene cluster and whole-genome scales revealed strong trends in shared heredity between strain CJ2 and other members of the Comamonadaceae and Burkholderiaceae. blastp analyses of protein coding sequences across strain CJ2's genome showed that genetic commonalities with other betaproteobacteria diminished significantly in strain CJ2's plasmids compared with the chromosome, especially for the smallest ones. Broad trends in nucleotide characteristics (GC content, GC skew, Karlin signature difference) showed at least six anomalous regions in the chromosome, indicating alteration of genome architecture via horizontal gene transfer. Detailed analysis of one of these anomalous regions (96 kb in size, containing the nag-like naphthalene catabolic operon) indicates that the fragment's insertion site was within a putative MiaB-like tRNA-modifying enzyme coding sequence. The mosaic nature of strain CJ2's genome was further emphasized by the presence of 309 mobile genetic elements scattered throughout the genome, including 131 predicted transposase genes, 178 phage-related genes, and representatives of 12 families of insertion elements. A total of three different terminal oxidase genes were found (putative cytochrome aa(3)-type oxidase, cytochrome cbb(3)-type oxidase and cytochrome bd-type quinol oxidase), suggesting adaptation by strain CJ2 to variable aerobic and microaerobic conditions. Sequence-suggested abilities of strain CJ2 to carry out nitrogen fixation and grow on the aromatic compounds, biphenyl and benzoate, were experimentally verified. These new phenotypes and genotypes set the stage for gaining additional insights into the physiology and biochemistry contributing to strain CJ2's fitness in its native habitat, contaminated sediment.
Collapse
Affiliation(s)
- Jane M Yagi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
73
|
Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SAC, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 2009; 10:R51. [PMID: 19432983 PMCID: PMC2718517 DOI: 10.1186/gb-2009-10-5-r51] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/21/2009] [Accepted: 05/11/2009] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. RESULTS Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. CONCLUSIONS P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.
Collapse
Affiliation(s)
- Mark W Silby
- Centre for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Ana M Cerdeño-Tárraga
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Georgios S Vernikos
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen R Giddens
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Robert W Jackson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- School of Biological Sciences, The University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Xue-Xian Zhang
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - Christina D Moon
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | - Stefanie M Gehrig
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Scott AC Godfrey
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: School of Life Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Christopher G Knight
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jacob G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Zena Robinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Andrew J Spiers
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Current address: SIMBIOS Centre, Level 5, Kydd Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, UK
| | - Simon Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Alice M Yaxley
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kathy Seeger
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Lee Murphy
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon Rutter
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Rob Squares
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Michael A Quail
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Elizabeth Saunders
- DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Konstantinos Mavromatis
- Genome Biology Program, Department of Energy's Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Thomas S Brettin
- DOE Joint Genome Institute, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen D Bentley
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Joanne Hothersall
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elton Stephens
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher M Thomas
- Department of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Stuart B Levy
- Centre for Adaptation Genetics and Drug Resistance and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University Auckland, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - Nicholas R Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
74
|
Champion MD, Zeng Q, Nix EB, Nano FE, Keim P, Kodira CD, Borowsky M, Young S, Koehrsen M, Engels R, Pearson M, Howarth C, Larson L, White J, Alvarado L, Forsman M, Bearden SW, Sjöstedt A, Titball R, Michell SL, Birren B, Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog 2009; 5:e1000459. [PMID: 19478886 PMCID: PMC2682660 DOI: 10.1371/journal.ppat.1000459] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 04/29/2009] [Indexed: 01/15/2023] Open
Abstract
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.
Collapse
Affiliation(s)
- Mia D Champion
- Microbial Analysis Group, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 2009; 5:e1000308. [PMID: 19282964 PMCID: PMC2645679 DOI: 10.1371/journal.pcbi.1000308] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022] Open
Abstract
Genome-scale metabolic reconstructions are typically validated by comparing in silico growth predictions across different mutants utilizing different carbon sources with in vivo growth data. This comparison results in two types of model-prediction inconsistencies; either the model predicts growth when no growth is observed in the experiment (GNG inconsistencies) or the model predicts no growth when the experiment reveals growth (NGG inconsistencies). Here we propose an optimization-based framework, GrowMatch, to automatically reconcile GNG predictions (by suppressing functionalities in the model) and NGG predictions (by adding functionalities to the model). We use GrowMatch to resolve inconsistencies between the predictions of the latest in silico Escherichia coli (iAF1260) model and the in vivo data available in the Keio collection and improved the consistency of in silico with in vivo predictions from 90.6% to 96.7%. Specifically, we were able to suggest consistency-restoring hypotheses for 56/72 GNG mutants and 13/38 NGG mutants. GrowMatch resolved 18 GNG inconsistencies by suggesting suppressions in the mutant metabolic networks. Fifteen inconsistencies were resolved by suppressing isozymes in the metabolic network, and the remaining 23 GNG mutants corresponding to blocked genes were resolved by suitably modifying the biomass equation of iAF1260. GrowMatch suggested consistency-restoring hypotheses for five NGG mutants by adding functionalities to the model whereas the remaining eight inconsistencies were resolved by pinpointing possible alternate genes that carry out the function of the deleted gene. For many cases, GrowMatch identified fairly nonintuitive model modification hypotheses that would have been difficult to pinpoint through inspection alone. In addition, GrowMatch can be used during the construction phase of new, as opposed to existing, genome-scale metabolic models, leading to more expedient and accurate reconstructions.
Collapse
|
76
|
Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, Bryant DA, Robb F, Colman A, Tallon LJ, Badger JH, Madupu R, Ward NL, Eisen JA. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS One 2009; 4:e4207. [PMID: 19148287 PMCID: PMC2615216 DOI: 10.1371/journal.pone.0004207] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 11/07/2008] [Indexed: 12/02/2022] Open
Abstract
In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an “Assembling the Tree of Life” project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced.
Collapse
Affiliation(s)
- Dongying Wu
- University of California Davis Genome Center, Davis, California, United States of America
| | - Jason Raymond
- Microbial Systems Division, Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Martin Wu
- University of California Davis Genome Center, Davis, California, United States of America
| | - Sourav Chatterji
- University of California Davis Genome Center, Davis, California, United States of America
| | - Qinghu Ren
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Joel E. Graham
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Frank Robb
- University of Maryland Biotechnology Institute, Baltimore, Maryland, United States of America
| | - Albert Colman
- University of Maryland Biotechnology Institute, Baltimore, Maryland, United States of America
| | - Luke J. Tallon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jonathan H. Badger
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ramana Madupu
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Naomi L. Ward
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jonathan A. Eisen
- University of California Davis Genome Center, Davis, California, United States of America
- Section of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 2009; 33:430-49. [PMID: 19207745 DOI: 10.1111/j.1574-6976.2008.00157.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.
Collapse
Affiliation(s)
- Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
1. Organic cation transporters (OCTs) translocate endogenous (e.g. dopamine) and exogenous (e.g. drugs) substances of cationic nature and, therefore, play an important role in the detoxification of exogenous compounds. This review aims to furnish essential information on OCTs, with an emphasis on pharmacological aspects. 2. Analysis of the literature on OCTs makes clear that there is a species- and organ-specific distribution of the different isoforms, which can also be differentially regulated. OCTs are responsible for the excretion and/or distribution of many drugs and also for serious tissue-specific side-effects such as cisplatin-induced nephrotoxicity. The presence of single nucleotide polymorphisms in these transporters significantly influences the response of patients to medication, as demonstrated for the antidiabetic drug metformin. 3. A substantial amount of research has to be undertaken to clarify further the OCT structure-function relationships specifically to define the role of oligomerization on their activity and regulation, to identify intracellular interaction partners of OCTs, and to characterize their pharmacogenetic aspects.
Collapse
Affiliation(s)
- G Ciarimboli
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitatsklinikum Munster, Germany.
| |
Collapse
|
79
|
Schmid A, Sauvage V, Escotte-Binet S, Aubert D, Terryn C, Garnotel R, Villena I. Molecular characterization and expression analysis of a P-glycoprotein homologue in Toxoplasma gondii. Mol Biochem Parasitol 2008; 163:54-60. [PMID: 18984013 DOI: 10.1016/j.molbiopara.2008.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 09/11/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
ATP-binding cassette (ABC) transporters represent an important family of membrane proteins involved in drug resistance and other biological activities. The present study reports on the characterization of a P-glycoprotein (Pgp), TgABC.B1, in the protozoan parasite Toxoplasma gondii. The protein encoded by the TgABC.B1 gene displays the typical (TMD-NBD)2 structural organization of the "full" ABC transporter and shows significant identity and similarity with two apicomplexan Pgps; Pgh1 in Plasmodium falciparum and CpABC3 in Cryptosporidium parvum. The TgABC.B1 gene is a single copy gene transcribed into a full-length mRNA of 4.3kb and expressed as a protein of approximately 150kDa, which cellular localization revealed a membrane-associated labelling in tachyzoites. The TgABC.B1 gene is constitutively expressed in the three major T. gondii genotypes but demonstrated a higher expression in virulent type I, at both transcriptional and translational levels. Further characterization of this Pgp-like protein will increase our knowledge of the membrane transport system in this parasite and could result in the identification of a new therapeutic target in Toxoplasma.
Collapse
Affiliation(s)
- Aline Schmid
- Laboratoire de Parasitologie-Mycologie, EA 3800, IFR 53, UFR Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51095 Reims cedex, France
| | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The specific and tightly controlled transport of numerous nutrients and metabolites across cellular membranes is crucial to all forms of life. However, many of the transporter proteins involved have yet to be identified, including the vitamin transporters in various human pathogens, whose growth depends strictly on vitamin uptake. Comparative analysis of the ever-growing collection of microbial genomes coupled with experimental validation enables the discovery of such transporters. Here, we used this approach to discover an abundant class of vitamin transporters in prokaryotes with an unprecedented architecture. These transporters have energy-coupling modules comprised of a conserved transmembrane protein and two nucleotide binding proteins similar to those of ATP binding cassette (ABC) transporters, but unlike ABC transporters, they use small integral membrane proteins to capture specific substrates. We identified 21 families of these substrate capture proteins, each with a different specificity predicted by genome context analyses. Roughly half of the substrate capture proteins (335 cases) have a dedicated energizing module, but in 459 cases distributed among almost 100 gram-positive bacteria, including numerous human pathogens, different and unrelated substrate capture proteins share the same energy-coupling module. The shared use of energy-coupling modules was experimentally confirmed for folate, thiamine, and riboflavin transporters. We propose the name energy-coupling factor transporters for the new class of membrane transporters.
Collapse
|
81
|
High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes. PLoS Genet 2008; 4:e1000211. [PMID: 18833300 PMCID: PMC2542419 DOI: 10.1371/journal.pgen.1000211] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/29/2008] [Indexed: 11/26/2022] Open
Abstract
The deluge of data generated by genome sequencing has led to an increasing reliance on bioinformatic predictions, since the traditional experimental approach of characterizing gene function one at a time cannot possibly keep pace with the sequence-based discovery of novel genes. We have utilized Biolog phenotype MicroArrays to identify phenotypes of gene knockout mutants in the opportunistic pathogen and versatile soil bacterium Pseudomonas aeruginosa in a relatively high-throughput fashion. Seventy-eight P. aeruginosa mutants defective in predicted sugar and amino acid membrane transporter genes were screened and clear phenotypes were identified for 27 of these. In all cases, these phenotypes were confirmed by independent growth assays on minimal media. Using qRT-PCR, we demonstrate that the expression levels of 11 of these transporter genes were induced from 4- to 90-fold by their substrates identified via phenotype analysis. Overall, the experimental data showed the bioinformatic predictions to be largely correct in 22 out of 27 cases, and led to the identification of novel transporter genes and a potentially new histamine catabolic pathway. Thus, rapid phenotype identification assays are an invaluable tool for confirming and extending bioinformatic predictions. Genome sequencing has led to the identification of literally millions of new genes, for which there is no experimental evidence concerning their function. This limits our knowledge of these genes to computational predictions; however, the accuracy of such bioinformatic predictions is essentially unknown. We have focused on investigating the accuracy of bioinformatic predictions for a specific class of genes—those encoding membrane transporters. Our approach used Biolog phenotype MicroArrays to screen transporter gene knockout mutants in the bacterium P. aeruginosa for the ability to metabolize hundreds of different compounds. We were able to identify functions for 27 out of 78 genes, all of which were confirmed through independent growth assays. For 80% of these genes, the computationally predicted and experimentally determined functions were either identical or generically similar. Additionally, this led to the discovery of entirely new types of transporters and a novel potential histamine metabolic pathway.
Collapse
|
82
|
Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LFW, Krogfelt KA, Struve C, Triplett EW, Methé BA. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 2008; 4:e1000141. [PMID: 18654632 PMCID: PMC2453333 DOI: 10.1371/journal.pgen.1000141] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 06/24/2008] [Indexed: 12/25/2022] Open
Abstract
We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.
Collapse
|
83
|
Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci U S A 2008; 105:8724-9. [PMID: 18552178 DOI: 10.1073/pnas.0712027105] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO(2) fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.
Collapse
|
84
|
Schauer K, Rodionov DA, de Reuse H. New substrates for TonB-dependent transport: do we only see the 'tip of the iceberg'? Trends Biochem Sci 2008; 33:330-8. [PMID: 18539464 DOI: 10.1016/j.tibs.2008.04.012] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 04/04/2008] [Accepted: 04/08/2008] [Indexed: 11/26/2022]
Abstract
TonB-dependent transport is a mechanism for active uptake across the outer membrane of Gram-negative bacteria. The system promotes transport of rare nutrients and was thought to be restricted to iron complexes and vitamin B12. Recent experimental evidence of TonB-energized transport of nickel and different carbohydrates, in addition to bioinformatic-based predictions, challenges this notion and reveals that the number and variety of TonB-dependent substrates is underestimated. It is becoming clear that the chemical nature of the substrates, the energetic requirements for transport and the subsequent translocation across the cytoplasmic membrane can differ from those of the well-studied systems for iron complexes and vitamin B12. These findings question the understanding of TonB-dependent uptake and provide insights into the adaptation of bacteria to their environments.
Collapse
Affiliation(s)
- Kristine Schauer
- Institut Pasteur, Unité Postulante de Pathogenèse de Helicobacter, Département de Microbiologie, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
85
|
Varshavsky R, Horn D, Linial M. Global considerations in hierarchical clustering reveal meaningful patterns in data. PLoS One 2008; 3:e2247. [PMID: 18493326 PMCID: PMC2375056 DOI: 10.1371/journal.pone.0002247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/31/2008] [Indexed: 11/18/2022] Open
Abstract
Background A hierarchy, characterized by tree-like relationships, is a natural method of organizing data in various domains. When considering an unsupervised machine learning routine, such as clustering, a bottom-up hierarchical (BU, agglomerative) algorithm is used as a default and is often the only method applied. Methodology/Principal Findings We show that hierarchical clustering that involve global considerations, such as top-down (TD, divisive), or glocal (global-local) algorithms are better suited to reveal meaningful patterns in the data. This is demonstrated, by testing the correspondence between the results of several algorithms (TD, glocal and BU) and the correct annotations provided by experts. The correspondence was tested in multiple domains including gene expression experiments, stock trade records and functional protein families. The performance of each of the algorithms is evaluated by statistical criteria that are assigned to clusters (nodes of the hierarchy tree) based on expert-labeled data. Whereas TD algorithms perform better on global patterns, BU algorithms perform well and are advantageous when finer granularity of the data is sought. In addition, a novel TD algorithm that is based on genuine density of the data points is presented and is shown to outperform other divisive and agglomerative methods. Application of the algorithm to more than 500 protein sequences belonging to ion-channels illustrates the potential of the method for inferring overlooked functional annotations. ClustTree, a graphical Matlab toolbox for applying various hierarchical clustering algorithms and testing their quality is made available. Conclusions Although currently rarely used, global approaches, in particular, TD or glocal algorithms, should be considered in the exploratory process of clustering. In general, applying unsupervised clustering methods can leverage the quality of manually-created mapping of proteins families. As demonstrated, it can also provide insights in erroneous and missed annotations.
Collapse
Affiliation(s)
- Roy Varshavsky
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
86
|
Nagata T, Iizumi S, Satoh K, Kikuchi S. Comparative molecular biological analysis of membrane transport genes in organisms. PLANT MOLECULAR BIOLOGY 2008; 66:565-85. [PMID: 18293089 PMCID: PMC2268718 DOI: 10.1007/s11103-007-9287-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 05/04/2023]
Abstract
Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H(+) as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na(+) ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H(+) ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport.
Collapse
Affiliation(s)
- Toshifumi Nagata
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Shigemi Iizumi
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Kouji Satoh
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
87
|
Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 2008; 7:205-20. [PMID: 18309312 DOI: 10.1038/nrd2438] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is generally thought that many drug molecules are transported across biological membranes via passive diffusion at a rate related to their lipophilicity. However, the types of biophysical forces involved in the interaction of drugs with lipid membranes are no different from those involved in their interaction with proteins, and so arguments based on lipophilicity could also be applied to drug uptake by membrane transporters or carriers. In this article, we discuss the evidence supporting the idea that rather than being an exception, carrier-mediated and active uptake of drugs may be more common than is usually assumed - including a summary of specific cases in which drugs are known to be taken up into cells via defined carriers - and consider the implications for drug discovery and development.
Collapse
Affiliation(s)
- Paul D Dobson
- School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
88
|
Moya A, Peretó J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 2008; 9:218-29. [PMID: 18268509 DOI: 10.1038/nrg2319] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of prokaryote-eukaryote symbioses as a source of evolutionary innovation has been rapidly increased by the advent of genomics, which has made possible the biological study of uncultivable endosymbionts. Genomics is allowing the dissection of the evolutionary process that starts with host invasion then progresses from facultative to obligate symbiosis and ends with replacement by, or coexistence with, new symbionts. Moreover, genomics has provided important clues on the mechanisms driving the genome-reduction process, the functions that are retained by the endosymbionts, the role of the host, and the factors that might determine whether the association will become parasitic or mutualistic.
Collapse
Affiliation(s)
- Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado de correos 22085. 46071 València and CIBER de Epidemiología y Salud Pública, Spain.
| | | | | | | |
Collapse
|
89
|
|
90
|
Abstract
The major facilitator superfamily (MFS) represents the largest group of secondary active membrane transporters, and its members transport a diverse range of substrates. Recent work shows that MFS antiporters, and perhaps all members of the MFS, share the same three-dimensional structure, consisting of two domains that surround a substrate translocation pore. The advent of crystal structures of three MFS antiporters sheds light on their fundamental mechanism; they operate via a single binding site, alternating-access mechanism that involves a rocker-switch type movement of the two halves of the protein. In the sn-glycerol-3-phosphate transporter (GlpT) from Escherichia coli, the substrate-binding site is formed by several charged residues and a histidine that can be protonated. Salt-bridge formation and breakage are involved in the conformational changes of the protein during transport. In this review, we attempt to give an account of a set of mechanistic principles that characterize all MFS antiporters.
Collapse
Affiliation(s)
- Christopher J. Law
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A;
| | - Peter C. Maloney
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A;
| | - Da-Neng Wang
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, U.S.A;
| |
Collapse
|
91
|
Rahman M, Ismat F, McPherson MJJ, Baldwin SA. Topology-informed strategies for the overexpression and purification of membrane proteins. Mol Membr Biol 2007; 24:407-18. [PMID: 17710645 DOI: 10.1080/09687860701243998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Membrane proteins represent a significant fraction of all genomes and play key roles in many aspects of biology, but their structural analysis has been hampered by difficulties in large-scale production and crystallisation. To overcome the first of these hurdles, we present here a systematic approach for expression and affinity-tagging which takes into account transmembrane topology. Using a set of bacterial transporters with known topologies, we tested the efficacy of a panel of conventional and Gateway recombinational cloning vectors designed for protein expression under the control of the tac promoter, and for the addition of differing N- and C-terminal affinity tags. For transporters in which both termini are cytoplasmic, C-terminal oligohistidine tagging by recombinational cloning typically yielded functional protein at levels equivalent to or greater than those achieved by conventional cloning. In contrast, it was not effective for examples of the substantial minority of proteins that have one or both termini located on the periplasmic side of the membrane, possibly because of impairment of membrane insertion by the tag and/or att-site-encoded sequences. However, fusion either of an oligohistidine tag to cytoplasmic (but not periplasmic) termini, or of a Strep-tag II peptide to periplasmic termini using conventional cloning vectors did not interfere with membrane insertion, enabling high-level expression of such proteins. In conjunction with use of a C-terminal Lumio fluorescence tag, which we found to be compatible with both periplasmic and cytoplasmic locations, these findings offer a system for strategic planning of construct design for high throughput expression of membrane proteins for structural genomics projects.
Collapse
Affiliation(s)
- Moazur Rahman
- Astbury Centre for Structural Molecular Biology, Leeds, UK
| | | | | | | |
Collapse
|
92
|
Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71:463-76. [PMID: 17804667 PMCID: PMC2168643 DOI: 10.1128/mmbr.00001-07] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria.
Collapse
Affiliation(s)
- Jacek Lubelski
- Department of Molecular Microbiology, University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
93
|
Barabote RD, Rendulic S, Schuster SC, Saier MH. Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus. Genomics 2007; 90:424-46. [PMID: 17706914 PMCID: PMC3415317 DOI: 10.1016/j.ygeno.2007.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 10/22/2022]
Abstract
Bdellovibrio bacteriovorus is a bacterial parasite with an unusual lifestyle. It grows and reproduces in the periplasm of a host prey bacterium. The complete genome sequence of B. bacteriovorus has recently been reported. We have reanalyzed the transport proteins encoded within the B. bacteriovorus genome according to the current content of the Transporter Classification Database. A comprehensive analysis is given on the types and numbers of transport systems that B. bacteriovorus has. In this regard, the potential protein secretory capabilities of at least four types of inner-membrane secretion systems and five types of outer-membrane secretion systems are described. Surprisingly, B. bacteriovorus has a disproportionate percentage of cytoplasmic membrane channels and outer-membrane porins. It has far more TonB/ExbBD-type systems and MotAB-type systems for energizing outer-membrane transport and motility than does Escherichia coli. Analysis of probable substrate specificities of its transporters provides clues to its metabolic preferences. Interesting examples of gene fusions and of potentially overlapping genes are also noted. Our analyses provide a comprehensive, detailed appreciation of the transport capabilities of B. bacteriovorus. They should serve as a guide for functional experimental analyses.
Collapse
Affiliation(s)
- Ravi D. Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Snjezana Rendulic
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Stephan C. Schuster
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
94
|
Ren Q, Paulsen IT. Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 2007; 12:165-79. [PMID: 17587866 DOI: 10.1159/000099639] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The recent advancements in genome sequencing make it possible for the comparative analyses of essential cellular processes like transport in organisms across the three domains of life. Membrane transporters play crucial roles in fundamental cellular processes and functions in prokaryotic systems. Between 3 and 16% of open reading frames in prokaryotic genomes were predicted to encode membrane transport proteins, emphasizing the importance of transporters in their lifestyles. Hierarchical clustering of phylogenetic profiles of transporter families, which are derived from the presence or absence of a certain transporter family, showed distinct clustering patterns for obligate intracellular organisms, plant/soil-associated microbes and autotrophs. Obligate intracellular organisms possess the fewest types and number of transporters presumably due to their relatively stable living environment, while plant/soil-associated organisms generally encode the largest variety and number of transporters. A group of autotrophs are clustered together largely due to their absence of transporters for carbohydrate and organic nutrients and the presence of transporters for inorganic nutrients. Inside of each group, organisms are further clustered by their phylogenetic properties. These findings strongly suggest the correlation of transporter profiles to both evolutionary history and the overall physiology and lifestyles of the organisms.
Collapse
Affiliation(s)
- Qinghu Ren
- The Institute for Genomic Research, Rockville, MD 20850, USA
| | | |
Collapse
|
95
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 624] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
96
|
Kim TY, Kim HU, Park JM, Song H, Kim JS, Lee SY. Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol Bioeng 2007; 97:657-71. [PMID: 17405177 DOI: 10.1002/bit.21433] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is a capnophilic gram-negative bacterium that efficiently produces succinic acid, an industrially important four carbon dicarboxylic acid. In order to design a metabolically engineered strain which is capable of producing succinic acid with high yield and productivity, it is essential to optimize the whole metabolism at the systems level. Consequently, in silico modeling and simulation of the genome-scale metabolic network was employed for genome-scale analysis and efficient design of metabolic engineering experiments. The genome-scale metabolic network of M. succiniciproducens consisting of 686 reactions and 519 metabolites was constructed based on reannotation and validation experiments. With the reconstructed model, the network structure and key metabolic characteristics allowing highly efficient production of succinic acid were deciphered; these include strong PEP carboxylation, branched TCA cycle, relative weak pyruvate formation, the lack of glyoxylate shunt, and non-PTS for glucose uptake. Constraints-based flux analyses were then carried out under various environmental and genetic conditions to validate the genome-scale metabolic model and to decipher the altered metabolic characteristics. Predictions based on constraints-based flux analysis were mostly in excellent agreement with the experimental data. In silico knockout studies allowed prediction of new metabolic engineering strategies for the enhanced production of succinic acid. This genome-scale in silico model can serve as a platform for the systematic prediction of physiological responses of M. succiniciproducens to various environmental and genetic perturbations and consequently for designing rational strategies for strain improvement.
Collapse
Affiliation(s)
- Tae Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21 Program), Metabolic and Biomolecular Engineering National Research Laboratory, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
97
|
Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, Binder BJ, Edmonds J, Ye W, Orcutt B, Howard EC, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich LE, Thompson LS, Saunders E, Buchan A. Ecological genomics of marine Roseobacters. Appl Environ Microbiol 2007; 73:4559-69. [PMID: 17526795 PMCID: PMC1932822 DOI: 10.1128/aem.02580-06] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterioplankton of the marine Roseobacter clade have genomes that reflect a dynamic environment and diverse interactions with marine plankton. Comparative genome sequence analysis of three cultured representatives suggests that cellular requirements for nitrogen are largely provided by regenerated ammonium and organic compounds (polyamines, allophanate, and urea), while typical sources of carbon include amino acids, glyoxylate, and aromatic metabolites. An unexpectedly large number of genes are predicted to encode proteins involved in the production, degradation, and efflux of toxins and metabolites. A mechanism likely involved in cell-to-cell DNA or protein transfer was also discovered: vir-related genes encoding a type IV secretion system typical of bacterial pathogens. These suggest a potential for interacting with neighboring cells and impacting the routing of organic matter into the microbial loop. Genes shared among the three roseobacters and also common in nine draft Roseobacter genomes include those for carbon monoxide oxidation, dimethylsulfoniopropionate demethylation, and aromatic compound degradation. Genes shared with other cultured marine bacteria include those for utilizing sodium gradients, transport and metabolism of sulfate, and osmoregulation.
Collapse
Affiliation(s)
- M A Moran
- Department of Marine Science, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Haydon MJ, Cobbett CS. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1705-19. [PMID: 17277087 PMCID: PMC1851824 DOI: 10.1104/pp.106.092015] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/28/2007] [Indexed: 05/13/2023]
Abstract
Zinc (Zn) is an essential micronutrient required by all cells but is toxic in excess. We have identified three allelic Zn-sensitive mutants of Arabidopsis (Arabidopsis thaliana). The gene, designated ZINC-INDUCED FACILITATOR1 (ZIF1), encodes a member of the major facilitator superfamily of membrane proteins, which are found in all organisms and transport a wide range of small, organic molecules. Shoots of zif1 mutants showed increased accumulation of Zn but not other metal ions. In combination with mutations affecting shoot-to-root Zn translocation, zif1 hma2 hma4 triple mutants accumulated less Zn than the wild type but remained Zn sensitive, suggesting that the zif1 Zn-sensitive phenotype is due to altered Zn distribution. zif1 mutants were also more sensitive to cadmium but less sensitive to nickel. ZIF1 promoter-beta-glucuronidase fusions were expressed throughout the plant, with strongest expression in young tissues, and predominantly in the vasculature in older tissues. ZIF1 expression was highly induced by Zn and, to a lesser extent, by manganese. A ZIF1-green fluorescent protein fusion protein localized to the tonoplast in transgenic plants. MTP1 has been identified as a tonoplast Zn transporter and a zif1-1 mtp1-1 double mutant was more sensitive to Zn than either of the single mutants, suggesting ZIF1 influences a distinct mechanism of Zn homeostasis. Overexpression of ZIF1 conferred increased Zn tolerance and interveinal leaf chlorosis in some transgenic lines in which ZIF1 expression was high. We propose that ZIF1 is involved in a novel mechanism of Zn sequestration, possibly by transport of a Zn ligand or a Zn ligand complex into vacuoles.
Collapse
Affiliation(s)
- Michael J Haydon
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
99
|
Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 2007; 4:e286. [PMID: 16933976 PMCID: PMC1557398 DOI: 10.1371/journal.pbio.0040286] [Citation(s) in RCA: 549] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 06/23/2006] [Indexed: 01/05/2023] Open
Abstract
The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.
Collapse
Affiliation(s)
- Jonathan A Eisen
- The Institute for Genomic Research, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Gu J, Neary JL, Sanchez M, Yu J, Lilburn TG, Wang Y. Genome evolution and functional divergence in Yersinia. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:37-49. [PMID: 16838303 DOI: 10.1002/jez.b.21120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has made exploration of questions surrounding the evolution of pathogenesis tractable. Here we present the results of a detailed comparison of the genomes of Yersinia pseudotuberculosis IP32593 and three strains of Yersinia pestis (CO92, KIM10, and 91001). There appear to be between 241 and 275 multigene families in these organisms. There are 2,568 genes that are identical in the three Y. pestis strains, but differ from the Y. pseudotuberculosis strain. The changes found in some of these families, such as the kinases, proteases, and transporters, are illustrative of how the evolutionary jump from the free-living enteropathogen Y. pseudotuberculosis to the obligate host-borne blood pathogen Y. pestis was achieved. We discuss the composition of some of the most important families and discuss the observed divergence between Y. pseudotuberculosis and Y. pestis homologs.
Collapse
Affiliation(s)
- Jianying Gu
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | | | | | | | | | | |
Collapse
|