51
|
Coalescent Inference Using Serially Sampled, High-Throughput Sequencing Data from Intrahost HIV Infection. Genetics 2016; 202:1449-72. [PMID: 26857628 DOI: 10.1534/genetics.115.177931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/31/2016] [Indexed: 01/11/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes chronic infections, so genetic diversity within a single infection can be very high. High-throughput "deep" sequencing can now measure this diversity in unprecedented detail, particularly since it can be performed at different time points during an infection, and this offers a potentially powerful way to infer the evolutionary dynamics of the intrahost viral population. However, population genomic inference from HIV sequence data is challenging because of high rates of mutation and recombination, rapid demographic changes, and ongoing selective pressures. In this article we develop a new method for inference using HIV deep sequencing data, using an approach based on importance sampling of ancestral recombination graphs under a multilocus coalescent model. The approach further extends recent progress in the approximation of so-called conditional sampling distributions, a quantity of key interest when approximating coalescent likelihoods. The chief novelties of our method are that it is able to infer rates of recombination and mutation, as well as the effective population size, while handling sampling over different time points and missing data without extra computational difficulty. We apply our method to a data set of HIV-1, in which several hundred sequences were obtained from an infected individual at seven time points over 2 years. We find mutation rate and effective population size estimates to be comparable to those produced by the software BEAST. Additionally, our method is able to produce local recombination rate estimates. The software underlying our method, Coalescenator, is freely available.
Collapse
|
52
|
Hoehn KB, Fowler A, Lunter G, Pybus OG. The Diversity and Molecular Evolution of B-Cell Receptors during Infection. Mol Biol Evol 2016; 33:1147-57. [PMID: 26802217 PMCID: PMC4839220 DOI: 10.1093/molbev/msw015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anna Fowler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gerton Lunter
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
53
|
Ren Y, Wang W, Zhang X, Xu Y, Di Bisceglie AM, Fan X. Evidence for deleterious hepatitis C virus quasispecies mutation loads that differentiate the response patterns in IFN-based antiviral therapy. J Gen Virol 2015; 97:334-343. [PMID: 26581744 DOI: 10.1099/jgv.0.000346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viral quasispecies (QS) have long been considered to affect the efficiency of hepatitis C virus (HCV) antiviral therapy, but a correlation between QS diversity and treatment outcomes has not been established conclusively. We previously measured HCV QS diversity by genome-wide quantification of high-resolution mutation load in HCV genotype 1a patients achieving a sustained virological response (1a/SVR) or a null response (1a/null). The current study extended this work into HCV 1a patients experiencing relapse (1a/relapse, n = 19) and genotype 2b patients with SVR (2b/SVR, n = 10). The mean mutation load per patient in 2b/SVR and 1a/relapse was similar, respectively, to 1a/SVR (517.6 ± 174.3 vs 524 ± 278.8 mutations, P = 0.95) and 1a/null (829.2 ± 282.8 vs 805.6 ± 270.7 mutations, P = 0.78). Notably, a deleterious mutation load, as indicated by the percentage of non-synonymous mutations, was highest in 2b/SVR (33.2 ± 8.5%) as compared with 1a/SVR (23.6 ± 7.8%, P = 0.002), 1a/null (18.2 ± 5.1%, P = 1.9 × 10(-7)) or 1a/relapse (17.8 ± 5.3%, P = 1.8) × 10(-6). In the 1a/relapse group, continuous virus evolution was observed with excessive accumulation of a deleterious load (17.8 ± 5.3% vs 35.4 ± 12.9%, P = 3.5 × 10(-6)), supporting the functionality of Muller's ratchet in a treatment-induced population bottleneck. Taken together, the magnitude of HCV mutation load, particularly the deleterious mutation load, provides an evolutionary explanation for the emergence of multiple response patterns as well as an overall high SVR rate in HCV genotype 2 patients. Augmentation of Muller's ratchet represents a potential strategy to reduce or even eliminate viral relapse in HCV antiviral therapy.
Collapse
Affiliation(s)
- Yi Ren
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA.,Wuhan Center for Tuberculosis Control, Wuhan 430030, Hubei, PR China
| | - Weihua Wang
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Xiaoan Zhang
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Adrian M Di Bisceglie
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, MO 63104, USA.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| |
Collapse
|
54
|
Peck KM, Chan CHS, Tanaka MM. Connecting within-host dynamics to the rate of viral molecular evolution. Virus Evol 2015; 1:vev013. [PMID: 27774285 PMCID: PMC5014490 DOI: 10.1093/ve/vev013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses evolve rapidly, providing a unique system for understanding the processes that influence rates of molecular evolution. Neutral theory posits that the evolutionary rate increases linearly with the mutation rate. The occurrence of deleterious mutations causes this relationship to break down at high mutation rates. Previous studies have identified this as an important phenomenon, particularly for RNA viruses which can mutate at rates near the extinction threshold. We propose that in addition to mutation dynamics, viral within-host dynamics can also affect the between-host evolutionary rate. We present an analytical model that predicts the neutral evolution rate for viruses as a function of both within-host parameters and deleterious mutations. To examine the effect of more detailed aspects of the virus life cycle, we also present a computational model that simulates acute virus evolution using target cell-limited dynamics. Using influenza A virus as a case study, we find that our simulation model can predict empirical rates of evolution better than a model lacking within-host details. The analytical model does not perform as well as the simulation model but shows how the within-host basic reproductive number influences evolutionary rates. These findings lend support to the idea that the mutation rate alone is not sufficient to predict the evolutionary rate in viruses, instead calling for improved models that account for viral within-host dynamics.
Collapse
Affiliation(s)
- Kayla M Peck
- Department of Biology, University of North Carolina - Chapel Hill
| | - Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
55
|
Disentangling the impact of within-host evolution and transmission dynamics on the tempo of HIV-1 evolution. AIDS 2015; 29:1549-56. [PMID: 26244394 DOI: 10.1097/qad.0000000000000731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine how HIV-1 risk groups impact transmitted diversity and the tempo of viral evolution at a population scale. METHODS We investigated a set of previously described transmission chains (n = 70) using a population genetic approach, and tested whether the expected differences in proportions of multivariant transmissions are reflected by varying proportions of transmitted diversity between men having sex with men (MSM) and heterosexual (HET) subpopulations - the largest contributors to HIV spread. To assess evolutionary rate differences among the different risk groups, we compiled risk group datasets for subtypes A1, B and CRF01_AE, and directly compared the absolute substitution rate and its synonymous and non-synonymous components. RESULTS There was sufficient demographic signal to inform the transmission model in Bayesian evolutionary analysis by sampling trees using env data to compare the transmission bottleneck size between the MSM and HET risk groups. We found no indications for a different proportion of transmitted genetic diversity at the population level between these groups. In the direct rate comparisons between the risk groups, however, we consistently recovered a higher evolutionary rate in the male-dominated risk group compared to the HET datasets. CONCLUSION We find that the risk group composition affects the viral evolutionary rate and therefore potentially also the adaptation rate. In particular, risk group-specific sex ratios, and the variation in within-host evolutionary rates between men and women, impose evolutionary rate differences at the epidemic level, but we cannot exclude a role of varying transmission rates.
Collapse
|
56
|
Rawson JMO, Landman SR, Reilly CS, Mansky LM. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015; 12:60. [PMID: 26160407 PMCID: PMC4496919 DOI: 10.1186/s12977-015-0180-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically. RESULTS To address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.7 million read pairs and the identification of ~200,000 mutations after data processing. We observed that: (1) HIV-2 displayed significantly lower total mutation, substitution, and transition mutation frequencies than that of HIV-1, along with a mutation spectrum markedly less biased toward G-to-A transitions, (2) G-to-A hypermutation consistent with the activity of APOBEC3 proteins was observed for both HIV-1 and HIV-2 despite the presence of Vif, (3) G-to-A hypermutation was significantly higher for HIV-1 than for HIV-2, and (4) HIV-1 and HIV-2 total mutation frequencies were not significantly different in the absence of G-to-A hypermutants. CONCLUSIONS Taken together, these data demonstrate that HIV-2 exhibits a distinct mutational spectrum and a lower mutation frequency relative to HIV-1. However, the observed differences were primarily due to reduced levels of G-to-A hypermutation for HIV-2. These findings suggest that HIV-2 may be less susceptible than HIV-1 to APOBEC3-mediated hypermutation, but that the fidelities of other mutational sources (such as reverse transcriptase) are relatively similar for HIV-1 and HIV-2. Overall, these data imply that differences in replication fidelity are likely not a major contributing factor to the unique clinical features of HIV-2 infection.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
57
|
Azarian T, Lo Presti A, Giovanetti M, Cella E, Rife B, Lai A, Zehender G, Ciccozzi M, Salemi M. Impact of spatial dispersion, evolution, and selection on Ebola Zaire Virus epidemic waves. Sci Rep 2015; 5:10170. [PMID: 25973685 PMCID: PMC4431419 DOI: 10.1038/srep10170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/01/2015] [Indexed: 01/22/2023] Open
Abstract
Ebola virus Zaire (EBOV) has reemerged in Africa, emphasizing the global importance of this pathogen. Amidst the response to the current epidemic, several gaps in our knowledge of EBOV evolution are evident. Specifically, uncertainty has been raised regarding the potential emergence of more virulent viral variants through amino acid substitutions. Glycoprotein (GP), an essential component of the EBOV genome, is highly variable and a potential site for the occurrence of advantageous mutations. For this study, we reconstructed the evolutionary history of EBOV by analyzing 65 GP sequences from humans and great apes over diverse locations across epidemic waves between 1976 and 2014. We show that, although patterns of spatial dispersion throughout Africa varied, the evolution of the virus has largely been characterized by neutral genetic drift. Therefore, the radical emergence of more transmissible variants is unlikely, a positive finding, which is increasingly important on the verge of vaccine deployment.
Collapse
Affiliation(s)
- Taj Azarian
- College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Alessandra Lo Presti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Giovanetti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Cella
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Brittany Rife
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Alessia Lai
- Department of Biomedical and Clinical Science, Infectious Diseases and Immunopathology Section, ‘L. Sacco’ Hospital, University of Milan, Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Science, Infectious Diseases and Immunopathology Section, ‘L. Sacco’ Hospital, University of Milan, Milan, Italy
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- University Hospital Campus Bio-Medico, Italy
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
58
|
Anisimova M. Darwin and Fisher meet at biotech: on the potential of computational molecular evolution in industry. BMC Evol Biol 2015; 15:76. [PMID: 25928234 PMCID: PMC4422139 DOI: 10.1186/s12862-015-0352-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Today computational molecular evolution is a vibrant research field that benefits from the availability of large and complex new generation sequencing data – ranging from full genomes and proteomes to microbiomes, metabolomes and epigenomes. The grounds for this progress were established long before the discovery of the DNA structure. Specifically, Darwin’s theory of evolution by means of natural selection not only remains relevant today, but also provides a solid basis for computational research with a variety of applications. But a long-term progress in biology was ensured by the mathematical sciences, as exemplified by Sir R. Fisher in early 20th century. Now this is true more than ever: The data size and its complexity require biologists to work in close collaboration with experts in computational sciences, modeling and statistics. Results Natural selection drives function conservation and adaptation to emerging pathogens or new environments; selection plays key role in immune and resistance systems. Here I focus on computational methods for evaluating selection in molecular sequences, and argue that they have a high potential for applications. Pharma and biotech industries can successfully use this potential, and should take the initiative to enhance their research and development with state of the art bioinformatics approaches. Conclusions This review provides a quick guide to the current computational approaches that apply the evolutionary principles of natural selection to real life problems – from drug target validation, vaccine design and protein engineering to applications in agriculture, ecology and conservation.
Collapse
Affiliation(s)
- Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zürich University of Applied Sciences, Einsiedlerstrasse 31a, Wädenswil, 8820, Switzerland. .,Department of Computer Science, ETH, Zurich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
59
|
Serwanga J, Nakiboneka R, Mugaba S, Magambo B, Ndembi N, Gotch F, Kaleebu P. Frequencies of Gag-restricted T-cell escape "footprints" differ across HIV-1 clades A1 and D chronically infected Ugandans irrespective of host HLA B alleles. Vaccine 2015; 33:1664-72. [PMID: 25728323 PMCID: PMC4374673 DOI: 10.1016/j.vaccine.2015.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 01/05/2023]
Abstract
A and D infected subjects even though they bear the same presenting HLA alleles, and live in the same environment. Escape mutations that are known to confer survival advantage were more frequent in clade A-infected subjects irrespective of host HLA alleles. There was no evidence to link this difference in outcome to the evaluated adaptive T-Cell responses (IFN-γ responses and polyfunctional responses) to those key structurally constrained Gag epitopes. However, we have demonstrated that there was significantly greater selective pressure on the Gag protein of clade A than that of clade D. The data are in line with the known faster disease progression in clade D than clade A infected individuals. The data also highlight that the current difficulties in formulating a global HIV vaccine design will be further challenged by clade associated differences in outcome.
Objective(s) We evaluated relationships between critical Gag T-cell escape mutations and concomitant T-cell responses to determine whether HLA-restricted Gag mutations that confer protection, occur at similar rates in a population infected with mixed HIV-1 clades A1 and D viruses. Methods Assessment of Gag selective pressure, and adaptive T-cell functions to KAFSPEVIPMF (KF11), ISPRTLNAW (ISW9) and TSTLQEQIGW (TW10) Gag epitopes were combined with host HLA to assess correlations with rates of critical epitope escape mutations in clades A1- (n = 23) and D- (n = 21) infected, untreated subjects. Infecting clades and selection pressure were determined from the gag sequences. Results Overall, Gag escape mutations A163X in KF11 were detected in 61% (14/23) A1- infected compared to 5% (1/21) in D-infected subjects (p = 0.00015). Gag mutations I147X in the ISW9 epitope were seen in 43%: (10/23) clade A compared to 5%: (1/21) clade D infected subjects, p = 0.007, Fisher's Exact test. Both mutations were more frequent in clade A1 infection. Frequencies of the measured epitope-specific T-cell responses were comparable across clades. Peptide binding affinities for the restricting HLA alleles did not differ across clades. Overall, selection pressure on the Gag protein was significantly greater in clade A than in clade D sequences. Conclusions These findings imply that HIV-1 vaccine strategies designed to target structurally constrained T-cell epitopes may be further challenged by clade-driven outcomes in specific HLA-restricted Gag epitopes. Equally, the data are line with slower HIV-1 disease progression in clade A infection; and raise hope that increased selective pressure on Gag may be protective irrespective of host HLA alleles.
Collapse
Affiliation(s)
| | | | - Susan Mugaba
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Brian Magambo
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | | | - Frances Gotch
- Department of Immunology, Imperial College, Chelsea & Westminster Hospital, London, United Kingdom
| | - Pontiano Kaleebu
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda; London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
60
|
Kouri V, Khouri R, Alemán Y, Abrahantes Y, Vercauteren J, Pineda-Peña AC, Theys K, Megens S, Moutschen M, Pfeifer N, Van Weyenbergh J, Pérez AB, Pérez J, Pérez L, Van Laethem K, Vandamme AM. CRF19_cpx is an Evolutionary fit HIV-1 Variant Strongly Associated With Rapid Progression to AIDS in Cuba. EBioMedicine 2015; 2:244-54. [PMID: 26137563 PMCID: PMC4484819 DOI: 10.1016/j.ebiom.2015.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
Abstract
Background Clinicians reported an increasing trend of rapid progression (RP) (AIDS within 3 years of infection) in Cuba. Methods Recently infected patients were prospectively sampled, 52 RP at AIDS diagnosis (AIDS-RP) and 21 without AIDS in the same time frame (non-AIDS). 22 patients were sampled at AIDS diagnosis (chronic-AIDS) retrospectively assessed as > 3 years infected. Clinical, demographic, virological, epidemiological and immunological data were collected. Pol and env sequences were used for subtyping, transmission cluster analysis, and prediction of resistance, co-receptor use and evolutionary fitness. Host, immunological and viral predictors of RP were explored through data mining. Findings Subtyping revealed 26 subtype B strains, 6 C, 6 CRF18_cpx, 9 CRF19_cpx, 29 BG-recombinants and other subtypes/URFs. All patients infected with CRF19 belonged to the AIDS-RP group. Data mining identified CRF19, oral candidiasis and RANTES levels as the strongest predictors of AIDS-RP. CRF19 was more frequently predicted to use the CXCR4 co-receptor, had higher fitness scores in the protease region, and patients had higher viral load at diagnosis. Interpretation CRF19 is a recombinant of subtype D (C-part of Gag, PR, RT and nef), subtype A (N-part of Gag, Integrase, Env) and subtype G (Vif, Vpr, Vpu and C-part of Env). Since subtypes D and A have been associated with respectively faster and slower disease progression, our findings might indicate a fit PR driving high viral load, which in combination with co-infections may boost RANTES levels and thus CXCR4 use, potentially explaining the fast progression. We propose that CRF19 is evolutionary very fit and causing rapid progression to AIDS in many newly infected patients in Cuba. We propose that CRF19 is evolutionary very fit, causing rapid progression to AIDS in many newly infected patients in Cuba. CRF19 is a recombinant of subtype D, subtype A and subtype G, with a subtype D protease estimated to be particularly fit. A fit protease with high viral load and co-infections, may boost RANTES levels and thus CXCR4 use, hence fast progression.
Collapse
Affiliation(s)
- Vivian Kouri
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Ricardo Khouri
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium ; LIMI-LIP, Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador-Bahia, Brazil
| | - Yoan Alemán
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Yeissel Abrahantes
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Jurgen Vercauteren
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Andrea-Clemencia Pineda-Peña
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium ; Clinical and Molecular Infectious Diseases Group, Faculty of Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Kristof Theys
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Sarah Megens
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Michel Moutschen
- AIDS Reference Center, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Campus E1 4, 66123 Saarbrücken, Germany
| | - Johan Van Weyenbergh
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Ana B Pérez
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Jorge Pérez
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Lissette Pérez
- Virology Department, Institute of Tropical Medicine Pedro Kourí, Autopista Novia del Mediodía Km 6, Marianao 13, Havana City, Cuba
| | - Kristel Van Laethem
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, B-3000 Leuven, Belgium ; Centro de Malária e outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
61
|
Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 2014; 5:mBio.01824-14. [PMID: 25538191 PMCID: PMC4278535 DOI: 10.1128/mbio.01824-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.
Collapse
|
62
|
Alderson RG, Barker D, Mitchell JBO. One origin for metallo-β-lactamase activity, or two? An investigation assessing a diverse set of reconstructed ancestral sequences based on a sample of phylogenetic trees. J Mol Evol 2014; 79:117-29. [PMID: 25185655 PMCID: PMC4185109 DOI: 10.1007/s00239-014-9639-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
Bacteria use metallo-β-lactamase enzymes to hydrolyse lactam rings found in many antibiotics, rendering them ineffective. Metallo-β-lactamase activity is thought to be polyphyletic, having arisen on more than one occasion within a single functionally diverse homologous superfamily. Since discovery of multiple origins of enzymatic activity conferring antibiotic resistance has broad implications for the continued clinical use of antibiotics, we test the hypothesis of polyphyly further; if lactamase function has arisen twice independently, the most recent common ancestor (MRCA) is not expected to possess lactam-hydrolysing activity. Two major problems present themselves. Firstly, even with a perfectly known phylogeny, ancestral sequence reconstruction is error prone. Secondly, the phylogeny is not known, and in fact reconstructing a single, unambiguous phylogeny for the superfamily has proven impossible. To obtain a more statistical view of the strength of evidence for or against MRCA lactamase function, we reconstructed a sample of 98 MRCAs of the metallo-β-lactamases, each based on a different tree in a bootstrap sample of reconstructed phylogenies. InterPro sequence signatures and homology modelling were then used to assess our sample of MRCAs for lactamase functionality. Only 5 % of these models conform to our criteria for metallo-β-lactamase functionality, suggesting that the ancestor was unlikely to have been a metallo-β-lactamase. On the other hand, given that ancestral proteins may have had metallo-β-lactamase functionality with variation in sequence and structural properties compared with extant enzymes, our criteria are conservative, estimating a lower bound of evidence for metallo-β-lactamase functionality but not an upper bound.
Collapse
Affiliation(s)
- Rosanna G. Alderson
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland, UK
| | - Daniel Barker
- Sir Harold Mitchell Building, School of Biology, University of St Andrews, St Andrews, KY16 9TH Scotland, UK
| | - John B. O. Mitchell
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland, UK
| |
Collapse
|
63
|
Norström MM, Veras NM, Huang W, Proper MCF, Cook J, Hartogensis W, Hecht FM, Karlsoon AC, Salemi M. Baseline CD4+ T cell counts correlates with HIV-1 synonymous rate in HLA-B*5701 subjects with different risk of disease progression. PLoS Comput Biol 2014; 10:e1003830. [PMID: 25187947 PMCID: PMC4154639 DOI: 10.1371/journal.pcbi.1003830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
HLA-B*5701 is the host factor most strongly associated with slow HIV-1 disease progression, although risk of progression may vary among patients carrying this allele. The interplay between HIV-1 evolutionary rate variation and risk of progression to AIDS in HLA-B*5701 subjects was studied using longitudinal viral sequences from high-risk progressors (HRPs) and low-risk progressors (LRPs). Posterior distributions of HIV-1 genealogies assuming a Bayesian relaxed molecular clock were used to estimate the absolute rates of nonsynonymous and synonymous substitutions for different set of branches. Rates of viral evolution, as well as in vitro viral replication capacity assessed using a novel phenotypic assay, were correlated with various clinical parameters. HIV-1 synonymous substitution rates were significantly lower in LRPs than HRPs, especially for sets of internal branches. The viral population infecting LRPs was also characterized by a slower increase in synonymous divergence over time. This pattern did not correlate to differences in viral fitness, as measured by in vitro replication capacity, nor could be explained by differences among subjects in T cell activation or selection pressure. Interestingly, a significant inverse correlation was found between baseline CD4+ T cell counts and mean HIV-1 synonymous rate (which is proportional to the viral replication rate) along branches representing viral lineages successfully propagating through time up to the last sampled time point. The observed lower replication rate in HLA-B*5701 subjects with higher baseline CD4+ T cell counts provides a potential model to explain differences in risk of disease progression among individuals carrying this allele. The clinical course of HIV-1 infection is characterized by considerable variability in the rate of progression to acquired immunodeficiency syndrome (AIDS) among patients with different genetic background. The human leukocyte antigen (HLA) B*5701 is the host factor most strongly associated with slow HIV-1 disease progression. However, the risk of progression to AIDS also varies among patients carrying this specific allele. To gain a better understanding of the interplay between HIV-1 evolutionary rate variation and risk of disease progression, we followed untreated HLA-B*5701 subjects from early infection up to the onset of AIDS. The analysis of longitudinal viral sequences with advanced computational biology techniques based on coalescent Bayesian methods showed a highly significant association between lower synonymous substitution rates and higher baseline CD4+ T cell counts in HLA-B*5701 subjects. The finding provides a potential model to explain differences in risk of disease progression among individuals carrying this allele and might have translational impact on clinical practice, since synonymous rates, which are proportional to in vivo viral replication rates, could be used as a novel evolutionary marker of disease progression.
Collapse
Affiliation(s)
- Melissa M. Norström
- Division of Clinical Microbiology & Center for HIV Research, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nazle M. Veras
- Department of Pathology, Immunology and Laboratory Medicine & Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Wei Huang
- Monogram Biosciences Inc., South San Francisco, California, United States of America
| | - Mattia C. F. Proper
- Centre for Health Informatics, Institute of Population Health, University of Manchester, Manchester, United Kingdom
| | - Jennifer Cook
- Monogram Biosciences Inc., South San Francisco, California, United States of America
| | - Wendy Hartogensis
- UCSF Positive Health Program, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Frederick M. Hecht
- UCSF Positive Health Program, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Annika C. Karlsoon
- Division of Clinical Microbiology & Center for HIV Research, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (ACK); (MS)
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine & Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (ACK); (MS)
| |
Collapse
|
64
|
Vrancken B, Rambaut A, Suchard MA, Drummond A, Baele G, Derdelinckx I, Van Wijngaerden E, Vandamme AM, Van Laethem K, Lemey P. The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates. PLoS Comput Biol 2014; 10:e1003505. [PMID: 24699231 PMCID: PMC3974631 DOI: 10.1371/journal.pcbi.1003505] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/15/2014] [Indexed: 11/23/2022] Open
Abstract
Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new infections upon reactivation. Since its discovery three decades ago, the HIV epidemic has unfolded into one of the most devastating pandemics in human history. When HIV replication cannot be completely inhibited, the fast-evolving retrovirus continuously evades intra-host immune and drug selective pressure, but diversifies according to more neutral epidemiological dynamics at the interhost level. Limited evidence suggests that the virus may evolve faster in a single host than in a population of hosts, and various hypotheses have been put forward to explain this phenomenon. Here, we develop a new computational approach aimed at integrating host transmission information with pathogen genealogical reconstructions. We apply this approach to comprehensive sequence data sets sampled from a large HIV-1 subtype C transmission chain, and in addition to providing several insights into the reconstruction of HIV-1 transmissions histories and its associated population dynamics, we find that transmission decreases the HIV-1 evolutionary rate. The fact that we also identify this decline for substitutions that do not alter amino acid substitutions provides evidence against hypotheses that invoke selection forces. Instead, our findings support earlier reports that new infections start preferentially with less evolved variants, which may be stored in latently infected cells, and this may vary among different HIV-1 subtypes.
Collapse
Affiliation(s)
- Bram Vrancken
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marc A. Suchard
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles Los Angeles, California, United States of America
| | - Alexei Drummond
- Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand
| | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | | | | | - Anne-Mieke Vandamme
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Centro de Malária e Outras Doenças Tropicais Instituto de Higiene e Medicina Tropical and Unidade de Microbiologia, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Kristel Van Laethem
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Bielejec F, Lemey P, Baele G, Rambaut A, Suchard MA. Inferring heterogeneous evolutionary processes through time: from sequence substitution to phylogeography. Syst Biol 2014; 63:493-504. [PMID: 24627184 PMCID: PMC4055869 DOI: 10.1093/sysbio/syu015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular phylogenetic and phylogeographic reconstructions generally assume time-homogeneous substitution processes. Motivated by computational convenience, this assumption sacrifices biological realism and offers little opportunity to uncover the temporal dynamics in evolutionary histories. Here, we propose an evolutionary approach that explicitly relaxes the time-homogeneity assumption by allowing the specification of different infinitesimal substitution rate matrices across different time intervals, called epochs, along the evolutionary history. We focus on an epoch model implementation in a Bayesian inference framework that offers great modeling flexibility in drawing inference about any discrete data type characterized as a continuous-time Markov chain, including phylogeographic traits. To alleviate the computational burden that the additional temporal heterogeneity imposes, we adopt a massively parallel approach that achieves both fine- and coarse-grain parallelization of the computations across branches that accommodate epoch transitions, making extensive use of graphics processing units. Through synthetic examples, we assess model performance in recovering evolutionary parameters from data generated according to different evolutionary scenarios that comprise different numbers of epochs for both nucleotide and codon substitution processes. We illustrate the usefulness of our inference framework in two different applications to empirical data sets: the selection dynamics on within-host HIV populations throughout infection and the seasonality of global influenza circulation. In both cases, our epoch model captures key features of temporal heterogeneity that remained difficult to test using ad hoc procedures. [Bayesian inference; BEAGLE; BEAST; Epoch Model; phylogeography; Phylogenetics.]
Collapse
Affiliation(s)
- Filip Bielejec
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium;
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom;Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, 90095, USA;Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
66
|
Nguyen VG, Kim HK, Moon HJ, Park SJ, Chung HC, Choi MK, Kim AR, Park BK. ORF5-based evolutionary and epidemiological dynamics of the type 1 porcine reproductive and respiratory syndrome virus circulating in Korea. INFECTION GENETICS AND EVOLUTION 2013; 21:320-8. [PMID: 24316155 DOI: 10.1016/j.meegid.2013.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022]
Abstract
This study applied a number of advanced genetic analysis tools to investigate the evolutionary trajectories and epidemiological dynamics of Korean type 1 PRRSV based on variations in the ORF5 gene over a long-term period from 2005 to 2013. Maximum likelihood phylogenetic analysis performed on large, worldwide ORF5 sequences (n=1127) strongly suggested no further introduction of genetically novel type 1 PRRSV into Korean pig farms, with the identification of only two clusters (I and II) in circulation to date. Using a codon-based extension of the Bayesian relaxed clock model, this study was able to distinguish between synonymous and non-synonymous substitutions and demonstrated that, while the absolute rates of synonymous substitution (E[S]) were similar between clusters I and II, the absolute rate of non-synonymous substitution (E[N]) was significantly different between the clusters. Cluster I was found to have an elevated E[N]/E[S] ratio relative to cluster II on the internal branches, compared to the external branches. Additionally, many fewer sites were predicted under diversifying selection in cluster II than in cluster I. Utilizing the Bayesian skyride method and the novel Bayesian birth-death skyline plot method, this study provided insights into the epidemiological dynamics of type 1 PRRSV in Korea by revealing that each cluster experienced a unique epidemic growth and by uncovering correlations between the effective population size and effective reproductive number.
Collapse
Affiliation(s)
- Van Giap Nguyen
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea; Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Hanoi University of Agriculture, Hanoi, Viet Nam
| | - Hye Kwon Kim
- Research Evaluation Team, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyoung Joon Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea
| | - Seong Jun Park
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Chun Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Min Kyung Choi
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - A Reum Kim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Bong Kyun Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
67
|
HIV-1 transmission during early infection in men who have sex with men: a phylodynamic analysis. PLoS Med 2013; 10:e1001568; discussion e1001568. [PMID: 24339751 PMCID: PMC3858227 DOI: 10.1371/journal.pmed.1001568] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/23/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-level genetic variation of viruses can potentially provide information about donors, not just recipients, of infection. Genetic sequences from many viruses are increasingly abundant, especially HIV, which is routinely sequenced for surveillance of drug resistance mutations. We conducted a phylodynamic analysis of HIV genetic sequence data and surveillance data from a US population of men who have sex with men (MSM) and estimated incidence and transmission rates by stage of infection. METHODS AND FINDINGS We analyzed 662 HIV-1 subtype B sequences collected between October 14, 2004, and February 24, 2012, from MSM in the Detroit metropolitan area, Michigan. These sequences were cross-referenced with a database of 30,200 patients diagnosed with HIV infection in the state of Michigan, which includes clinical information that is informative about the recency of infection at the time of diagnosis. These data were analyzed using recently developed population genetic methods that have enabled the estimation of transmission rates from the population-level genetic diversity of the virus. We found that genetic data are highly informative about HIV donors in ways that standard surveillance data are not. Genetic data are especially informative about the stage of infection of donors at the point of transmission. We estimate that 44.7% (95% CI, 42.2%-46.4%) of transmissions occur during the first year of infection. CONCLUSIONS In this study, almost half of transmissions occurred within the first year of HIV infection in MSM. Our conclusions may be sensitive to un-modeled intra-host evolutionary dynamics, un-modeled sexual risk behavior, and uncertainty in the stage of infected hosts at the time of sampling. The intensity of transmission during early infection may have significance for public health interventions based on early treatment of newly diagnosed individuals.
Collapse
|
68
|
Chen I, Khaki L, Lindsey JC, Fry C, Cousins MM, Siliciano RF, Violari A, Palumbo P, Eshleman SH. Association of pol diversity with antiretroviral treatment outcomes among HIV-infected African children. PLoS One 2013; 8:e81213. [PMID: 24312277 PMCID: PMC3842253 DOI: 10.1371/journal.pone.0081213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/09/2013] [Indexed: 01/02/2023] Open
Abstract
Background In HIV-infected children, viral diversity tends to increase with age in the absence of antiretroviral treatment (ART). We measured HIV diversity in African children (ages 6–36 months) enrolled in a randomized clinical trial comparing two ART regimens (Cohort I of the P1060 trial). Children in this cohort were exposed to single dose nevirapine (sdNVP) at birth. Methods HIV diversity was measured retrospectively using a high resolution melting (HRM) diversity assay. Samples were obtained from 139 children at the enrollment visit prior to ART initiation. Six regions of the HIV genome were analyzed: two in gag, one in pol, and three in env. A single numeric HRM score that reflects HIV diversity was generated for each region; composite HRM scores were also calculated (mean and median for all six regions). Results In multivariable median regression models using backwards selection that started with demographic and clinical variables, older age was associated with higher HRM scores (higher HIV diversity) in pol (P = 0.005) and with higher mean (P = 0.014) and median (P<0.001) HRM scores. In multivariable models adjusted for age, pre-treatment HIV viral load, pre-treatment CD4%, and randomized treatment regimen, higher HRM scores in pol were associated with shorter time to virologic suppression (P = 0.016) and longer time to study endpoints (virologic failure [VF], VF/death, and VF/off study treatment; P<0.001 for all measures). Conclusions In this cohort of sdNVP-exposed, ART-naïve African children, higher levels of HIV diversity in the HIV pol region prior to ART initiation were associated with better treatment outcomes.
Collapse
Affiliation(s)
- Iris Chen
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SHE); (IC)
| | - Leila Khaki
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jane C. Lindsey
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Carrie Fry
- Frontier Science and Technology Research Foundation, Amherst, New York, United States of America
| | - Matthew M. Cousins
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert F. Siliciano
- Dept. of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Avy Violari
- PHRU, Chris Baragwanath Hospital, Soweto, South Africa
| | - Paul Palumbo
- Depts. of Pediatrics and Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Susan H. Eshleman
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (SHE); (IC)
| |
Collapse
|
69
|
Chan CHS, Hamblin S, Tanaka MM. The effects of linkage on comparative estimators of selection. BMC Evol Biol 2013; 13:244. [PMID: 24199711 PMCID: PMC3828407 DOI: 10.1186/1471-2148-13-244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/29/2013] [Indexed: 11/10/2022] Open
Abstract
Background A major goal of molecular evolution is to determine how natural selection has shaped the evolution of a gene. One approach taken by methods such as KA/KS and the McDonald-Kreitman (MK) test is to compare the frequency of non-synonymous and synonymous changes. These methods, however, rely on the assumption that a change in frequency of one mutation will not affect changes in frequency of other mutations. Results We demonstrate that linkage between sites can bias measures of selection based on synonymous and non-synonymous changes. Using forward simulation of a Wright-Fisher process, we show that hitch-hiking of deleterious mutations with advantageous mutations can lead to overestimation of the number of adaptive substitutions, while background selection and clonal interference can distort the site frequency spectrum to obscure the signal for positive selection. We present three diagnostics for detecting these effects of linked selection and apply them to the human influenza (H3N2) hemagglutinin gene. Conclusion Various forms of linked selection have characteristic effects on MK-type statistics. The extent of background selection, hitch-hiking and clonal interference can be evaluated using the diagnostic statistics presented here. The diagnostics can also be used to determine how well we expect the MK statistics to perform and whether one form of the statistic may be preferable to another.
Collapse
Affiliation(s)
- Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
70
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
71
|
Frias D, Monteiro-Cunha JP, Mota-Miranda AC, Fonseca VS, de Oliveira T, Galvao-Castro B, Alcantara LCJ. Human Retrovirus Codon Usage from tRNA Point of View: Therapeutic Insights. Bioinform Biol Insights 2013; 7:335-45. [PMID: 24151425 PMCID: PMC3798314 DOI: 10.4137/bbi.s12093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to investigate the balance between transfer ribonucleic acid (tRNA) supply and demand in retrovirus-infected cells, seeking the best targets for antiretroviral therapy based on the hypothetical tRNA Inhibition Therapy (TRIT). Codon usage and tRNA gene data were retrieved from public databases. Based on logistic principles, a therapeutic score (T-score) was calculated for all sense codons, in each retrovirus-host system. Codons that are critical for viral protein translation, but not as critical for the host, have the highest T-score values. Theoretically, inactivating the cognate tRNA species should imply a severe reduction of the elongation rate during viral mRNA translation. We developed a method to predict tRNA species critical for retroviral protein synthesis. Four of the best TRIT targets in HIV-1 and HIV-2 encode Large Hydrophobic Residues (LHR), which have a central role in protein folding. One of them, codon CUA, is also a TRIT target in both HTLV-1 and HTLV-2. Therefore, a drug designed for inactivating or reducing the cytoplasmatic concentration of tRNA species with anticodon TAG could attenuate significantly both HIV and HTLV protein synthesis rates. Inversely, replacing codons ending in UA by synonymous codons should increase the expression, which is relevant for DNA vaccine design.
Collapse
Affiliation(s)
- Diego Frias
- Bahia State University, Salvador, Bahia, Brazil
| | | | | | | | | | | | | |
Collapse
|
72
|
Highly divergent strains of porcine reproductive and respiratory syndrome virus incorporate multiple isoforms of nonstructural protein 2 into virions. J Virol 2013; 87:13456-65. [PMID: 24089566 DOI: 10.1128/jvi.02435-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral structural proteins form the critical intermediary between viral infection cycles within and between hosts, function to initiate entry, participate in immediate early viral replication steps, and are major targets for the host adaptive immune response. We report the identification of nonstructural protein 2 (nsp2) as a novel structural component of the porcine reproductive and respiratory syndrome virus (PRRSV) particle. A set of custom α-nsp2 antibodies targeting conserved epitopes within four distinct regions of nsp2 (the PLP2 protease domain [OTU], the hypervariable domain [HV], the putative transmembrane domain [TM], and the C-terminal region [C]) were obtained commercially and validated in PRRSV-infected cells. Highly purified cell-free virions of several PRRSV strains were isolated through multiple rounds of differential density gradient centrifugation and analyzed by immunoelectron microscopy (IEM) and Western blot assays using the α-nsp2 antibodies. Purified viral preparations were found to contain pleomorphic, predominantly spherical virions of uniform size (57.9 nm ± 8.1 nm diameter; n = 50), consistent with the expected size of PRRSV particles. Analysis by IEM indicated the presence of nsp2 associated with the viral particle of diverse strains of PRRSV. Western blot analysis confirmed the presence of nsp2 in purified viral samples and revealed that multiple nsp2 isoforms were associated with the virion. Finally, a recombinant PRRSV genome containing a myc-tagged nsp2 was used to generate purified virus, and these particles were also shown to harbor myc-tagged nsp2 isoforms. Together, these data identify nsp2 as a virion-associated structural PRRSV protein and reveal that nsp2 exists in or on viral particles as multiple isoforms.
Collapse
|
73
|
Novitsky V, Wang R, Rossenkhan R, Moyo S, Essex M. Intra-host evolutionary rates in HIV-1C env and gag during primary infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 19:361-8. [PMID: 23523818 PMCID: PMC3759599 DOI: 10.1016/j.meegid.2013.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND HIV-1 nucleotide substitution rates are central for understanding the evolution of HIV-1. Their accurate estimation is critical for analysis of viral dynamics, identification of divergence time of HIV variants, inference of HIV transmission clusters, and modeling of viral evolution. METHODS Intra-patient nucleotide substitution rates in HIV-1C gag and env gp120 V1C5 were analyzed in a longitudinal cohort of 32 individuals infected with a single viral variant. Viral quasispecies were derived by single genome amplification/sequencing from serially sampled blood specimens collected at median (IQR) of 5 (4-6) times per subject from enrollment (during Fiebig stages II to V) over a median (IQR) of 417 (351-471) days post-seroconversion (p/s). HIV-1C evolutionary rates were estimated by BEAST v.1.7 using a relaxed lognormal molecular clock model. The effect of antiretroviral therapy (ART) on substitution rates in gag and env was assessed in a subset of six individuals who started ARV therapy during the follow-up period. RESULTS During primary HIV-1C infection, the intra-patient substitution rates were estimated at a median (IQR) of 5.22E-03 (3.28E-03-7.55E-03) substitutions per site per year of infection within gag, and 1.58E-02 (9.99E-03-2.04E-02) substitutions per site per year within env gp120 V1C5. The substitution rates in env gp120 V1C5 were higher than in gag (p<0.001, Wilcoxon signed rank test). The median (IQR) relative rates of evolution at codon positions 1, 2, and 3 were 0.73 (0.48-0.84), 0.67 (0.52-0.86), and 1.54 (1.21-1.71) in gag, and 1.01 (0.86-1.15), 1.05 (0.99-1.21), and 0.86 (0.67-0.94) in env gp120 V1C5, respectively. A first to the third position codon rate ratio >1.0 within env was found in 25 (78.1%) cases, but only in 4 (12.5%) cases in gag, while a second to the third position codon rate ratio >1.0 in env was observed in 26 (81.3%) cases, but in gag only in 2 (6.3%) cases (p<0.001 for both comparisons, Fisher's exact test). No ART effect on substitution rates in gag and env was found, at least within the first 3-4 months after ART initiation. Individuals with early viral set point ⩾4.0 log10 copies/ml had higher substitution rates in env gp120 V1C5 (median (IQR) 1.88E-02 (1.54E-02-2.46E-02) vs. 1.04E (7.24E-03-1.55E-02) substitutions per site per year; p=0.017, Mann-Whitney sum rank test), while individuals with early viral set point ⩾3.0 log10 copies/ml had higher substitution rates in gag (median (IQR) 5.66E-03 (3.45E-03-7.94E-03) vs. 1.78E-03 (4.57E-04-5.15E-03); p=0.028; Mann-Whitney sum rank test). CONCLUSIONS The results suggest that in primary HIV-1C infection, (1) intra-host evolutionary rates in env gp120 V1C5 are about 3-fold higher than in gag; (2) selection pressure in env is more frequent than in gag; (3) initiation of ART does not change substitution rates in HIV-1C env or gag, at least within the first 3-4 months after starting ART; and (4) intra-host evolutionary rates in gag and env gp120 V1C5 are higher in individuals with elevated levels of early viral set point.
Collapse
Affiliation(s)
- Vlad Novitsky
- Harvard School of Public Health AIDS Initiative, Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, Boston 02115, MA, USA; Botswana-Harvard AIDS Institute, P/Bag BO 320, Gaborone, Botswana.
| | | | | | | | | |
Collapse
|
74
|
Lythgoe KA, Pellis L, Fraser C. Is HIV short-sighted? Insights from a multistrain nested model. Evolution 2013; 67:2769-82. [PMID: 24094332 PMCID: PMC3906838 DOI: 10.1111/evo.12166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/02/2013] [Indexed: 01/14/2023]
Abstract
An important component of pathogen evolution at the population level is evolution within hosts. Unless evolution within hosts is very slow compared to the duration of infection, the composition of pathogen genotypes within a host is likely to change during the course of an infection, thus altering the composition of genotypes available for transmission as infection progresses. We develop a nested modeling approach that allows us to follow the evolution of pathogens at the epidemiological level by explicitly considering within-host evolutionary dynamics of multiple competing strains and the timing of transmission. We use the framework to investigate the impact of short-sighted within-host evolution on the evolution of virulence of human immunodeficiency virus (HIV), and find that the topology of the within-host adaptive landscape determines how virulence evolves at the epidemiological level. If viral reproduction rates increase significantly during the course of infection, the viral population will evolve a high level of virulence even though this will reduce the transmission potential of the virus. However, if reproduction rates increase more modestly, as data suggest, our model predicts that HIV virulence will be only marginally higher than the level that maximizes the transmission potential of the virus.
Collapse
Affiliation(s)
- Katrina A Lythgoe
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St. Mary's Campus, London, W2 1PG, United Kingdom.
| | | | | |
Collapse
|
75
|
Nguyen VG, Kim HK, Moon HJ, Park SJ, Chung HC, Choi MK, Park BK. Evolutionary Dynamics of a Highly Pathogenic Type 2 Porcine Reproductive and Respiratory Syndrome Virus: Analyses of Envelope Protein-Coding Genes. Transbound Emerg Dis 2013; 62:411-20. [PMID: 23981823 DOI: 10.1111/tbed.12154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has long been an economically devastating swine viral disease. The recent emergence of a highly pathogenic type 2 PRRSV with high mobility and mortality in China, spreading in Vietnam, Laos, and Thailand has placed neighbouring countries at risk. This study applied a codon-based extension of the Bayesian relaxed clock model and the fixed effects maximum-likelihood method to investigate and compare the evolutionary dynamics of type 2 PRRSV for all of known structural envelope protein-coding genes. By comparing the highly pathogenic type 2 PRRSV clade against the typical type 2 PRRSV clade, this study demonstrated that the highly pathogenic clade evolved at high rates in all of the known structural genes but did not display rapid evolutionary dynamics compared with typical type 2 PRRSV. In contrast, the ORF3, ORF5 and ORF6 genes of the highly pathogenic clade evolved in a qualitatively different manner from the genes of the typical clade. At the population level, several codons of the sequence elements that were involved in viral neutralization, as well as codons that were associated with in vitro attenuation/over-attenuation, were predicted to be selected differentially between the typical clade and the highly pathogenic clade. The results of this study suggest that the multigenic factors of the envelope protein-coding genes contribute to diversifying the biological properties (virulence, antigenicity, etc.) of the highly pathogenic clade compared with the typical clade of type 2 PRRSV.
Collapse
Affiliation(s)
- V G Nguyen
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Hanoi University of Agriculture, Hanoi, Vietnam
| | - H K Kim
- Research Evaluation Team, Institute for Basic Science, Daejeon, Korea
| | - H J Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| | - S J Park
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - H C Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - M K Choi
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - B K Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
76
|
Ho YS, Saksena NK. Glycosylation in HIV-1 envelope glycoprotein and its biological implications. Future Virol 2013. [DOI: 10.2217/fvl.13.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as ‘self’ to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Yung Shwen Ho
- Computational Bioscience Research Center, Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Instiute & Westmead Hospital, University of Sydney, Westmead, Sydney, NSW 2145, Australia
| |
Collapse
|
77
|
Impact of genetic heterogeneity in polymerase of hepatitis B virus on dynamics of viral load and hepatitis B progression. PLoS One 2013; 8:e70169. [PMID: 23936156 PMCID: PMC3728348 DOI: 10.1371/journal.pone.0070169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022] Open
Abstract
Objective The hepatitis B virus (HBV)-polymerase region overlaps pre-S/S genes with high epitope density and plays an essential role in viral replication. We investigated whether genetic variation in the polymerase region determined long-term dynamics of viral load and the risk of hepatitis B progression in a population-based cohort study. Methods We sequenced the HBV-polymerase region using baseline plasma from treatment-naïve individuals with HBV-DNA levels≥1000 copies/mL in a longitudinal viral-load study of participants with chronic HBV infection followed-up for 17 years, and obtained sequences from 575 participants (80% with HBV genotype Ba and 17% with Ce). Results Patterns of viral sequence diversity across phases (i.e., immune-tolerant, immune-clearance, non/low replicative, and hepatitis B e antigen (HBeAg)-negative hepatitis phases) of HBV-infection, which were associated with viral and clinical features at baseline and during follow-up, were similar between HBV genotypes, despite greater diversity for genotype Ce vs. Ba. Irrespective of genotypes, however, HBeAg-negative participants had 1.5-to-2-fold higher levels of sequence diversity than HBeAg-positive participants (P<0.0001). Furthermore, levels of viral genetic divergence from the population consensus sequence, estimated by numbers of nucleotide substitutions, were inversely associated with long-term viral load even in HBeAg-negative participants. A mixed model developed through analysis of the entire HBV-polymerase region identified 153 viral load-associated single nucleotide polymorphisms in overall and 136 in HBeAg-negative participants, with distinct profiles between HBV genotypes. These polymorphisms were most evident at sites within or flanking T-cell epitopes. Seven polymorphisms revealed associations with both enhanced viral load and a more than 4-fold increased risk of hepatocellular carcinoma and/or liver cirrhosis. Conclusions The data highlight a role of viral genetic divergence in the natural course of HBV-infection. Interindividual differences in the long-term dynamics of viral load is not only associated with accumulation of mutations in HBV-polymerase region, but differences in specific viral polymorphisms which differ between genotypes.
Collapse
|
78
|
Magri MC, Brigido LFDM, Morimoto HK, Caterino-de-Araujo A. Human T cell lymphotropic virus type 2a strains among HIV type 1-coinfected patients from Brazil have originated mostly from Brazilian Amerindians. AIDS Res Hum Retroviruses 2013; 29:1010-8. [PMID: 23484539 DOI: 10.1089/aid.2013.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human T cell lymphotropic virus type 2 (HTLV-2) is found mainly in Amerindians and in intravenous drug users (IDUs) from urban areas of the United States, Europe, and Latin America. Worldwide, HTLV-2a and HTLV-2b subtypes are the most prevalent. Phylogenetic analysis of HTLV-2 isolates from Brazil showed the HTLV-2a subtype, variant -2c, which spread from Indians to the general population and IDUs. The present study searched for the types of HTLV-2 that predominate among HIV-1-coinfected patients from southern and southeastern Brazil. Molecular characterization of the LTR, env, and tax regions of 38 isolates confirmed the HTLV-2c variant in 37 patients, and one HTLV-2b in a patient from Paraguay. Phylogenetic analysis of sequences showed different clades of HTLV-2 associated with risk factors and geographic region. These clades could represent different routes of virus transmission and/or little diverse evolutionary rates of virus. Taking into account the results obtained in the present study and the lack of the prototypic North American HTLV-2a strain and HTLV-2b subtypes commonly detected among HIV-coinfected individuals worldwide, we could speculate on the introduction of Brazilian HTLV-2 strains in such populations before the introduction of HIV.
Collapse
Affiliation(s)
- Mariana Cavalheiro Magri
- Laboratório de Investigaçõe Médica em Hepatologia por Vírus (LIM-47), Faculdade de Medicina, Universidade de São Paulo, São Paulo, S.P., Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, S.P., Brazil
| | - Luis Fernando de Macedo Brigido
- Laboratório de Retrovirus, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, São Paulo, S.P., Brazil
| | - Helena Kaminami Morimoto
- Departmento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina, Londrina, P.R., Brazil
| | - Adele Caterino-de-Araujo
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, S.P., Brazil
- Centro de Imunologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, São Paulo, S.P., Brazil
| |
Collapse
|
79
|
Salemi M. The intra-host evolutionary and population dynamics of human immunodeficiency virus type 1: a phylogenetic perspective. Infect Dis Rep 2013; 5:e3. [PMID: 24470967 PMCID: PMC3892624 DOI: 10.4081/idr.2013.s1.e3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/09/2023] Open
Abstract
The intra-host evolutionary and population dynamics of the human immunodeficiency virus type 1 (HIV-1), the cause of the acquired immunodeficiency syndrome, have been the focus of one of the most extensive study efforts in the field of molecular evolution over the past three decades. As HIV-1 is among the fastest mutating organisms known, viral sequence data sampled over time from infected patients can provide, through phylogenetic analysis, significant insights about the tempo and mode of evolutionary processes shaped by complex interaction with the host milieu. Five main aspects are discussed: the patterns of HIV-1 intra-host diversity and divergence over time in relation to different phases of disease progression; the impact of selection on the temporal structure of HIV-1 intra-host genealogies inferred from longitudinally sampled viral sequences; HIV-1 intra-host sub-population structure; the potential relationship between viral evolutionary rate and disease progression and the central evolutionary role played by recombination occurring in super-infected cells.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology Immunology and Laboratory Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, USA
| |
Collapse
|
80
|
HIV populations are large and accumulate high genetic diversity in a nonlinear fashion. J Virol 2013; 87:10313-23. [PMID: 23678164 DOI: 10.1128/jvi.01225-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.
Collapse
|
81
|
Alizon S, Fraser C. Within-host and between-host evolutionary rates across the HIV-1 genome. Retrovirology 2013; 10:49. [PMID: 23639104 PMCID: PMC3685529 DOI: 10.1186/1742-4690-10-49] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/03/2013] [Indexed: 11/12/2022] Open
Abstract
Background HIV evolves rapidly at the epidemiological level but also at the within-host level. The virus’ within-host evolutionary rates have been argued to be much higher than its between-host evolutionary rates. However, this conclusion relies on analyses of a short portion of the virus envelope gene. Here, we study in detail these evolutionary rates across the HIV genome. Results We build phylogenies using a relaxed molecular clock assumption to estimate evolutionary rates in different regions of the HIV genome. We find that these rates vary strongly across the genome, with higher rates in the envelope gene (env). Within-host evolutionary rates are consistently higher than between-host rates throughout the HIV genome. This difference is significantly more pronounced in env. Finally, we find weak differences between overlapping and non-overlapping regions. Conclusions We provide a genome-wide overview of the differences in the HIV rates of molecular evolution at the within- and between-host levels. Contrary to hepatitis C virus, where differences are only located in the envelope gene, within-host evolutionary rates are higher than between-host evolutionary rates across the whole HIV genome. This supports the hypothesis that HIV strains that are less adapted to the host have an advantage during transmission. The most likely mechanism for this is storage and then preferential transmission of viruses in latent T-cells. These results shed a new light on the role of the transmission bottleneck in the evolutionary dynamics of HIV.
Collapse
Affiliation(s)
- Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM1, UM2), 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | |
Collapse
|
82
|
Abstract
Viral phylodynamics is defined as the study of how epidemiological, immunological, and evolutionary processes act and potentially interact to shape viralphylogenies. Since the coining of the term in 2004, research on viral phylodynamics has focused on transmission dynamics in an effort to shed light on how these dynamics impact viral genetic variation. Transmission dynamics can be considered at the level of cells within an infected host, individual hosts within a population, or entire populations of hosts. Many viruses, especially RNA viruses, rapidly accumulate genetic variation because of short generation times and high mutation rates. Patterns of viral genetic variation are therefore heavily influenced by how quickly transmission occurs and by which entities transmit to one another. Patterns of viral genetic variation will also be affected by selection acting on viral phenotypes. Although viruses can differ with respect to many phenotypes, phylodynamic studies have to date tended to focus on a limited number of viral phenotypes. These include virulence phenotypes, phenotypes associated with viral transmissibility, cell or tissue tropism phenotypes, and antigenic phenotypes that can facilitate escape from host immunity. Due to the impact that transmission dynamics and selection can have on viral genetic variation, viral phylogenies can therefore be used to investigate important epidemiological, immunological, and evolutionary processes, such as epidemic spread[2], spatio-temporal dynamics including metapopulation dynamics[3], zoonotic transmission, tissue tropism[4], and antigenic drift[5]. The quantitative investigation of these processes through the consideration of viral phylogenies is the central aim of viral phylodynamics.
Collapse
Affiliation(s)
- Erik M Volz
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | |
Collapse
|
83
|
Genetic variability among complete human respiratory syncytial virus subgroup A genomes: bridging molecular evolutionary dynamics and epidemiology. PLoS One 2012; 7:e51439. [PMID: 23236501 PMCID: PMC3517519 DOI: 10.1371/journal.pone.0051439] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/31/2012] [Indexed: 01/10/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is an important cause of severe lower respiratory tract infections in infants and the elderly. In the vast majority of cases, however, RSV infections run mild and symptoms resemble those of a common cold. The immunological, clinical, and epidemiological profile of severe RSV infections suggests a disease caused by a virus with typical seasonal transmission behavior, lacking clear-cut virulence factors, but instead causing disease by modifying the host’s immune response in a way that stimulates pathogenesis. Yet, the interplay between RSV-evoked immune responses and epidemic behavior, and how this affects the genomic evolutionary dynamics of the virus, remains poorly understood. Here, we present a comprehensive collection of 33 novel RSV subgroup A genomes from strains sampled over the last decade, and provide the first measurement of RSV-A genomic diversity through time in a phylodynamic framework. In addition, we map amino acid substitutions per protein to determine mutational hotspots in specific domains. Using Bayesian genealogical inference, we estimated the genomic evolutionary rate to be 6.47×10−4 (credible interval: 5.56×10−4, 7.38×10−4) substitutions/site/year, considerably slower than previous estimates based on G gene sequences only. The G gene is however marked by elevated substitution rates compared to other RSV genes, which can be attributed to relaxed selective constraints. In line with this, site-specific selection analyses identify the G gene as the major target of diversifying selection. Importantly, statistical analysis demonstrates that the immune driven positive selection does not leave a measurable imprint on the genome phylogeny, implying that RSV lineage replacement mainly follows nonselective epidemiological processes. The roughly 50 years of RSV-A genomic evolution are characterized by a constant population size through time and general co-circulation of lineages over many epidemic seasons – a conclusion that might be taken into account when developing future therapeutic and preventive strategies.
Collapse
|
84
|
Lemey P, Minin VN, Bielejec F, Kosakovsky Pond SL, Suchard MA. A counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selection. ACTA ACUST UNITED AC 2012; 28:3248-56. [PMID: 23064000 DOI: 10.1093/bioinformatics/bts580] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MOTIVATION Statistical methods for comparing relative rates of synonymous and non-synonymous substitutions maintain a central role in detecting positive selection. To identify selection, researchers often estimate the ratio of these relative rates (dN/dS) at individual alignment sites. Fitting a codon substitution model that captures heterogeneity in dN/dS across sites provides a reliable way to perform such estimation, but it remains computationally prohibitive for massive datasets. By using crude estimates of the numbers of synonymous and non-synonymous substitutions at each site, counting approaches scale well to large datasets, but they fail to account for ancestral state reconstruction uncertainty and to provide site-specific dN/dS estimates. RESULTS We propose a hybrid solution that borrows the computational strength of counting methods, but augments these methods with empirical Bayes modeling to produce a relatively fast and reliable method capable of estimating site-specific dN/dS values in large datasets. Importantly, our hybrid approach, set in a Bayesian framework, integrates over the posterior distribution of phylogenies and ancestral reconstructions to quantify uncertainty about site-specific dN/dS estimates. Simulations demonstrate that this method competes well with more-principled statistical procedures and, in some cases, even outperforms them. We illustrate the utility of our method using human immunodeficiency virus, feline panleukopenia and canine parvovirus evolution examples.
Collapse
Affiliation(s)
- Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
85
|
Abstract
Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathogenic bacteria. By providing insights into bacterial evolution and disease etiology, these approaches pave the way for novel interventions and therapeutic targets. Sequencing populations of bacteria across the whole genome provides unprecedented resolution to investigate (i) within-host evolution, (ii) transmission history, and (iii) population structure. Moreover, advances in rapid benchtop sequencing herald a new era of real-time genomics in which sequencing and analysis can be deployed within hours in response to rapidly changing public health emergencies. The purpose of this review is to highlight the transformative effect of population genomics on bacteriology, and to consider the prospects for answering abiding questions such as why bacteria cause disease.
Collapse
Affiliation(s)
- Daniel J. Wilson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
86
|
Chaillon A, Braibant M, Hué S, Bencharif S, Enard D, Moreau A, Samri A, Agut H, Barin F. Human immunodeficiency virus type-1 (HIV-1) continues to evolve in presence of broadly neutralizing antibodies more than ten years after infection. PLoS One 2012; 7:e44163. [PMID: 22957000 PMCID: PMC3431314 DOI: 10.1371/journal.pone.0044163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background The evolution of HIV-1 and its immune escape to autologous neutralizing antibodies (Nabs) during the acute/early phases of infection have been analyzed in depth in many studies. In contrast, little is known about neither the long-term evolution of the virus in patients who developed broadly Nabs (bNabs) or the mechanism of escape in presence of these bNabs. Results We have studied the viral population infecting a long term non progressor HIV-1 infected patient who had developed broadly neutralizing antibodies toward all tier 2/3 viruses (6 clades) tested, 9 years after infection, and was then followed up over 7 years. The autologous neutralization titers of the sequential sera toward env variants representative of the viral population significantly increased during the follow-up period. The most resistant pseudotyped virus was identified at the last visit suggesting that it represented a late emerging escape variant. We identified 5 amino acids substitutions that appeared associated with escape to broadly neutralizing antibodies. They were V319I/S, R/K355T, R/W429G, Q460E and G/T463E, in V3, C3 and V5 regions. Conclusion This study showed that HIV-1 may continue to evolve in presence of both broadly neutralizing antibodies and increasing autologous neutralizing activity more than 10 years post-infection.
Collapse
Affiliation(s)
- Antoine Chaillon
- Université François Rabelais, Inserm UMR 966, Tours, France
- CHU Bretonneau, Laboratoire de Virologie, CHU Bretonneau, Tours, France
| | | | - Stéphane Hué
- Centre for Medical Molecular Virology, University College London, London, United Kingdom
| | | | - David Enard
- Laboratoire Ecologie et Evolution CNRS UMR 7625- Ecole Normale supérieure, Paris, France
| | - Alain Moreau
- Université François Rabelais, Inserm UMR 966, Tours, France
| | - Assia Samri
- Université Pierre et Marie Curie, Inserm UMRS 945, IFR 113, Hôpital Pitié-Salpêtrière, Paris, France
| | - Henri Agut
- Université Pierre et Marie Curie, ER1 DETIV, Hôpital Pitié-Salpêtrière, Paris, France
| | - Francis Barin
- Université François Rabelais, Inserm UMR 966, Tours, France
- CHU Bretonneau, Laboratoire de Virologie, CHU Bretonneau, Tours, France
- * E-mail:
| |
Collapse
|
87
|
Lythgoe KA, Fraser C. New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. Proc Biol Sci 2012; 279:3367-75. [PMID: 22593106 PMCID: PMC3385732 DOI: 10.1098/rspb.2012.0595] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/23/2012] [Indexed: 01/15/2023] Open
Abstract
Over calendar time, HIV-1 evolves considerably faster within individuals than it does at the epidemic level. This is a surprising observation since, from basic population genetic theory, we would expect the genetic substitution rate to be similar across different levels of biological organization. Three different mechanisms could potentially cause the observed mismatch in phylogenetic rates of divergence: temporal changes in selection pressure during the course of infection; frequent reversion of adaptive mutations after transmission; and the storage of the virus in the body followed by the preferential transmission of stored ancestral virus. We evaluate each of these mechanisms to determine whether they are likely to make a major contribution to the mismatch in phylogenetic rates. We conclude that the cycling of the virus through very long-lived memory CD4(+) T cells, a process that we call 'store and retrieve', is probably the major contributing factor to the rate mismatch. The preferential transmission of ancestral virus needs to be integrated into evolutionary models if we are to accurately predict the evolution of immune escape, drug resistance and virulence in HIV-1 at the population level. Moreover, early infection viruses should be the major target for vaccine design, because these are the viral strains primarily involved in transmission.
Collapse
Affiliation(s)
- Katrina A Lythgoe
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK.
| | | |
Collapse
|
88
|
Abstract
OBJECTIVE Recent studies have suggested that the dynamics of HIV-1 evolutionary rate reflect the rate of disease progression. We wished to determine whether viral diversity early in infection is predictive of the subsequent disease course. DESIGN HIV-1 envelope diversity at seroconversion and 1 year thereafter from 89 homosexual participants of the Amsterdam Cohort Studies on HIV infection and AIDS was correlated with clinical endpoints and markers of disease progression. METHODS Heteroduplex mobility assay (HMA) and sequencing followed by calculation of pairwise genetic distances were applied to determine HIV-1 envelope diversity. The HMA pattern (presence or absence of heteroduplexes) and sequence diversity were each tested for correlation with the clinical course of infection. RESULTS HMA pattern at 1-year postseroconversion was significantly associated with progression to AIDS and AIDS-related death, with presence of heteroduplexes associated with accelerated disease progression. Moreover, not only this dichotomous measure of viral diversity (absence or presence of heteroduplexes), but also genetic diversity itself was associated with disease course. HMA pattern was an independent predictor of accelerated disease progression, also when CCR5 genotype, human leukocyte antigen (HLA)-type, viral load, CD4 T-cell counts, and coreceptor use at viral load set point were included in the analysis. CONCLUSION Viral diversity early in HIV-1 infection is predictive of the subsequent disease progression. It remains to be established whether viral diversity itself plays a causal role in the increased damage to the immune system or whether it is a reflection of immune pressure or other selective forces.
Collapse
|
89
|
Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis. Proc Natl Acad Sci U S A 2012; 109:14562-7. [PMID: 22829669 DOI: 10.1073/pnas.1210592109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic hepatitis C may follow a mild and stable disease course or progress rapidly to cirrhosis and liver-related death. The mechanisms underlying the different rates of disease progression are unknown. Using serial, prospectively collected samples from cases of transfusion-associated hepatitis C, we identified outcome-specific features that predict long-term disease severity. Slowly progressing disease correlated with an early alanine aminotransferase peak and antibody seroconversion, transient control of viremia, and significant induction of IFN-γ and MIP-1β, all indicative of an effective, albeit insufficient, adaptive immune response. By contrast, rapidly progressive disease correlated with persistent and significant elevations of alanine aminotransferase and the profibrogenic chemokine MCP-1 (CCL-2), greater viral diversity and divergence, and a higher rate of synonymous substitution. This study suggests that the long-term course of chronic hepatitis C is determined early in infection and that disease severity is predicted by the evolutionary dynamics of hepatitis C virus and the level of MCP-1, a chemokine that appears critical to the induction of progressive fibrogenesis and, ultimately, the ominous complications of cirrhosis.
Collapse
|
90
|
Esbjörnsson J, Månsson F, Kvist A, Isberg PE, Nowroozalizadeh S, Biague AJ, da Silva ZJ, Jansson M, Fenyö EM, Norrgren H, Medstrand P. Inhibition of HIV-1 disease progression by contemporaneous HIV-2 infection. N Engl J Med 2012; 367:224-32. [PMID: 22808957 DOI: 10.1056/nejmoa1113244] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Progressive immune dysfunction and the acquired immunodeficiency syndrome (AIDS) develop in most persons with untreated infection with human immunodeficiency virus type 1 (HIV-1) but in only approximately 20 to 30% of persons infected with HIV type 2 (HIV-2); among persons infected with both types, the natural history of disease progression is poorly understood. METHODS We analyzed data from 223 participants who were infected with HIV-1 after enrollment (with either HIV-1 infection alone or HIV-1 and HIV-2 infection) in a cohort with a long follow-up duration (approximately 20 years), according to whether HIV-2 infection occurred first, the time to the development of AIDS (time to AIDS), CD4+ and CD8+ T-cell counts, and measures of viral evolution. RESULTS The median time to AIDS was 104 months (95% confidence interval [CI], 75 to 133) in participants with dual infection and 68 months (95% CI, 60 to 76) in participants infected with HIV-1 only (P=0.003). CD4+ T-cell levels were higher and CD8+ T-cell levels increased at a lower rate among participants with dual infection, reflecting slower disease progression. Participants with dual infection with HIV-2 infection preceding HIV-1 infection had the longest time to AIDS and highest levels of CD4+ T-cell counts. HIV-1 genetic diversity was significantly lower in participants with dual infections than in those with HIV-1 infection alone at similar time points after infection. CONCLUSIONS Our results suggest that HIV-1 disease progression is inhibited by concomitant HIV-2 infection and that dual infection is associated with slower disease progression. The slower rate of disease progression was most evident in participants with dual infection in whom HIV-2 infection preceded HIV-1 infection. These findings could have implications for the development of HIV-1 vaccines and therapeutics. (Funded by the Swedish International Development Cooperation Agency-Swedish Agency for Research Cooperation with Developing Countries and others.).
Collapse
Affiliation(s)
- Joakim Esbjörnsson
- Department of Experimental Medical Science, Section of Molecular Virology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Combination of immune and viral factors distinguishes low-risk versus high-risk HIV-1 disease progression in HLA-B*5701 subjects. J Virol 2012; 86:9802-16. [PMID: 22761389 DOI: 10.1128/jvi.01165-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HLA-B*5701 is the host factor most strongly associated with slow HIV-1 disease progression, although rates can vary within this group. Underlying mechanisms are not fully understood but likely involve both immunological and virological dynamics. The present study investigated HIV-1 in vivo evolution and epitope-specific CD8(+) T cell responses in six HLA-B*5701 patients who had not received antiretroviral treatment, monitored from early infection for up to 7 years. The subjects were classified as high-risk progressors (HRPs) or low-risk progressors (LRPs) based on baseline CD4(+) T cell counts. Dynamics of HIV-1 Gag p24 evolution and multifunctional CD8(+) T cell responses were evaluated by high-resolution phylogenetic analysis and polychromatic flow cytometry, respectively. In all subjects, substitutions occurred more frequently in flanking regions than in HLA-B*5701-restricted epitopes. In LRPs, p24 sequence diversity was significantly lower; sequences exhibited a higher degree of homoplasy and more constrained mutational patterns than HRPs. The HIV-1 intrahost evolutionary rate was also lower in LRPs and followed a strict molecular clock, suggesting neutral genetic drift rather than positive selection. Additionally, polyfunctional CD8(+) T cell responses, particularly to TW10 and QW9 epitopes, were more robust in LRPs, who also showed significantly higher interleukin-2 (IL-2) production in early infection. Overall, the findings indicate that HLA-B*5701 patients with higher CD4 counts at baseline have a lower risk of HIV-1 disease progression because of the interplay between specific HLA-linked immune responses and the rate and mode of viral evolution. The study highlights the power of a multidisciplinary approach, integrating high-resolution evolutionary and immunological data, to understand mechanisms underlying HIV-1 pathogenesis.
Collapse
|
92
|
Leal É, Casseb J, Hendry M, Busch MP, Diaz RS. Relaxation of adaptive evolution during the HIV-1 infection owing to reduction of CD4+ T cell counts. PLoS One 2012; 7:e39776. [PMID: 22768122 PMCID: PMC3387245 DOI: 10.1371/journal.pone.0039776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 05/25/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The first stages of HIV-1 infection are essential to establish the diversity of virus population within host. It has been suggested that adaptation to host cells and antibody evasion are the leading forces driving HIV evolution at the initial stages of AIDS infection. In order to gain more insights on adaptive HIV-1 evolution, the genetic diversity was evaluated during the infection time in individuals contaminated by the same viral source in an epidemic cluster. Multiple sequences of V3 loop region of the HIV-1 were serially sampled from four individuals: comprising a single blood donor, two blood recipients, and another sexually infected by one of the blood recipients. The diversity of the viral population within each host was analyzed independently in distinct time points during HIV-1 infection. RESULTS Phylogenetic analysis identified multiple HIV-1 variants transmitted through blood transfusion but the establishing of new infections was initiated by a limited number of viruses. Positive selection (d(N)/d(S)>1) was detected in the viruses within each host in all time points. In the intra-host viruses of the blood donor and of one blood recipient, X4 variants appeared respectively in 1993 and 1989. In both patients X4 variants never reached high frequencies during infection time. The recipient, who X4 variants appeared, developed AIDS but kept narrow and constant immune response against HIV-1 during the infection time. CONCLUSION Slowing rates of adaptive evolution and increasing diversity in HIV-1 are consequences of the CD4+ T cells depletion. The dynamic of R5 to X4 shift is not associated with the initial amplitude of humoral immune response or intensity of positive selection.
Collapse
Affiliation(s)
- Élcio Leal
- Biotechnology Institute, Federal University of Pará, Belém, Brazil.
| | | | | | | | | |
Collapse
|
93
|
Dimonte S, Babakir-Mina M, Mercurio F, Di Pinto D, Ceccherini-Silberstein F, Svicher V, Perno CF. Selected amino acid changes in HIV-1 subtype-C gp41 are associated with specific gp120(V3) signatures in the regulation of co-receptor usage. Virus Res 2012; 168:73-83. [PMID: 22732432 DOI: 10.1016/j.virusres.2012.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022]
Abstract
The majority of studies have characterized the tropism of HIV-1 subtype-B isolates, but little is known about the determinants of tropism in other subtypes. So, the goal of the present study was to genetically characterize the envelope of viral proteins in terms of co-receptor usage by analyzing 356 full-length env sequences derived from HIV-1 subtype-C infected individuals. The co-receptor usage of V3 sequences was inferred by using the Geno2Pheno and PSSM algorithms, and also analyzed to the "11/25 rule". All reported env sequences were also analyzed with regard to N-linked glycosylation sites, net charge and hydrophilicity, as well as the binomial correlation phi coefficient to assess covariation among gp120(V3) and gp41 signatures and the average linkage hierarchical agglomerative clustering were also performed. Among env sequences present in Los Alamos Database, 255 and 101 sequences predicted as CCR5 and CXCR4 were selected, respectively. The classical V3 signatures at positions 11 and 25, and other specific V3 and gp41 amino acid changes were found statistically associated with different co-receptor usage. Furthermore, several statistically significant associations between V3 and gp41 signatures were also observed. The dendrogram topology showed a cluster associated with CCR5-usage composed by five gp41 mutated positions, A22V, R133M, E136G, N140L, and N166Q that clustered with T2V(V3) and G24T(V3) (bootstrap=1). Conversely, a heterogeneous cluster with CXCR4-usage, involving S11GR(V3), 13-14insIG/LG(V3), P16RQ(V3), Q18KR(V3), F20ILV(V3), D25KRQ(V3), Q32KR(V3) along with A30T(gp41), S107N(gp41), D148E(gp41), A189S(gp41) was identified (bootstrap=0.86). Our results show that as observed for HIV-1 subtype-B, also in subtype-C specific and different gp41 and gp120V3 amino acid changes are associated individually or together with CXCR4 and/or CCR5 usage. These findings strengthen previous observations that determinants of tropism may also reside in the gp41 protein.
Collapse
Affiliation(s)
- Salvatore Dimonte
- University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
94
|
Smyth RP, Davenport MP, Mak J. The origin of genetic diversity in HIV-1. Virus Res 2012; 169:415-29. [PMID: 22728444 DOI: 10.1016/j.virusres.2012.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
One of the hallmarks of HIV infection is the rapid development of a genetically complex population (quasispecies) from an initially limited number of infectious particles. Genetic diversity remains one of the major obstacles to eradication of HIV. The viral quasispecies can respond rapidly to selective pressures, such as that imposed by the immune system and antiretroviral therapy, and frustrates vaccine design efforts. Two unique features of retroviral replication are responsible for the unprecedented variation generated during infection. First, mutations are frequently introduced into the viral genome by the error prone viral reverse transcriptase and through the actions of host cellular factors, such as the APOBEC family of nucleic acid editing enzymes. Second, the HIV reverse transcriptase can utilize both copies of the co-packaged viral genome in a process termed retroviral recombination. When the co-packaged viral genomes are genetically different, retroviral recombination can lead to the shuffling of mutations between viral genomes in the quasispecies. This review outlines the stages of the retroviral life cycle where genetic variation is introduced, focusing on the principal mechanisms of mutation and recombination. Understanding the mechanistic origin of genetic diversity is essential to combating HIV.
Collapse
Affiliation(s)
- Redmond P Smyth
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | |
Collapse
|
95
|
LAM TOMMYTSANYUK, HON CHUNGCHAU, LEMEY PHILIPPE, PYBUS OLIVERG, SHI MANG, TUN HEINMIN, LI JUN, JIANG JINGWEI, HOLMES EDWARDC, LEUNG FREDERICKCHICHING. Phylodynamics of H5N1 avian influenza virus in Indonesia. Mol Ecol 2012; 21:3062-77. [DOI: 10.1111/j.1365-294x.2012.05577.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
96
|
Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci U S A 2012; 109:4550-5. [PMID: 22393007 DOI: 10.1073/pnas.1113219109] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staphylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. However, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with methicillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a premature stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of protein-truncating mutations are highly unusual. Our results demonstrate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.
Collapse
|
97
|
Castro-Nallar E, Crandall KA, Pérez-Losada M. Genetic diversity and molecular epidemiology of HIV transmission. Future Virol 2012. [DOI: 10.2217/fvl.12.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high genetic diversity of HIV is one of its most significant features, as it has consequences in global distribution, vaccine design, therapy success, disease progression, transmissibility and viral load testing. Studying HIV diversity helps to understand its origins, migration patterns, current distribution and transmission events. New advances in sequencing technologies based on the parallel acquisition of data are now used to characterize within-host and population processes in depth. Additionally, we have seen similar advances in statistical methods designed to model the past history of lineages (the phylodynamic framework) to ultimately gain better insights into the evolutionary history of HIV. We can, for example, estimate population size changes, lineage dispersion over geographic areas and epidemiological parameters solely from sequence data. In this article, we review some of the evolutionary approaches used to study transmission patterns and processes in HIV and the insights gained from such studies.
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Keith A Crandall
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA
| | - Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
98
|
Abstract
Using sequence data to infer population dynamics is playing an increasing role in the analysis of outbreaks. The most common methods in use, based on coalescent inference, have been widely used but not extensively tested against simulated epidemics. Here, we use simulated data to test the ability of both parametric and non-parametric methods for inference of effective population size (coded in the popular BEAST package) to reconstruct epidemic dynamics. We consider a range of simulations centred on scenarios considered plausible for pandemic influenza, but our conclusions are generic for any exponentially growing epidemic. We highlight systematic biases in non-parametric effective population size estimation. The most prominent such bias leads to the false inference of slowing of epidemic spread in the recent past even when the real epidemic is growing exponentially. We suggest some sampling strategies that could reduce (but not eliminate) some of the biases. Parametric methods can correct for these biases if the infected population size is large. We also explore how some poor sampling strategies (e.g. that over-represent epidemiologically linked clusters of cases) could dramatically exacerbate bias in an uncontrolled manner. Finally, we present a simple diagnostic indicator, based on coalescent density and which can easily be applied to reconstructed phylogenies, that identifies time-periods for which effective population size estimates are less likely to be biased. We illustrate this with an application to the 2009 H1N1 pandemic.
Collapse
Affiliation(s)
- Eric de Silva
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London W2 1PG, UK
| | | | | |
Collapse
|
99
|
Castro-Nallar E, Pérez-Losada M, Burton GF, Crandall KA. The evolution of HIV: inferences using phylogenetics. Mol Phylogenet Evol 2012; 62:777-92. [PMID: 22138161 PMCID: PMC3258026 DOI: 10.1016/j.ympev.2011.11.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/02/2022]
Abstract
Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics).
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | |
Collapse
|
100
|
Skar H, Hedskog C, Albert J. HIV-1 evolution in relation to molecular epidemiology and antiretroviral resistance. Ann N Y Acad Sci 2011; 1230:108-18. [PMID: 21824168 DOI: 10.1111/j.1749-6632.2011.06128.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HIV/AIDS has become one of the most important infectious diseases with a cumulative number of almost 60 million infections worldwide. The prevalence and epidemiological patterns are unevenly distributed across the globe and also within countries. HIV is one of the fastest evolving organisms known. Several genetically distinct subtypes are present and new circulating recombinant forms are continuously emerging. This review discusses HIV-1 evolution in relation to molecular epidemiology and antiretroviral resistance. Factors and concepts that influence global spread and within-patient evolution of HIV-1 are discussed as well as future perspectives on the use of phylodynamics in HIV epidemiology.
Collapse
Affiliation(s)
- Helena Skar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | | | |
Collapse
|