51
|
Identification and population genetic analyses of copy number variations in six domestic goat breeds and Bezoar ibexes using next-generation sequencing. BMC Genomics 2020; 21:840. [PMID: 33246410 PMCID: PMC7694352 DOI: 10.1186/s12864-020-07267-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022] Open
Abstract
Background Copy number variations (CNVs) are a major form of genetic variations and are involved in animal domestication and genetic adaptation to local environments. We investigated CNVs in the domestic goat (Capra hircus) using Illumina short-read sequencing data, by comparing our lab data for 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) to public data for 26 individuals from three other breeds (two Moroccan and one Chinese) and 21samples from Bezoar ibexes. Results We obtained a total of 2394 CNV regions (CNVRs) by merging 208,649 high-confidence CNVs, which spanned ~ 267 Mb of total length and accounted for 10.80% of the goat autosomal genome. Functional analyses showed that 2322 genes overlapping with the CNVRs were significantly enriched in 57 functional GO terms and KEGG pathways, most related to the nervous system, metabolic process, and reproduction system. Clustering patterns of all 85 samples generated separately from duplications and deletions were generally consistent with the results from SNPs, agreeing with the geographical origins of these goats. Based on genome-wide FST at each CNV locus, some genes overlapping with the highly divergent CNVs between domestic and wild goats were mainly enriched for several immunity-related pathways, whereas the genes overlapping with the highly differentiated CNVs between highland and lowland goats were mainly related to vitamin and lipid metabolism. Remarkably, a 507-bp deletion at ~ 14 kb downstream of FGF5 on chromosome 6 showed highly divergent (FST = 0.973) between the highland and lowland goats. Together with an enhancer activity of this sequence shown previously, the function of this duplication in regulating fiber growth deserved to be further investigated in detail. Conclusion We generated a comprehensive map of CNVs in goats. Many genetically differentiated CNVs among various goat populations might be associated with the population characteristics of domestic goat breeds. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07267-6.
Collapse
|
52
|
Scanes CG. Avian Physiology: Are Birds Simply Feathered Mammals? Front Physiol 2020; 11:542466. [PMID: 33240094 PMCID: PMC7680802 DOI: 10.3389/fphys.2020.542466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
There are marked differences between the physiology of birds and mammals. These reflect the evolutionary distance between the two classes with the last common ancestor estimated as existing 318 million years ago. There are analogous organ systems in birds and mammals. However, marked differences exist. For instance, in the avian gastro-intestinal tract, there is a crop at the lower end of the esophagus. This functions both to store feed and for microbial action. The avian immune system lacks lymph nodes and has a distinct organ producing B-lymphocytes, namely the bursa Fabricius. The important of spleen has been largely dismissed until recently. However, its importance in both innate and specific immunity is increasingly recognized. There is a major difference between birds and mammals is the female reproductive system as birds produce large yolk filled eggs. The precursors of the yolk are synthesized by the liver. Another difference is that there is a single ovary and oviduct in birds.
Collapse
Affiliation(s)
- Colin G. Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
53
|
Genomic variations and signatures of selection in Wuhua yellow chicken. PLoS One 2020; 15:e0241137. [PMID: 33095808 PMCID: PMC7584229 DOI: 10.1371/journal.pone.0241137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Wuhua yellow chicken (WHYC) is an important traditional yellow-feathered chicken from China, which is characterized by its white tail feathers, white flight feathers, and strong disease resistance. However, the genomic basis of these unique traits associated with WHYC is poorly understood. In this study, whole-genome resequencing was performed with an average coverage of 20.77-fold to investigate heritable variation and identify selection signals in WHYC. Reads were mapped onto the chicken reference genome (Galgal5) with a coverage of 85.95%. After quality control, 11,953,471 single nucleotide polymorphisms and 1,069,574 insertion/deletions were obtained. In addition, 41,408 structural variants and 33,278 copy number variants were found. Comparative genomic analysis of WHYC and other yellow-feathered chicken breeds showed that selected regions were enriched in genes involved in transport and catabolism, immune system, infectious diseases, signal transduction, and signaling molecules and interactions. Several genes associated with disease resistance were also identified, including IFNA, IFNB, CD86, IL18, IL11RA, VEGFC, and ATG10. Furthermore, our results suggest that PMEL and TYRP1 may contribute to the white feather coloring in WHYC. These findings can improve our understanding of the genetic characteristics of WHYC and may contribute to future breed improvement.
Collapse
|
54
|
Zhang J, Nie C, Li X, Ning Z, Chen Y, Jia Y, Han J, Wang L, Lv X, Yang W, Qu L. Genome-Wide Population Genetic Analysis of Commercial, Indigenous, Game, and Wild Chickens Using 600K SNP Microarray Data. Front Genet 2020; 11:543294. [PMID: 33101376 PMCID: PMC7545075 DOI: 10.3389/fgene.2020.543294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Following chicken domestication, diversified chicken breeds were developed by both natural and artificial selection, which led to the accumulation of abundant genetic and phenotypic variations, making chickens an ideal genetic research model. To better understand the genetic structure of chicken breeds under different selection pressures, we genotyped various chicken populations with specific selection targets, including indigenous, commercial, gamecock, and wild ancestral chickens, using the 600K SNP array. We analyzed the population structure, genetic relationships, run of homozygosity (ROH), effective population number (Ne), and other genetic parameters. The wild ancestral population, red junglefowl (RJF), possessed the highest diversity, in comparison with all other domesticated populations, which was supported by linkage disequilibrium decay (LD), effective population number, and ROH analyses. The gamecock breeds, which were subjected to stronger male-biased selection for fighting-related traits, also presented higher variation than the commercial and indigenous breeds. Admixture analysis also indicated that game breed is a relatively independent branch of Chinese local breeds. Following intense selection for reproductive and productive traits, the commercial lines showed the least diversity. We also observed that the European local chickens had lower genetic variation than the Chinese local breeds, which could be attributed to the shorter history of the European breed. ROH were present in a breed specific manner and 191 ROH island were detected on four groups (commercial, local, game and wild chickens). These ROH islands were involved in egg production, growth and silky feathers and other traits. Moreover, we estimated the effective sex ratio of these breeds to demonstrate the change in the ratio of the two sexes. We found that commercial chickens had a greater sex imbalance between females and males. The commercial lines showed the highest female-to-male ratios. Interestingly, RJF comprised a greater proportion of males than females. Our results show the population genetics of chickens under selection pressures, and can aid in the development of better conservation strategies for different chicken breeds.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinghua Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlin Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
55
|
Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken. Sci Rep 2020; 10:14532. [PMID: 32883984 PMCID: PMC7471287 DOI: 10.1038/s41598-020-71421-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Gamecock chickens are one of the earliest recorded birds in China, and have accumulated some unique morphological and behavioral signatures such as large body size, muscularity and aggressive behavior, whereby being excellent breeding materials and a good model for studying bird muscular development and behavior. In this study, we sequenced 126 chicken genomes from 19 populations, including four commercial chicken breeds that are commonly farmed in China, 13 nationwide Chinese typical indigenous chicken breeds (including two Chinese gamecock breeds), one red jungle fowl from Guangxi Province of China and three gamecock chickens from Laos. Combined with 31 published chicken genomes from three populations, a comparative genomics analysis was performed across 157 chickens. We found a severe confounding effect on potential cold adaptation exerted by introgression from commercial chickens into Chinese indigenous chickens, and argued that the genetic introgression from commercial chickens into indigenous chickens should be seriously considered for identifying selection footprint in indigenous chickens. LX gamecock chickens might have played a core role in recent breeding and conservation of other Chinese gamecock chickens. Importantly, AGMO (Alkylglycerol monooxygenase) and CPZ (Carboxypeptidase Z) might be crucial for determining the behavioral pattern of gamecock chickens, while ISPD (Isoprenoid synthase domain containing) might be essential for the muscularity of gamecock chickens. Our results can further the understanding of the evolution of Chinese gamecock chickens, especially the genetic basis of gamecock chickens revealed here was valuable for us to better understand the mechanisms underlying the behavioral pattern and the muscular development in chicken.
Collapse
|
56
|
Guan D, Martínez A, Castelló A, Landi V, Luigi-Sierra MG, Fernández-Álvarez J, Cabrera B, Delgado JV, Such X, Jordana J, Amills M. A genome-wide analysis of copy number variation in Murciano-Granadina goats. Genet Sel Evol 2020; 52:44. [PMID: 32770942 PMCID: PMC7414533 DOI: 10.1186/s12711-020-00564-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In this work, our aim was to generate a map of the copy number variations (CNV) segregating in a population of Murciano-Granadina goats, the most important dairy breed in Spain, and to ascertain the main biological functions of the genes that map to copy number variable regions. RESULTS Using a dataset that comprised 1036 Murciano-Granadina goats genotyped with the Goat SNP50 BeadChip, we were able to detect 4617 and 7750 autosomal CNV with the PennCNV and QuantiSNP software, respectively. By applying the EnsembleCNV algorithm, these CNV were assembled into 1461 CNV regions (CNVR), of which 486 (33.3% of the total CNVR count) were consistently called by PennCNV and QuantiSNP and used in subsequent analyses. In this set of 486 CNVR, we identified 78 gain, 353 loss and 55 gain/loss events. The total length of all the CNVR (95.69 Mb) represented 3.9% of the goat autosomal genome (2466.19 Mb), whereas their size ranged from 2.0 kb to 11.1 Mb, with an average size of 196.89 kb. Functional annotation of the genes that overlapped with the CNVR revealed an enrichment of pathways related with olfactory transduction (fold-enrichment = 2.33, q-value = 1.61 × 10-10), ABC transporters (fold-enrichment = 5.27, q-value = 4.27 × 10-04) and bile secretion (fold-enrichment = 3.90, q-value = 5.70 × 10-03). CONCLUSIONS A previous study reported that the average number of CNVR per goat breed was ~ 20 (978 CNVR/50 breeds), which is much smaller than the number we found here (486 CNVR). We attribute this difference to the fact that the previous study included multiple caprine breeds that were represented by small to moderate numbers of individuals. Given the low frequencies of CNV (in our study, the average frequency of CNV is 1.44%), such a design would probably underestimate the levels of the diversity of CNV at the within-breed level. We also observed that functions related with sensory perception, metabolism and embryo development are overrepresented in the set of genes that overlapped with CNV, and that these loci often belong to large multigene families with tens, hundreds or thousands of paralogous members, a feature that could favor the occurrence of duplications or deletions by non-allelic homologous recombination.
Collapse
Affiliation(s)
- Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Anna Castelló
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Vincenzo Landi
- Departamento de Genética, Universidad de Córdoba, 14071, Córdoba, Spain.,Department of Veterinary Medicine, University of Bari "Aldo Moro", SP. 62 per Casamassima km. 3, 70010, Valenzano, BA, Italy
| | - María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Javier Fernández-Álvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), 18340, Granada, Spain
| | - Betlem Cabrera
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | - Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
57
|
Bai H, He Y, Ding Y, Chu Q, Lian L, Heifetz EM, Yang N, Cheng HH, Zhang H, Chen J, Song J. Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek's disease using next generation sequencing. BMC Genet 2020; 21:77. [PMID: 32677890 PMCID: PMC7364486 DOI: 10.1186/s12863-020-00884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/05/2020] [Indexed: 11/13/2022] Open
Abstract
Background Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such as resistance to infectious diseases. Two highly inbred chicken lines, 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD. Results In the present study, to unravel the potential genetic mechanisms underlying resistance to MD, we performed a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of CNVnator. As a result, a total of 1649 CNV regions (CNVRs) were successfully identified after merging all the nine datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1360 harbored genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line 63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication) involved in 10 disease-related genes were selected for validation by using quantitative real-time PCR (qPCR), all of which were successfully confirmed. Finally, qPCR was also used to validate two deletion events in line 72 that were definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene underlying resistance and susceptibility to MD in view of its function and overlaps with data from previous study. Conclusions Our findings provide valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, China.,Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanghua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Yi Ding
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Qin Chu
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Eliyahu M Heifetz
- Faculty of Health Sciences, Jerusalem College of Technology, 9116001, Jerusalem, Israel
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hans H Cheng
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
58
|
Wen Y, He H, Liu H, An Q, Wang D, Ding X, Shi Q, Feng Y, Wang E, Lei C, Zhang Z, Huang Y. Copy number variation of the USP16 gene and its association with milk traits in Chinese Holstein cattle. Anim Biotechnol 2020; 33:98-103. [PMID: 32646283 DOI: 10.1080/10495398.2020.1777148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Copy number variations (CNVs) were similar to single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel), regarded as genetic variations in many species. CNV is defined as the variable change of DNA segment length compared with the reference genome, including gains or losses from 50 bp to several mega bases. The functions of USP16 gene are diverse, such as regulating the cell cycle, DNA damage, histone H2A deubiquitination or mitotic nuclear division. To analyze the relationship between CNV of USP16 gene and milk traits in Chinese Holstein, we used qPCR to detect the individuals of Chinese Holstein (n = 180). The results showed that the effect of USP16 gene CNV on daily milk yield and fat percentage had significant difference (p < 0.05). The gain was the advantage type in daily milk yield and the loss was the advantage type in fat percentage. Therefore, CNV of USP16 gene is an important factor of milk traits in Chinese Holstein. Meanwhile, it may be used as a molecular marker for assisted selection of milk traits in Chinese Holstein, which provides a theoretical basis for the genetic improvement of cow breeds in China.
Collapse
Affiliation(s)
- Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hua He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qingming An
- College of Agriculture and Forestry Engineering, Tongren Unviersity, Tongren, Guizhou, People's Republic of China
| | - Dahui Wang
- College of Agriculture and Forestry Engineering, Tongren Unviersity, Tongren, Guizhou, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Qiaoting Shi
- Henan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Zhengzhou, Henan, People's Republic of China
| | - Yajie Feng
- Henan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Zhengzhou, Henan, People's Republic of China
| | - Eryao Wang
- Henan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Zhengzhou, Henan, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zijing Zhang
- Henan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Zhengzhou, Henan, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
59
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
60
|
Huang X, Otecko NO, Peng M, Weng Z, Li W, Chen J, Zhong M, Zhong F, Jin S, Geng Z, Luo W, He D, Ma C, Han J, Ommeh SC, Zhang Y, Zhang X, Du B. Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds. BMC Genomics 2020; 21:316. [PMID: 32312230 PMCID: PMC7171827 DOI: 10.1186/s12864-020-6736-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Yellow-feathered chickens (YFCs) have a long history in China. They are well-known for the nutritional and commercial importance attributable to their yellow color phenotype. Currently, there is a huge paucity in knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these iconic chickens. This study aimed to uncover the genetic structure and the molecular underpinnings of the YFCs trademark coloration. RESULTS The whole-genomes of 100 YFCs from 10 major traditional breeds and 10 Huaibei partridge chickens from China were re-sequenced. Comparative population genomics based on autosomal single nucleotide polymorphisms (SNPs) revealed three geographically based clusters among the YFCs. Compared to other Chinese indigenous chicken genomes incorporated from previous studies, a closer genetic proximity within YFC breeds than between YFC breeds and other chicken populations is evident. Through genome-wide scans for selective sweeps, we identified RALY heterogeneous nuclear ribonucleoprotein (RALY), leucine rich repeat containing G protein-coupled receptor 4 (LGR4), solute carrier family 23 member 2 (SLC23A2), and solute carrier family 2 member 14 (SLC2A14), besides the classical beta-carotene dioxygenase 2 (BCDO2), as major candidates pigment determining genes in the YFCs. CONCLUSION We provide the first comprehensive genomic data of the YFCs. Our analyses show phylogeographical patterns among the YFCs and potential candidate genes giving rise to the yellow color trait of the YFCs. This study lays the foundation for further research on the genome-phenotype cross-talks that define important poultry traits and for formulating genetic breeding and conservation strategies for the YFCs.
Collapse
Affiliation(s)
- Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhuoxian Weng
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Weina Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Jiebo Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Ming Zhong
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Fusheng Zhong
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Luo
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Danlin He
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Cheng Ma
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,International Livestock Research Institute (ILRI), Nairobi, 30709-00100, Kenya
| | - Sheila C Ommeh
- Animal Biotechnology Group, Institute For Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650091, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xiquan Zhang
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Bingwang Du
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China.
| |
Collapse
|
61
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
62
|
Amiri Ghanatsaman Z, Wang GD, Asadollahpour Nanaei H, Asadi Fozi M, Peng MS, Esmailizadeh A, Zhang YP. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication. BMC Genomics 2020; 21:207. [PMID: 32131720 PMCID: PMC7057629 DOI: 10.1186/s12864-020-6619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Advances in genome technology have simplified a new comprehension of the genetic and historical processes crucial to rapid phenotypic evolution under domestication. To get new insight into the genetic basis of the dog domestication process, we conducted whole-genome sequence analysis of three wolves and three dogs from Iran which covers the eastern part of the Fertile Crescent located in Southwest Asia where the independent domestication of most of the plants and animals has been documented and also high haplotype sharing between wolves and dog breeds has been reported. RESULTS Higher diversity was found within the wolf genome compared with the dog genome. A total number of 12.45 million SNPs were detected in all individuals (10.45 and 7.82 million SNPs were identified for all the studied wolves and dogs, respectively) and a total number of 3.49 million small Indels were detected in all individuals (3.11 and 2.24 million small Indels were identified for all the studied wolves and dogs, respectively). A total of 10,571 copy number variation regions (CNVRs) were detected across the 6 individual genomes, covering 154.65 Mb, or 6.41%, of the reference genome (canFam3.1). Further analysis showed that the distribution of deleterious variants in the dog genome is higher than the wolf genome. Also, genomic annotation results from intron and intergenic regions showed that the proportion of variations in the wolf genome is higher than that in the dog genome, while the proportion of the coding sequences and 3'-UTR in the dog genome is higher than that in the wolf genome. The genes related to the olfactory and immune systems were enriched in the set of the structural variants (SVs) identified in this work. CONCLUSIONS Our results showed more deleterious mutations and coding sequence variants in the domestic dog genome than those in wolf genome. By providing the first Iranian dog and wolf variome map, our findings contribute to understanding the genetic architecture of the dog domestication.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
63
|
Concordance rate between copy number variants detected using either high- or medium-density single nucleotide polymorphism genotype panels and the potential of imputing copy number variants from flanking high density single nucleotide polymorphism haplotypes in cattle. BMC Genomics 2020; 21:205. [PMID: 32131735 PMCID: PMC7057620 DOI: 10.1186/s12864-020-6627-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 02/26/2020] [Indexed: 12/01/2022] Open
Abstract
Background The trading of individual animal genotype information often involves only the exchange of the called genotypes and not necessarily the additional information required to effectively call structural variants. The main aim here was to determine if it is possible to impute copy number variants (CNVs) using the flanking single nucleotide polymorphism (SNP) haplotype structure in cattle. While this objective was achieved using high-density genotype panels (i.e., 713,162 SNPs), a secondary objective investigated the concordance of CNVs called with this high-density genotype panel compared to CNVs called from a medium-density panel (i.e., 45,677 SNPs in the present study). This is the first study to compare CNVs called from high-density and medium-density SNP genotypes from the same animals. High (and medium-density) genotypes were available on 991 Holstein-Friesian, 1015 Charolais, and 1394 Limousin bulls. The concordance between CNVs called from the medium-density and high-density genotypes were calculated separately for each animal. A subset of CNVs which were called from the high-density genotypes was selected for imputation. Imputation was carried out separately for each breed using a set of high-density SNPs flanking the midpoint of each CNV. A CNV was deemed to be imputed correctly when the called copy number matched the imputed copy number. Results For 97.0% of CNVs called from the high-density genotypes, the corresponding genomic position on the medium-density of the animal did not contain a called CNV. The average accuracy of imputation for CNV deletions was 0.281, with a standard deviation of 0.286. The average accuracy of imputation of the CNV normal state, i.e. the absence of a CNV, was 0.982 with a standard deviation of 0.022. Two CNV duplications were imputed in the Charolais, a single CNV duplication in the Limousins, and a single CNV duplication in the Holstein-Friesians; in all cases the CNV duplications were incorrectly imputed. Conclusion The vast majority of CNVs called from the high-density genotypes were not detected using the medium-density genotypes. Furthermore, CNVs cannot be accurately predicted from flanking SNP haplotypes, at least based on the imputation algorithms routinely used in cattle, and using the SNPs currently available on the high-density genotype panel.
Collapse
|
64
|
Piégu B, Arensburger P, Beauclair L, Chabault M, Raynaud E, Coustham V, Brard S, Guizard S, Burlot T, Le Bihan-Duval E, Bigot Y. Variations in genome size between wild and domesticated lineages of fowls belonging to the Gallus gallus species. Genomics 2020; 112:1660-1673. [DOI: 10.1016/j.ygeno.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/05/2019] [Accepted: 10/07/2019] [Indexed: 11/26/2022]
|
65
|
Jing Z, Wang X, Cheng Y, Wei C, Hou D, Li T, Li W, Han R, Li H, Sun G, Tian Y, Liu X, Kang X, Li Z. Detection of CNV in the SH3RF2 gene and its effects on growth and carcass traits in chickens. BMC Genet 2020; 21:22. [PMID: 32111154 PMCID: PMC7048116 DOI: 10.1186/s12863-020-0831-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The SH3RF2 gene is a protein-coding gene located in a quantitative trait locus associated with body weight, and its deletion has been shown to be positively associated with body weight in chickens. RESULTS In the present study, CNV in the SH3RF2 gene was detected in 4079 individuals from 17 populations, including the "Gushi ×Anka" F2 resource population and populations of Chinese native chickens, commercial layers, and commercial broilers. The F2 resource population was then used to investigate the genetic effects of the chicken SH3RF2 gene. The results showed that the local chickens and commercial layers were all homozygous for the wild-type allele. Deletion mutation individuals were detected in all of the commercial broiler breeds except Hubbard broiler. A total of, 798 individuals in the F2 resource group were used to analyze the effects of genotype (DD/ID/II) on chicken production traits. The results showed that CNV was associated with 2-, 6-, 10-, and 12-week body weight (P = 0.026, 0.042, 0.021 and 0.039 respectively) and significantly associated with 8-week breast bone length (P = 0.045). The mutation was significantly associated with 8-week body weight (P = 0.007) and 4-week breast bone length (P = 0.010). CNV was significantly associated with evisceration weight, leg muscle weight, carcass weight, breast muscle weight and gizzard weight (P = 0.032, 0.033, 0.045, 0.004 and 0.000, respectively). CONCLUSIONS CNV of the SH3RF2 gene contributed to variation in the growth and weight gain of chickens.
Collapse
Affiliation(s)
- Zhenzhu Jing
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Xinlei Wang
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Yingying Cheng
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Chengjie Wei
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Dan Hou
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Tong Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Wenya Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Ruili Han
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Hong Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Guirong Sun
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Yadong Tian
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Xiaojun Liu
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Xiangtao Kang
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China
| | - Zhuanjian Li
- Department of Animal genetics and breeding, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
66
|
Kommadath A, Grant JR, Krivushin K, Butty AM, Baes CF, Carthy TR, Berry DP, Stothard P. A large interactive visual database of copy number variants discovered in taurine cattle. Gigascience 2020; 8:5523204. [PMID: 31241156 PMCID: PMC6593363 DOI: 10.1093/gigascience/giz073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) contribute to genetic diversity and phenotypic variation. We aimed to discover CNVs in taurine cattle using a large collection of whole-genome sequences and to provide an interactive database of the identified CNV regions (CNVRs) that includes visualizations of sequence read alignments, CNV boundaries, and genome annotations. RESULTS CNVs were identified in each of 4 whole-genome sequencing datasets, which together represent >500 bulls from 17 breeds, using a popular multi-sample read-depth-based algorithm, cn.MOPS. Quality control and CNVR construction, performed dataset-wise to avoid batch effects, resulted in 26,223 CNVRs covering 107.75 unique Mb (4.05%) of the bovine genome. Hierarchical clustering of samples by CNVR genotypes indicated clear separation by breeds. An interactive HTML database was created that allows data filtering options, provides graphical and tabular data summaries including Hardy-Weinberg equilibrium tests on genotype proportions, and displays genes and quantitative trait loci at each CNVR. Notably, the database provides sequence read alignments at each CNVR genotype and the boundaries of constituent CNVs in individual samples. Besides numerous novel discoveries, we corroborated the genotypes reported for a CNVR at the KIT locus known to be associated with the piebald coat colour phenotype in Hereford and some Simmental cattle. CONCLUSIONS We present a large comprehensive collection of taurine cattle CNVs in a novel interactive visual database that displays CNV boundaries, read depths, and genome features for individual CNVRs, thus providing users with a powerful means to explore and scrutinize CNVRs of interest more thoroughly.
Collapse
Affiliation(s)
- Arun Kommadath
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Jason R Grant
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada
| | - Kirill Krivushin
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada
| | - Adrien M Butty
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tara R Carthy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland
| | - Donagh P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
67
|
Noorai RE, Shankar V, Freese NH, Gregorski CM, Chapman SC. Discovery of genomic variations by whole-genome resequencing of the North American Araucana chicken. PLoS One 2019; 14:e0225834. [PMID: 31821332 PMCID: PMC6903725 DOI: 10.1371/journal.pone.0225834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Gallus gallus (chicken) is phenotypically diverse, with over 60 recognized breeds, among the myriad species within the Aves lineage. Domestic chickens have been under artificial selection by humans for thousands of years for agricultural purposes. The North American Araucana (NAA) breed arose as a cross between the Chilean “Collonocas” that laid blue eggs and was rumpless and the “Quetros” that had unusual tufts but with tail. NAAs were introduced from South America in the 1940s and have been kept as show birds by enthusiasts since then due to several distinctive traits: laying eggs with blue eggshells, characteristic ear-tufts, a pea comb, and rumplessness. The population has maintained variants for clean-faced and tufted, as well as tailed and rumplessness traits making it advantageous for genetic studies. Genome resequencing of six NAA chickens with a mixture of these traits was done to 71-fold coverage using Illumina HiSeq 2000 paired-end reads. Trimmed and concordant reads were mapped to the Gallus_gallus-5.0 reference genome (galGal5), generated from a female Red Junglefowl (UCD001). To identify candidate genes that are associated with traits of the NAA, their genome was compared with the Korean Araucana, Korean Domestic and White Leghorn breeds. Genomic regions with significantly reduced levels of heterogeneity were detected on five different chromosomes in NAA. The sequence data generated confirm the identity of variants responsible for the blue eggshells, pea comb, and rumplessness traits of NAA and propose one for ear-tufts.
Collapse
Affiliation(s)
- Rooksana E. Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Nowlan H. Freese
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Christopher M. Gregorski
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
68
|
Copy Number Variation of the CADM2 Gene and Its Association with Growth Traits in Yak. Animals (Basel) 2019; 9:ani9121008. [PMID: 31766342 PMCID: PMC6940794 DOI: 10.3390/ani9121008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Cell adhesion molecule 2 (CADM2), also known as synaptic cell adhesion molecule 2 (SYNCAM2), is the mediator of synaptic signals enriched in the brain. Overlaps between copy number variation (CNV) regions in CADM2 and quantitative trait loci (QTL) related to body weight have been clarified in a previous study. In this study, two loci were amplified in the CADM2 gene (CNV1: 235,915 bp, exon 1 and partial intron 1; CNV2: 60,430 bp, intron 9) to explore the relationship between CNV types in the CADM2 gene and growth traits in 350 Ashidan yaks. Association analysis illustrated that no significant effect was found on growth traits in CNV1. However, the CNV2 mutation had a significant effect on body weight at the sixth month (p < 0.05). Individuals with the gain-type copy number variation CNV2 were significantly superior to those with loss- or normal-type in terms of body weight (p < 0.05). In summary, this study confirmed that CADM2-CNVs affect growth traits in yaks, and may be candidate genes for successful yak breeding and genetics projects. Abstract Copy number variation (CNV) is currently accepted as a common source of genetic variation. It is reported that CNVs may influence the resistance to disease and complex economic traits, such as residual feed intake, muscle formation, and fat deposition in livestock. Cell adhesion molecule 2 (CADM2) is expressed widely in the brain and adipose tissue and can regulate body weight through the central nervous system. Growth traits are important economic traits for animal selection. In this study, we aimed to explore the effect of CADM2 gene copy number variants on yak growth traits. Here, two CNVs in the CADM2 gene were investigated using the quantitative polymerase chain reaction (qPCR), and the association of the CNVs with growth traits in yak was analyzed using statistical methods by SPSS software. Differences were considered significant if the p value was < 0.05. Statistical analysis indicated significant association of CADM2-CNV2 with the body weight of the Chinese Ashidan yak. A significant effect of CNV2 (p < 0.05) was found on body weight at 6 months. In CNV2, the gain-type copy number variation exhibited greater performance than the other variants, with greater body weight observed at 6 months (p < 0.05). To the best of our knowledge, this is the first attempt to investigate the function of CADM2-CNVs and their association with growth traits in animals. This may be a useful candidate marker in marker-assisted selection of yaks.
Collapse
|
69
|
Identification of Copy Number Variation in Domestic Chicken Using Whole-Genome Sequencing Reveals Evidence of Selection in the Genome. Animals (Basel) 2019; 9:ani9100809. [PMID: 31618984 PMCID: PMC6826909 DOI: 10.3390/ani9100809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chickens have been bred for meat and egg production as a source of animal protein. With the increase of productivity as the main purpose of domestication, factors such as metabolism and immunity were boosted, which are detectable signs of selection on the genome. This study focused on copy number variation (CNV) to find evidence of domestication on the genome. CNV was detected from whole-genome sequencing of 65 chickens including Red Jungle Fowl, broilers, and layers. After that, CNV region, the overlapping region of CNV between individuals, was made to identify which genomic regions showed copy number differentiation. The 663 domesticated-specific CNV regions were associated with various functions such as metabolism and organ development. Also, by performing population differentiation analyses such as clustering analysis and ANOVA test, we found that there are a lot of genomic regions with different copy number patterns between broilers and layers. This result indicates that different genetic variations can be found, depending on the purpose of artificial selection and provides considerations for future animal breeding. Abstract Copy number variation (CNV) has great significance both functionally and evolutionally. Various CNV studies are in progress to find the cause of human disease and to understand the population structure of livestock. Recent advances in next-generation sequencing (NGS) technology have made CNV detection more reliable and accurate at whole-genome level. However, there is a lack of CNV studies on chickens using NGS. Therefore, we obtained whole-genome sequencing data of 65 chickens including Red Jungle Fowl, Cornish (broiler), Rhode Island Red (hybrid), and White Leghorn (layer) from the public databases for CNV region (CNVR) detection. Using CNVnator, a read-depth based software, a total of 663 domesticated-specific CNVRs were identified across autosomes. Gene ontology analysis of genes annotated in CNVRs showed that mainly enriched terms involved in organ development, metabolism, and immune regulation. Population analysis revealed that CN and RIR are closer to each other than WL, and many genes (LOC772271, OR52R1, RD3, ADH6, TLR2B, PRSS2, TPK1, POPDC3, etc.) with different copy numbers between breeds found. In conclusion, this study has helped to understand the genetic characteristics of domestic chickens at CNV level, which may provide useful information for the development of breeding systems in chickens.
Collapse
|
70
|
|
71
|
Núñez‐León D, Aguirre‐Fernández G, Steiner A, Nagashima H, Jensen P, Stoeckli E, Schneider RA, Sánchez‐Villagra MR. Morphological diversity of integumentary traits in fowl domestication: Insights from disparity analysis and embryonic development. Dev Dyn 2019; 248:1044-1058. [DOI: 10.1002/dvdy.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Daniel Núñez‐León
- Paläontologisches Institut und Museum, Universität Zürich Zürich Switzerland
| | | | - Andrea Steiner
- Paläontologisches Institut und Museum, Universität Zürich Zürich Switzerland
| | - Hiroshi Nagashima
- Division of Gross Anatomy and MorphogenesisNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Per Jensen
- IFM Biologi, AVIAN Behavioural Genomics and Physiology GroupLinköping University Linköping Sweden
| | - Esther Stoeckli
- Institute of Molecular Life Sciences, University of Zurich Zurich Switzerland
| | - Richard A. Schneider
- Department of Orthopaedic SurgeryUniversity of California San Francisco California
| | | |
Collapse
|
72
|
Dong X, Li J, Zhang Y, Han D, Hua G, Wang J, Deng X, Wu C. Genomic Analysis Reveals Pleiotropic Alleles at EDN3 and BMP7 Involved in Chicken Comb Color and Egg Production. Front Genet 2019; 10:612. [PMID: 31316551 PMCID: PMC6611142 DOI: 10.3389/fgene.2019.00612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Artificial selection is often associated with numerous changes in seemingly unrelated phenotypic traits. The genetic mechanisms of correlated phenotypes probably involve pleiotropy or linkage of genes related to such phenotypes. Dongxiang blue-shelled chicken, an indigenous chicken breed of China, has segregated significantly for the dermal hyperpigmentation phenotype. Two lines of the chicken have been divergently selected with respect to comb color for over 20 generations. The red comb line chicken produces significantly higher number of eggs than the dark comb line chicken. The objective of this study was to explore potential mechanisms involved in the relationship between comb color and egg production among chickens. Based on the genome-wide association study results, we identified a genomic region on chromosome 20 involving EDN3 and BMP7, which is associated with hyperpigmentation of chicken comb. Further analyses by selection signatures in the two divergent lines revealed that several candidate genes, including EDN3, BMP7, BPIFB3, and PCK1, closely located on chromosome 20 are involved in the development of neural crest cell and reproductive system. The two genes EDN3 and BMP7 have known roles in regulating both ovarian function and melanogenesis, indicating the pleiotropic effect on hyperpigmentation and egg production in blue-shelled chickens. Association analysis for egg production confirmed the pleiotropic effect of selected loci identified by selection signatures. The study provides insights into phenotypic evolution due to genetic variation across the genome. The information might be useful in the current breeding efforts to develop improved breeds for egg production.
Collapse
Affiliation(s)
- Xianggui Dong
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guoying Hua
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Jiankui Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
73
|
Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci U S A 2019; 116:13446-13451. [PMID: 31209046 DOI: 10.1073/pnas.1901093116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polar bear (Ursus maritimus) and brown bear (Ursus arctos) are recently diverged species that inhabit vastly differing habitats. Thus, analysis of the polar bear and brown bear genomes represents a unique opportunity to investigate the evolutionary mechanisms and genetic underpinnings of rapid ecological adaptation in mammals. Copy number (CN) differences in genomic regions between closely related species can underlie adaptive phenotypes and this form of genetic variation has not been explored in the context of polar bear evolution. Here, we analyzed the CN profiles of 17 polar bears, 9 brown bears, and 2 black bears (Ursus americanus). We identified an average of 318 genes per individual that showed evidence of CN variation (CNV). Nearly 200 genes displayed species-specific CN differences between polar bear and brown bear species. Principal component analysis of gene CN provides strong evidence that CNV evolved rapidly in the polar bear lineage and mainly resulted in CN loss. Olfactory receptors composed 47% of CN differentiated genes, with the majority of these genes being at lower CN in the polar bear. Additionally, we found significantly fewer copies of several genes involved in fatty acid metabolism as well as AMY1B, the salivary amylase-encoding gene in the polar bear. These results suggest that natural selection shaped patterns of CNV in response to the transition from an omnivorous to primarily carnivorous diet during polar bear evolution. Our analyses of CNV shed light on the genomic underpinnings of ecological adaptation during polar bear evolution.
Collapse
|
74
|
Jia C, Wang H, Li C, Wu X, Zan L, Ding X, Guo X, Bao P, Pei J, Chu M, Liang C, Yan P. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics 2019; 20:376. [PMID: 31088363 PMCID: PMC6518677 DOI: 10.1186/s12864-019-5759-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023] Open
Abstract
Background Copy number variations (CNVs), which are genetic variations present throughout mammalian genomes, are a vital source of phenotypic variation that can lead to the development of unique traits. In this study we used the Illunima BovineHD BeadChip to conduct genome-wide detection of CNVs in 215 polled yaks. Results A total of 1066 CNV regions (CNVRs) were detected with a total length of 181.6 Mb, comprising ~ 7.2% of the bovine autosomal genome. The size of these CNVRs ranged from 5.53 kb to 1148.45 kb, with an average size of 170.31 kb. Eight out of nine randomly chosen CNVRs were successfully validated by qPCR. A functional enrichment analysis of the CNVR-associated genes indicated their relationship to a number of molecular adaptations that enable yaks to thrive at high altitudes. One third of the detected CNVRs were mapped to QTLs associated with six classes of economically important traits, indicating that these CNVRs may play an important role in variations of these traits. Conclusions Our genome-wide yak CNV map may thus provide valuable insights into both the molecular mechanisms of high altitude adaptation and the potential genomic basis of economically important traits in yak. Electronic supplementary material The online version of this article (10.1186/s12864-019-5759-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Congjun Jia
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chen Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
75
|
Ma YL, Wen YF, Cao XK, Cheng J, Huang YZ, Ma Y, Hu LY, Lei CZ, Qi XL, Cao H, Chen H. Copy number variation (CNV) in the IGF1R gene across four cattle breeds and its association with economic traits. Arch Anim Breed 2019; 62:171-179. [PMID: 31807627 PMCID: PMC6852844 DOI: 10.5194/aab-62-171-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) plays a vital role in
immunomodulation and muscle and bone growth. The copy number variation (CNV) is
believed to the reason for many complex phenotypic variations. In
this paper, we statistically analyzed the copy number and the expression
profiling in different tissue types of the IGF1R gene using the
422 samples from four Chinese beef cattle breeds, and the mRNA of
IGF1R was widely expressed in nine tissue types of adult cattle (heart,
liver, kidney, muscle, fat, stomach, spleen, lung and testis). Results of CNV and growth traits indicated that the IGF1R CNV
was significantly associated with body weight and body height of Jinnan (JN)
cattle and was significantly associated with body height and hucklebone width
of Qinchuan (QC) cattle, making IGF1R CNV a promising molecular
marker to improve meat production in beef cattle breeding. Bioinformatics
predictions show that the CNV region is highly similar to the human genome,
and there are a large number of transcription factors, DNase I hypersensitive
sites, and high levels of histone acetylation, suggesting that this region may
play a role in transcriptional regulation, providing directions for further
study of the role of bovine CNV and economic traits.
Collapse
Affiliation(s)
- Yi-Lei Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Yi-Fan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Xiu-Kai Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Jie Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, 464000, P. R. China
| | - Lin-Yong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, P. R. China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| | - Xing-Lei Qi
- Bureau of Animal Husbandry of Biyang County, Biyang, Henan, 463700, P. R. China
| | - Hui Cao
- Shaanxi Kingbull Animal Husbandry Co. Ltd., Yangling, Shaanxi, 712100, P. R. China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, P. R. China
| |
Collapse
|
76
|
Lamichhaney S, Andersson L. A comparison of the association between large haplotype blocks under selection and the presence/absence of inversions. Ecol Evol 2019; 9:4888-4896. [PMID: 31031951 PMCID: PMC6476765 DOI: 10.1002/ece3.5094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Inversions may contribute to ecological adaptation and phenotypic diversity, and with the advent of "second" and "third" generation sequencing technologies, the ability to detect inversion polymorphisms has been enhanced dramatically. A key molecular consequence of an inversion is the suppression of recombination allowing independent accumulation of genetic changes between alleles over time. This may lead to the development of divergent haplotype blocks maintained by balancing selection. Thus, divergent haplotype blocks are often considered as indicating the presence of an inversion. In this paper, we first review the features of a 7.7 Mb inversion causing the Rose-comb phenotype in chicken, as a model for how inversions evolve and directly affect phenotypes. Second, we compare the genetic basis for alternative mating strategies in ruff and timing of reproduction in Atlantic herring, both associated with divergent haplotype blocks. Alternative male mating strategies in ruff are associated with a 4.5 Mb inversion that occurred about 4 million years ago. In fact, the ruff inversion shares some striking features with the Rose-comb inversion such as disruption of a gene at one of the inversion breakpoints and generation of a new allele by recombination between the inverted and noninverted alleles. In contrast, inversions do not appear to be a major reason for the fairly large haplotype blocks (range 10-200 kb) associated with ecological adaptation in the herring. Thus, it is important to note that divergent haplotypes may also be maintained by natural selection in the absence of structural variation.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusetts
| | - Leif Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexas
- Department of Animal Breeding and GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
77
|
Lye ZN, Purugganan MD. Copy Number Variation in Domestication. TRENDS IN PLANT SCIENCE 2019; 24:352-365. [PMID: 30745056 DOI: 10.1016/j.tplants.2019.01.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
Domesticated plants have long served as excellent models for studying evolution. Many genes and mutations underlying important domestication traits have been identified, and most causal mutations appear to be SNPs. Copy number variation (CNV) is an important source of genetic variation that has been largely neglected in studies of domestication. Ongoing work demonstrates the importance of CNVs as a source of genetic variation during domestication, and during the diversification of domesticated taxa. Here, we review how CNVs contribute to evolutionary processes underlying domestication, and review examples of domestication traits caused by CNVs. We draw from examples in plant species, but also highlight cases in animal systems that could illuminate the roles of CNVs in the domestication process.
Collapse
Affiliation(s)
- Zoe N Lye
- Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
78
|
Khatri B, Kang S, Shouse S, Anthony N, Kuenzel W, Kong BC. Copy number variation study in Japanese quail associated with stress related traits using whole genome re-sequencing data. PLoS One 2019; 14:e0214543. [PMID: 30921419 PMCID: PMC6438477 DOI: 10.1371/journal.pone.0214543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) is a major driving factor for genetic variation and phenotypic diversity in animals. To detect CNVs and understand genetic components underlying stress related traits, we performed whole genome re-sequencing of pooled DNA samples of 20 birds each from High Stress (HS) and Low Stress (LS) Japanese quail lines using Illumina HiSeq 2×150 bp paired end method. Sequencing data were aligned to the quail genome and CNVnator was used to detect CNVs in the aligned data sets. The depth of coverage for the data reached to 41.4x and 42.6x for HS and LS birds, respectively. We identified 262 and 168 CNV regions affecting 1.6 and 1.9% of the reference genome that completely overlapped 454 and 493 unique genes in HS and LS birds, respectively. Ingenuity pathway analysis showed that the CNV genes were significantly enriched to phospholipase C signaling, neuregulin signaling, reelin signaling in neurons, endocrine and nervous development, humoral immune response, and carbohydrate and amino acid metabolisms in HS birds, whereas CNV genes in LS birds were enriched in cell-mediated immune response, and protein and lipid metabolisms. These findings suggest CNV genes identified in HS and LS birds could be candidate markers responsible for stress responses in birds.
Collapse
Affiliation(s)
- Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Seong Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Stephanie Shouse
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Nicholas Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Wayne Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Byungwhi C. Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| |
Collapse
|
79
|
Wang C, Chen H, Wang X, Wu Z, Liu W, Guo Y, Ren J, Ding N. Identification of copy number variations using high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1809-1815. [PMID: 30744341 PMCID: PMC6819687 DOI: 10.5713/ajas.18.0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/08/2019] [Indexed: 01/13/2023]
Abstract
Objective Copy number variations (CNVs) are a major source of genetic diversity complementary to single nucleotide polymorphism (SNP) in animals. The aim of the study was to perform a comprehensive genomic analysis of CNVs based on high density whole-genome SNP markers in Chinese Dongxiang spotted pigs. Methods We used customized Affymetrix Axiom Pig1.4M array plates containing 1.4 million SNPs and the PennCNV algorithm to identify porcine CNVs on autosomes in Chinese Dongxiang spotted pigs. Then, the next generation sequence data was used to confirm the detected CNVs. Next, functional analysis was performed for gene contents in copy number variation regions (CNVRs). In addition, we compared the identified CNVRs with those reported ones and quantitative trait loci (QTL) in the pig QTL database. Results We identified 871 putative CNVs belonging to 2,221 CNVRs on 17 autosomes. We further discarded CNVRs that were detected only in one individual, leaving us 166 CNVRs in total. The 166 CNVRs ranged from 2.89 kb to 617.53 kb with a mean value of 93.65 kb and a genome coverage of 15.55 Mb, corresponding to 0.58% of the pig genome. A total of 119 (71.69%) of the identified CNVRs were confirmed by next generation sequence data. Moreover, functional annotation showed that these CNVRs are involved in a variety of molecular functions. More than half (56.63%) of the CNVRs (n = 94) have been reported in previous studies, while 72 CNVRs are reported for the first time. In addition, 162 (97.59%) CNVRs were found to overlap with 2,765 previously reported QTLs affecting 378 phenotypic traits. Conclusion The findings improve the catalog of pig CNVs and provide insights and novel molecular markers for further genetic analyses of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Chengbin Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hao Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaopeng Wang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nengshui Ding
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
80
|
Goshu HA, Chu M, Wu X, Pengjia B, Ding XZ, Yan P. Association study and expression analysis of GPC1 gene copy number variation in Chinese Datong yak ( Bos grunniens) breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1586456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
- Animal Science Department, Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Bao Pengjia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Xue Zhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| |
Collapse
|
81
|
Xu JW, Zheng L, Li LJ, Yao YF, Hua H, Yang SZ, Wen YF, Song CC, Cao XK, Liu KP, Zhang GM, Yang JM, Hao D, Dang RH, Lan XY, Lei CZ, Qi XL, Chen H, Huang YZ. Novel copy number variation of the KLF3 gene is associated with growth traits in beef cattle. Gene 2019; 680:99-104. [DOI: 10.1016/j.gene.2018.08.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023]
|
82
|
Chen C, Liu C, Xiong X, Fang S, Yang H, Zhang Z, Ren J, Guo Y, Huang L. Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p. Genet Sel Evol 2018; 50:72. [PMID: 30587124 PMCID: PMC6307293 DOI: 10.1186/s12711-018-0442-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/18/2018] [Indexed: 01/30/2023] Open
Abstract
Background The size and type of ears are important conformation characteristics that distinguish pig breeds. A significant quantitative trait locus (QTL) for ear size has been identified on SSC5 (SSC for Sus scrofa chromosome) but the underlying causative gene and mutation remain unknown. Thus, our aim was to identify the gene responsible for enlarged ears in pig. Results First, we narrowed down the QTL region on SSC5 to a 137.85-kb interval that harbors only the methionine sulfoxide reductase B3 (MSRB3) gene. Then, we identified a 38.7-kb copy number variation (CNV) that affects the last two exons of MSRB3 and could be the candidate causative mutation for this QTL. This CNV showed complete concordance with genotype at the QTL of the founder animals in a white Duroc × Erhualian F2 intercross and was found only in pigs from six Chinese indigenous breeds with large ears and from the Landrace breed with half-floppy ears. Moreover, it accounted for the significant association with ear size on SSC5 across the five pig populations tested. eQTL mapping revealed that this CNV was significantly associated with the expression of the microRNA (miRNA) miR-584-5p, which interacts with MSRB3, one of its target genes. In vivo and in vitro experiments confirmed that miR-584-5p inhibits the translation of MSRB3 mRNA. Taken together, these results led us to conclude that presence of the 38.7-kb CNV in the genome of some pig breeds affects ear size by altering the expression of miR-584-5p, which consequently hinders the expression of one of its target genes (e.g. MSRB3). Conclusions Our findings shed insight into the underlying mechanism of development of external ears in mammals and contribute to a better understanding of how the presence of CNV can regulate gene expression. Electronic supplementary material The online version of this article (10.1186/s12711-018-0442-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Chenlong Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.,Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xinwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shaoming Fang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhiyan Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuanmei Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
83
|
Wang X, Zheng Z, Cai Y, Chen T, Li C, Fu W, Jiang Y. CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience 2018; 6:1-12. [PMID: 29220491 PMCID: PMC5751039 DOI: 10.1093/gigascience/gix115] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/17/2017] [Indexed: 01/01/2023] Open
Abstract
Background The increasing amount of sequencing data available for a wide variety of species can be theoretically used for detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection methods. Results Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data. The computational speed of CNVcaller was 1-2 orders of magnitude faster than CNVnator and Genome STRiP for complex genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for detecting duplications. Conclusions The fast generalized detection algorithms included in CNVcaller overcome prior computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore, CNVcaller promotes population genetic analyses of functional CNVs in more species.
Collapse
Affiliation(s)
- Xihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yudong Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
84
|
Khatri B, Hayden AM, Anthony NB, Kong BC. Whole Genome Resequencing of Arkansas Progressor and Regressor Line Chickens to Identify SNPs Associated with Tumor Regression. Genes (Basel) 2018; 9:genes9100512. [PMID: 30347774 PMCID: PMC6210987 DOI: 10.3390/genes9100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
Arkansas Regressor (AR) chickens, unlike Arkansas Progressor (AP) chickens, regress tumors induced by the v-src oncogene. To better understand the genetic factors responsible for this tumor regression property, whole genome resequencing was conducted using Illumina Hi-Seq 2 × 100 bp paired-end read method (San Diego, CA, USA) with AR (confirmed tumor regression property) and AP chickens. Sequence reads were aligned to the chicken reference genome (galgal5) and produced coverage of 11× and 14× in AR and AP, respectively. A total of 7.1 and 7.3 million single nucleotide polymorphisms (SNPs) were present in AR and AP genomes, respectively. Through a series of filtration processes, a total of 12,242 SNPs were identified in AR chickens that were associated with non-synonymous, frameshift, nonsense, no-start and no-stop mutations. Further filtering of SNPs based on read depth ≥ 10, SNP% ≥ 0.75, and non-synonymous mutations identified 63 reliable marker SNPs which were chosen for gene network analysis. The network analysis revealed that the candidate genes identified in AR chickens play roles in networks centered to ubiquitin C (UBC), phosphoinositide 3-kinases (PI3K), and nuclear factor kappa B (NF-kB) complexes suggesting that the tumor regression property in AR chickens might be associated with ubiquitylation, PI3K, and NF-kB signaling pathways. This study provides an insight into genetic factors that could be responsible for the tumor regression property.
Collapse
Affiliation(s)
- Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| | - Ashley M Hayden
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| | - Nicholas B Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| | - Byungwhi C Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, NC AR 72701, USA.
| |
Collapse
|
85
|
Huang T, Cheng S, Feng Y, Sheng Z, Gong Y. A copy number variation generated by complicated organization of PCDHA gene cluster is associated with egg performance traits in Xinhua E-strain. Poult Sci 2018; 97:3435-3445. [PMID: 30007306 DOI: 10.3382/ps/pey236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/07/2018] [Indexed: 01/15/2023] Open
Abstract
In recent years, a mass of duplicated and deleted DNA sequences have been found in human and animal genomes following the prevalence of employing high-throughput sequencing and SNP array. However, few copy number variation (CNV) studies have been performed on egg performance traits of chicken. In this study, 17 loci reported in previous studies were selected for CNV detection in the Xinhua E-strain by using the CNVplex kit, and the detection results showed that locus14 exhibited CNV. Further association analysis indicated the copies of locus14 could be significantly associated with age at first egg (AFE; P < 0.0086) and egg number at 250 d (250EN; P < 0.036). DNA sequence amplification showed the loss of a 260-bp-long fragment in the upstream of locus14, which mainly occurred in normal or copy-gain individuals. The qPCR results showed that subjects with gain of copies could promote the total expression level of the PCDHA gene cluster in the pituitary gland of adult individuals. Additionally, PCR amplification with randomly combined primers revealed a larger number of chicken variable exons than that previously reported, indicating the complexity of the organization of the PCDHA gene cluster. Those variable exons are divergent in their distribution among the populations of Xinhua E-strain, Chahua, Tibetan, and Tulufan Game Chicken, and most individuals only possess part of variable exons. Overall, the copies of locus14 reflect the variable exon dosage effects on the total expression level of the PCDHA gene cluster, which may regulate the layer egg production by affecting the development of the neural system.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shengqi Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
86
|
Gong J, Cheng T, Wu Y, Yang X, Feng Q, Mita K. Genome-wide patterns of copy number variations in Spodoptera litura. Genomics 2018; 111:1231-1238. [PMID: 30114452 DOI: 10.1016/j.ygeno.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/26/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Spodoptera litura is a polyphagous pest and can feed on more than 100 species of plants, causing great damage to agricultural production. The SNP results showed that there were gene exchanges between different regions. To explore the variations of larger segments in S. litura genome, we used genome resequencing samples from 14 regions of China, India, and Japan to study the copy number variations (CNVs). We identified 3976 CNV events and 1581 unique copy number variation regions (CNVRs) occupying the 108.5 Mb genome of S. litura. A total of 5527 genes that overlapped with CNVRs were detected. Selection signal analysis identified 19 shared CNVRs and 105 group-specific CNVRs, whose related genes were involved in various biological processes in S. litura. We constructed the first CNVs map in S. litura genome, and our findings will be valuable for understanding the genomic variations and population differences of S. litura.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400715, China.
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, South China Normal University, Guangzhou 510631, China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
87
|
Wang Y, Li J, Feng C, Zhao Y, Hu X, Li N. Transcriptome analysis of comb and testis from Rose-comb Silky chicken (R1/R1) and Beijing Fatty wild type chicken (r/r). Poult Sci 2018; 96:1866-1873. [PMID: 28339981 DOI: 10.3382/ps/pew447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022] Open
Abstract
Rose-comb was one of the chicken comb-variants first used by Bateson and Punnet in 1902 to demonstrate Mendelian inheritance in animals. Rose-comb is a monogenic trait that has been widely described in chickens. It is caused by a large structural rearrangement that leads to mis-expression of transcription factor MNR2 on chromosome 7. Rose-comb has pleiotropic effects in homozygous roosters, which is associated with poor sperm mobility. It was postulated that this is caused by the disruption of the CCDC108 gene located at the distal inversion breakpoint. In this study, we did the transcriptional profiling of combs and testes from Rose-comb Silky (RS) (R1/R1) and Beijing Fatty (BF) wild type chickens (r/r) using RNA-seq. We obtained 68,694,797 unique mapped reads and over 80% of the chicken genes were covered for each sample. In combs, we found that differentially expressed genes (DEGs) were significantly enriched in the retinol metabolism (RPE65, CYP26A1, and CYP26C1) and hedgehog-signaling pathway (PTCH1, GLI1, and HHIP), while genes related to cell differentiation and morphogenesis were down-regulated in R1/R1 chickens, suggesting that the transient expression of MNR2 might affect the expression of these genes and influence the development of comb tissue. For testes, DEGs were significantly enriched in the GO terms of binding activates and mitochondrial oxidation-reduction reactions. Our results suggested that the CCDC108 might be functionally related with mitochondrial oxidation-reduction reactions and caused subfertility of roosters. Compared with the genome average, the degree of expression variations within the inversion region did not show significant differences. However, DEGs near the breakpoints showed greater expression variance. Our results demonstrated that the large-scale rearrangements affected the gene expression only around the breakpoint in this case.
Collapse
Affiliation(s)
- Y Wang
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - J Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - C Feng
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Y Zhao
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - X Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - N Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
88
|
Aouiche C, Shang X, Chen B. Copy number variation related disease genes. QUANTITATIVE BIOLOGY 2018; 6:99-112. [DOI: 10.1007/s40484-018-0137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/13/2017] [Accepted: 01/23/2018] [Indexed: 11/25/2022]
Abstract
BackgroundOne of the most important and challenging issues in biomedicine and genomics is how to identify disease related genes. Datasets from high‐throughput biotechnologies have been widely used to overcome this issue from various perspectives, e.g., epigenomics, genomics, transcriptomics, proteomics, metabolomics. At the genomic level, copy number variations (CNVs) have been recognized as critical genetic variations, which contribute significantly to genomic diversity. They have been associated with both common and complex diseases, and thus have a large influence on a variety of Mendelian and somatic genetic disorders.ResultsIn this review, based on a variety of complex diseases, we give an overview about the critical role of using CNVs for identifying disease related genes, and discuss on details the different high‐throughput and sequencing methods applied for CNV detection. Some limitations and challenges concerning CNV are also highlighted.ConclusionsReliable detection of CNVs will not only allow discriminating driver mutations for various diseases, but also helps to develop personalized medicine when integrating it with other genomic features.
Collapse
Affiliation(s)
- Chaima Aouiche
- School of Computer Science Northwestern Polytechnical University Xi'an 710072 China
| | - Xuequn Shang
- School of Computer Science Northwestern Polytechnical University Xi'an 710072 China
| | - Bolin Chen
- School of Computer Science Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
89
|
Janiak MC. No Evidence of Copy Number Variation in Acidic Mammalian Chitinase Genes (CHIA) in New World and Old World Monkeys. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
90
|
Bhanuprakash V, Chhotaray S, Pruthviraj DR, Rawat C, Karthikeyan A, Panigrahi M. Copy number variation in livestock: A mini review. Vet World 2018; 11:535-541. [PMID: 29805222 PMCID: PMC5960796 DOI: 10.14202/vetworld.2018.535-541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/31/2018] [Indexed: 01/22/2023] Open
Abstract
Copy number variation (CNV) is a phenomenon in which sections of the genome, ranging from one kilo base pair (Kb) to several million base pairs (Mb), are repeated and the number of repeats vary between the individuals in a population. It is an important source of genetic variation in an individual which is now being utilized rather than single nucleotide polymorphisms (SNPs), as it covers the more genomic region. CNVs alter the gene expression and change the phenotype of an individual due to deletion and duplication of genes in the copy number variation regions (CNVRs). Earlier, researchers extensively utilized SNPs as the main source of genetic variation. But now, the focus is on identification of CNVs associated with complex traits. With the recent advances and reduction in the cost of sequencing, arrays are developed for genotyping which cover the maximum number of SNPs at a time that can be used for detection of CNVRs and underlying quantitative trait loci (QTL) for the complex traits to accelerate genetic improvement. CNV studies are also being carried out to understand the evolutionary mechanism in the domestication of livestock and their adaptation to the different environmental conditions. The main aim of the study is to review the available data on CNV and its role in genetic variation among the livestock.
Collapse
Affiliation(s)
- V Bhanuprakash
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Supriya Chhotaray
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - D R Pruthviraj
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Chandrakanta Rawat
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - A Karthikeyan
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly - 243122, Uttar Pradesh, India
| |
Collapse
|
91
|
Bai H, Sun Y, Liu N, Liu Y, Xue F, Li Y, Xu S, Ni A, Ye J, Chen Y, Chen J. Genome-wide detection of CNVs associated with beak deformity in chickens using high-density 600K SNP arrays. Anim Genet 2018; 49:226-236. [PMID: 29642269 DOI: 10.1111/age.12652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Beak deformity (crossed beaks) is found in several indigenous chicken breeds including Beijing-You studied here. Birds with deformed beaks have reduced feed intake and poor production performance. Recently, copy number variation (CNV) has been examined in many species and is recognized as a source of genetic variation, especially for disease phenotypes. In this study, to unravel the genetic mechanisms underlying beak deformity, we performed genome-wide CNV detection using Affymetrix chicken high-density 600K data on 48 deformed-beak and 48 normal birds using penncnv. As a result, two and eight CNV regions (CNVRs) covering 0.32 and 2.45 Mb respectively on autosomes were identified in deformed-beak and normal birds respectively. Further RT-qPCR studies validated nine of the 10 CNVRs. The ratios of six CNVRs were significantly different between deformed-beak and normal birds (P < 0.01). Within these six regions, three and 21 known genes were identified in deformed-beak and normal birds respectively. Bioinformatics analysis showed that these genes were enriched in six GO terms and one KEGG pathway. Five candidate genes in the CNVRs were further validated using RT-qPCR. The expression of LRIG2 (leucine rich repeats and immunoglobulin like domains 2) was lower in birds with deformed beaks (P < 0.01). Therefore, the LRIG2 gene could be considered a key factor in view of its known functions and its potential roles in beak deformity. Overall, our results will be helpful for future investigations of the genomic structural variations underlying beak deformity in chickens.
Collapse
Affiliation(s)
- H Bai
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Sun
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - N Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Liu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - F Xue
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Li
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - S Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - A Ni
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - J Ye
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Y Chen
- Beijing General Station of Animal Husbandry Service, Beijing, 102200, China
| | - J Chen
- Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
92
|
da Silva VH, Laine VN, Bosse M, Oers KV, Dibbits B, Visser ME, M A Crooijmans RP, Groenen MAM. CNVs are associated with genomic architecture in a songbird. BMC Genomics 2018; 19:195. [PMID: 29703149 PMCID: PMC6389189 DOI: 10.1186/s12864-018-4577-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Understanding variation in genome structure is essential to understand phenotypic differences within populations and the evolutionary history of species. A promising form of this structural variation is copy number variation (CNV). CNVs can be generated by different recombination mechanisms, such as non-allelic homologous recombination, that rely on specific characteristics of the genome architecture. These structural variants can therefore be more abundant at particular genes ultimately leading to variation in phenotypes under selection. Detailed characterization of CNVs therefore can reveal evolutionary footprints of selection and provide insight in their contribution to phenotypic variation in wild populations. Results Here we use genotypic data from a long-term population of great tits (Parus major), a widely studied passerine bird in ecology and evolution, to detect CNVs and identify genomic features prevailing within these regions. We used allele intensities and frequencies from high-density SNP array data from 2,175 birds. We detected 41,029 CNVs concatenated into 8,008 distinct CNV regions (CNVRs). We successfully validated 93.75% of the CNVs tested by qPCR, which were sampled at different frequencies and sizes. A mother-daughter family structure allowed for the evaluation of the inheritance of a number of these CNVs. Thereby, only CNVs with 40 probes or more display segregation in accordance with Mendelian inheritance, suggesting a high rate of false negative calls for smaller CNVs. As CNVRs are a coarse-grained map of CNV loci, we also inferred the frequency of coincident CNV start and end breakpoints. We observed frequency-dependent enrichment of these breakpoints at homologous regions, CpG sites and AT-rich intervals. A gene ontology enrichment analyses showed that CNVs are enriched in genes underpinning neural, cardiac and ion transport pathways. Conclusion Great tit CNVs are present in almost half of the genes and prominent at repetitive-homologous and regulatory regions. Although overlapping genes under selection, the high number of false negatives make neutrality or association tests on CNVs detected here difficult. Therefore, CNVs should be further addressed in the light of their false negative rate and architecture to improve the comprehension of their association with phenotypes and evolutionary history. Electronic supplementary material The online version of this article (10.1186/s12864-018-4577-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinicius H da Silva
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands. .,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands.
| | - Veronika N Laine
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands.,Swedish University of Agricultural Sciences (SLU), Ulls väg 26, Uppsala, 750 07, Sweden
| | - Mirte Bosse
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Kees van Oers
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Bert Dibbits
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Marcel E Visser
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
93
|
Lin S, Lin X, Zhang Z, Jiang M, Rao Y, Nie Q, Zhang X. Copy Number Variation in SOX6 Contributes to Chicken Muscle Development. Genes (Basel) 2018; 9:genes9010042. [PMID: 29342086 PMCID: PMC5793193 DOI: 10.3390/genes9010042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022] Open
Abstract
Copy number variations (CNVs), which cover many functional genes, are associated with complex diseases, phenotypic diversity and traits that are economically important to raising chickens. The sex-determining region Y-box 6 (Sox6) plays a key role in fast-twitch muscle fiber differentiation of zebrafish and mice, but it is still unknown whether SOX6 plays a role in chicken skeletal muscle development. We identified two copy number polymorphisms (CNPs) which were significantly related to different traits on the genome level in chickens by AccuCopy® and CNVplex® analyses. Notably, five white recessive rock (CN = 1, CN = 3) variant individuals and two Xinghua (CN = 3) variant individuals contain a CNP13 (chromosome5: 10,500,294-10,675,531) which overlaps with SOX6. There is a disordered region in SOX6 proteins 265-579 aa coded by a partial CNV overlapping region. A quantitative real-time polymerase chain reaction showed that the expression level of SOX6 mRNA was positively associated with CNV and highly expressed during the skeletal muscle cell differentiation in chickens. After the knockdown of the SOX6, the expression levels of IGFIR1, MYF6, SOX9, SHOX and CCND1 were significantly down-regulated. All of them directly linked to muscle development. These results suggest that the number of CNVs in the CNP13 is positively associated with the expression level of SOX6, which promotes the proliferation and differentiation of skeletal muscle cells by up-regulating the expression levels of the muscle-growth-related genes in chickens as in other animal species.
Collapse
Affiliation(s)
- Shudai Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, China.
| | - Xiran Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, China.
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, China.
| | - Mingya Jiang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, China.
| | - Yousheng Rao
- Department of Biological Technology, Nanchang Normal University, Nanchang 330029, China.
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, China.
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science of South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
94
|
Letaief R, Rebours E, Grohs C, Meersseman C, Fritz S, Trouilh L, Esquerré D, Barbieri J, Klopp C, Philippe R, Blanquet V, Boichard D, Rocha D, Boussaha M. Identification of copy number variation in French dairy and beef breeds using next-generation sequencing. Genet Sel Evol 2017; 49:77. [PMID: 29065859 PMCID: PMC5655909 DOI: 10.1186/s12711-017-0352-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
Background Copy number variations (CNV) are known to play a major role in genetic variability and disease pathogenesis in several species including cattle. In this study, we report the identification and characterization of CNV in eight French beef and dairy breeds using whole-genome sequence data from 200 animals. Bioinformatics analyses to search for CNV were carried out using four different but complementary tools and we validated a subset of the CNV by both in silico and experimental approaches.
Results We report the identification and localization of 4178 putative deletion-only, duplication-only and CNV regions, which cover 6% of the bovine autosomal genome; they were validated by two in silico approaches and/or experimentally validated using array-based comparative genomic hybridization and single nucleotide polymorphism genotyping arrays. The size of these variants ranged from 334 bp to 7.7 Mb, with an average size of ~ 54 kb. Of these 4178 variants, 3940 were deletions, 67 were duplications and 171 corresponded to both deletions and duplications, which were defined as potential CNV regions. Gene content analysis revealed that, among these variants, 1100 deletions and duplications encompassed 1803 known genes, which affect a wide spectrum of molecular functions, and 1095 overlapped with known QTL regions. Conclusions Our study is a large-scale survey of CNV in eight French dairy and beef breeds. These CNV will be useful to study the link between genetic variability and economically important traits, and to improve our knowledge on the genomic architecture of cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0352-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rabia Letaief
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France.
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Cécile Grohs
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Cédric Meersseman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France.,GMA, INRA, Université de Limoges, UMR1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Sébastien Fritz
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France.,Allice, Maison Nationale des Eleveurs, 75012, Paris, France
| | - Lidwine Trouilh
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Diane Esquerré
- GenPhySE, INRA, Université de Toulouse INPT ENSAT, Université de Toulouse INPT ENVT, 52627, Castanet-Tolosan, France
| | - Johanna Barbieri
- GenPhySE, INRA, Université de Toulouse INPT ENSAT, Université de Toulouse INPT ENVT, 52627, Castanet-Tolosan, France
| | | | - Romain Philippe
- GMA, INRA, Université de Limoges, UMR1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Véronique Blanquet
- GMA, INRA, Université de Limoges, UMR1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, 87060, Limoges Cedex, France
| | - Didier Boichard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Mekki Boussaha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| |
Collapse
|
95
|
Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One 2017; 12:e0183921. [PMID: 28841720 PMCID: PMC5571935 DOI: 10.1371/journal.pone.0183921] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/10/2017] [Indexed: 12/01/2022] Open
Abstract
Whole-genome sequencing provides a powerful tool to obtain more genetic variability that could produce a range of benefits for cattle breeding industry. Nanyang (Bos indicus) and Qinchuan (Bos taurus) are two important Chinese indigenous cattle breeds with distinct phenotypes. To identify the genetic characteristics responsible for variation in phenotypes between the two breeds, in the present study, we for the first time sequenced the genomes of four Nanyang and four Qinchuan cattle with 10 to 12 fold on average of 97.86% and 98.98% coverage of genomes, respectively. Comparison with the Bos_taurus_UMD_3.1 reference assembly yielded 9,010,096 SNPs for Nanyang, and 6,965,062 for Qinchuan cattle, 51% and 29% of which were novel SNPs, respectively. A total of 154,934 and 115,032 small indels (1 to 3 bp) were found in the Nanyang and Qinchuan genomes, respectively. The SNP and indel distribution revealed that Nanyang showed a genetically high diversity as compared to Qinchuan cattle. Furthermore, a total of 2,907 putative cases of copy number variation (CNV) were identified by aligning Nanyang to Qinchuan genome, 783 of which (27%) encompassed the coding regions of 495 functional genes. The gene ontology (GO) analysis revealed that many CNV genes were enriched in the immune system and environment adaptability. Among several CNV genes related to lipid transport and fat metabolism, Lepin receptor gene (LEPR) overlapping with CNV_1815 showed remarkably higher copy number in Qinchuan than Nanyang (log2 (ratio) = -2.34988; P value = 1.53E-102). Further qPCR and association analysis investigated that the copy number of the LEPR gene presented positive correlations with transcriptional expression and phenotypic traits, suggesting the LEPR CNV may contribute to the higher fat deposition in muscles of Qinchuan cattle. Our findings provide evidence that the distinct phenotypes of Nanyang and Qinchuan breeds may be due to the different genetic variations including SNPs, indels and CNV.
Collapse
|
96
|
Gorla E, Cozzi MC, Román-Ponce SI, Ruiz López FJ, Vega-Murillo VE, Cerolini S, Bagnato A, Strillacci MG. Genomic variability in Mexican chicken population using copy number variants. BMC Genet 2017; 18:61. [PMID: 28673234 PMCID: PMC5496433 DOI: 10.1186/s12863-017-0524-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variations are genome polymorphism that influence phenotypic variation and are an important source of genetic variation in populations. The aim of this study was to investigate genetic variability in the Mexican Creole chicken population using CNVs. RESULTS The Hidden Markov Model of the PennCNV software detected a total of 1924 CNVs in the genome of the 256 samples processed with Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix). The mapped CNVs comprised 1538 gains and 386 losses, resulting at population level in 1216 CNV regions (CNVRs), of which 959 gains, 226 losses and 31 complex (i.e. containing both losses and gains). The CNVRs covered a total of 47 Mb of the whole genome sequence length, corresponding to 5.12% of the chicken galGal4 autosome assembly. CONCLUSIONS This study allowed a deep insight into the structural variation in the genome of unselected Mexican chicken population, which up to now has not been genetically characterized. The genomic study disclosed that the population, even if presenting extreme morphological variation, cannot be organized in differentiated genetic subpopulations. Finally this study provides a chicken CNV map based on the 600 K SNP chip array jointly with a genome-wide gene copy number estimates in a native unselected for more than 500 years chicken population.
Collapse
Affiliation(s)
- E. Gorla
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - M. C. Cozzi
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - S. I. Román-Ponce
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agricola y Pecuarias (INIFAP), Km.1 Carretera a Colón, Auchitlán, 76280 Querétaro, CP Mexico
| | - F. J. Ruiz López
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agricola y Pecuarias (INIFAP), Km.1 Carretera a Colón, Auchitlán, 76280 Querétaro, CP Mexico
| | - V. E. Vega-Murillo
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agricola y Pecuarias (INIFAP), Melchor Ocampo # 234 Desp. 313, Col. Centro Veracruz, C.P. 91700 Veracruz, Mexico
| | - S. Cerolini
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - A. Bagnato
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - M. G. Strillacci
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| |
Collapse
|
97
|
Brown MM, Alenyorege B, Teye GA, Roessler R. Phenotypic diversity, major genes and production potential of local chickens and guinea fowl in Tamale, northern Ghana. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1372-1381. [PMID: 28728378 PMCID: PMC5582320 DOI: 10.5713/ajas.17.0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 05/24/2017] [Indexed: 11/27/2022]
Abstract
Objective Our study provides information on phenotypes of local chickens and guinea fowl and their body measures as well as on major genes in local chickens in northern Ghana. Methods Qualitative and morphometric traits were recorded on 788 local chickens and 394 guinea fowl in urban households in Tamale, Ghana. Results The results showed considerable variation of color traits and numerous major genes in local chickens, while color variations and related genotypes in guinea fowl were limited. In local chickens, white was preferred for plumage, whereas dark colors were preferred for beak and shanks. More than half of the chickens carried at least one major gene, but the contributions of single gene carriers were low. All calculated allele frequencies were significantly lower than their expected Mendelian allele frequencies. We observed higher mean body weight and larger linear body measures in male as compared to female chickens. In female chickens, we detected a small effect of major genes on body weight and chest circumference. In addition, we found some association between feather type and plumage color. In guinea fowl, seven distinct plumage colors were observed, of which pearl grey pied and pearl grey were the most prevalent. Male pearl grey pied guinea fowl were inferior to pearl grey and white guinea fowl in terms of body weight, body length and chest circumference; their shank length was lower than that of pearl grey fowl. Conclusion Considerable variation in qualitative traits of local chickens may be indicative of genetic diversity within local chicken populations, but major genes were rare. In contrast, phenotypic and genetic diversity in local guinea fowl is limited. Broader genetic diversity studies and evaluation of trait preferences of local poultry producers are required for the design of appropriate breeding programs.
Collapse
Affiliation(s)
- Michael Mensah Brown
- Group Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Witzenhausen 37213, Germany
| | - Benjamin Alenyorege
- Department of Animal Science, Faculty of Agriculture, University for Development Studies, P.O. Box TL 1882, Tamale, Ghana
| | - Gabriel Ayum Teye
- Department of Animal Science, Faculty of Agriculture, University for Development Studies, P.O. Box TL 1882, Tamale, Ghana
| | - Regina Roessler
- Group Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Witzenhausen 37213, Germany
| |
Collapse
|
98
|
Bílková B, Bainová Z, Janda J, Zita L, Vinkler M. Different breeds, different blood: Cytometric analysis of whole blood cellular composition in chicken breeds. Vet Immunol Immunopathol 2017; 188:71-77. [PMID: 28615130 DOI: 10.1016/j.vetimm.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/16/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
While haematological variation is well known in birds, variation in avian breeds (distinct morphotypes of the same species) remains unexplored. Poultry breeds, in particular, may show interesting evolutionary patterns and economically-relevant physiological differences. We performed a comparative examination of blood cellular composition in five chicken (Gallus gallus domesticus) breeds: Araucana, Booted bantam, Czech, Minorca and Rosecomb bantam. In standard-environment-reared hens whole-blood flow cytometry revealed remarkable differences in most erythrocyte- and leukocyte-related parameters. We identified two extremes: Czech, a European breed, with a low heterophil/lymphocyte (H/L) ratio and high CD4+ levels, and Araucana, a South-American breed, with a high H/L ratio and high relative monocyte count. Such variation may reflect a combination of artificial and natural selection acting on health- and stress-related traits in domestic populations. Different breeds have evolved different immunological adaptations reflecting their original need to fight pathogens and physiological constraint resulting from dissimilar physiological trade-offs.
Collapse
Affiliation(s)
- Barbora Bílková
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 44 Prague, Czech Republic, EU
| | - Zuzana Bainová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 44 Prague, Czech Republic, EU; Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, 128 44 Prague, EU, Czech Republic, EU
| | - Jozef Janda
- Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, 128 44 Prague, EU, Czech Republic, EU
| | - Lukáš Zita
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Husbandry, Kamýcká 129, 165 00 Prague, EU, Czech Republic, EU
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 44 Prague, Czech Republic, EU.
| |
Collapse
|
99
|
Characterization of Copy Number Variation's Potential Role in Marek's Disease. Int J Mol Sci 2017; 18:ijms18051020. [PMID: 28486430 PMCID: PMC5454933 DOI: 10.3390/ijms18051020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023] Open
Abstract
Marek’s Disease (MD) is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. Chicken Lines 63 and 72, as well as their recombinant congenic strains (RCS) with varied susceptibility to MD, are ideal models to study the complex mechanisms of genetic resistance to MD. In this study, we investigated copy number variation (CNV) in these inbred chicken lines using the Affymetrix Axiom HD 600 K SNP genotyping array. We detected 393 CNV segments across all ten chicken lines, of which 12 CNVs were specifically identified in Line 72. We then assessed genetic structure based on CNV and observed markedly different patterns. Finally, we validated two deletion events in Line 72 and correlated them with genes expression using qPCR and RNA-seq, respectively. Our combined results indicated that these two CNV deletions were likely to contribute to MD susceptibility.
Collapse
|
100
|
Ma Q, Liu X, Pan J, Ma L, Ma Y, He X, Zhao Q, Pu Y, Li Y, Jiang L. Genome-wide detection of copy number variation in Chinese indigenous sheep using an ovine high-density 600 K SNP array. Sci Rep 2017; 7:912. [PMID: 28424525 PMCID: PMC5430420 DOI: 10.1038/s41598-017-00847-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Copy number variants (CNVs) represent a form of genomic structural variation underlying phenotypic diversity. In this study, we used the Illumina Ovine SNP 600 K BeadChip array for genome-wide detection of CNVs in 48 Chinese Tan sheep. A total of 1,296 CNV regions (CNVRs), ranging from 1.2 kb to 2.3 Mb in length, were detected, representing approximately 4.7% of the entire ovine genome (Oar_v3.1). We combined our findings with five existing CNVR reports to generate a composite genome-wide dataset of 4,321 CNVRs, which revealed 556 (43%) novel CNVRs. Subsequently, ten novel CNVRs were randomly chosen for further quantitative real-time PCR (qPCR) confirmation, and eight were successfully validated. Gene functional enrichment revealed that these CNVRs cluster into Gene Ontology (GO) categories of homeobox and embryonic skeletal system morphogenesis. One CNVR overlapping with the homeobox transcription factor DLX3 and previously shown to be associated with curly hair in sheep was identified as the candidate CNV for the special curly fleece phenotype in Tan sheep. We constructed a Chinese indigenous sheep genomic CNV map based on the Illumina Ovine SNP 600 K BeadChip array, providing an important addition to published sheep CNVs, which will be helpful for future investigations of the genomic structural variations underlying traits of interest in sheep.
Collapse
Affiliation(s)
- Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 75002, China
| | - Xuexue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jianfei Pan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 75002, China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yingkang Li
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 75002, China.
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China. .,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|