51
|
Chang KW, Tseng YT, Chen YC, Yu CY, Liao HF, Chen YC, Tu YFE, Wu SC, Liu IH, Pinskaya M, Morillon A, Pain B, Lin SP. Stage-dependent piRNAs in chicken implicated roles in modulating male germ cell development. BMC Genomics 2018; 19:425. [PMID: 29859049 PMCID: PMC5984780 DOI: 10.1186/s12864-018-4820-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background The PIWI/piRNA pathway is a conserved machinery important for germ cell development and fertility. This piRNA-guided molecular machinery is best known for repressing derepressed transposable elements (TE) during epigenomic reprogramming. The extent to which piRNAs are involved in modulating transcripts beyond TEs still need to be clarified, and it may be a stage-dependent event. We chose chicken germline as a study model because of the significantly lower TE complexity in the chicken genome compared to mammalian species. Results We generated high-confidence piRNA candidates in various stages across chicken germline development by 3′-end-methylation-enriched small RNA sequencing and in-house bioinformatics analysis. We observed a significant developmental stage-dependent loss of TE association and a shifting of the ping-pong cycle signatures. Moreover, the stage-dependent reciprocal abundance of LINE retrotransposons, CR1-C, and its associated piRNAs implicated the developmental stage-dependent role of piRNA machinery. The stage dependency of piRNA expression and its potential functions can be better addressed by analyzing the piRNA precursors/clusters. Interestingly, the new piRNA clusters identified from embryonic chicken testes revealed evolutionary conservation between chickens and mammals, which was previously thought to not exist. Conclusions In this report, we provided an original chicken RNA resource and proposed an analytical methodology that can be used to investigate stage-dependent changes in piRNA compositions and their potential roles in TE regulation and beyond, and also revealed possible conserved functions of piRNAs in developing germ cells. Electronic supplementary material The online version of this article (10.1186/s12864-018-4820-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan.,Present Address: Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yen-Tzu Tseng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Chen Chen
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan.,Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Chih-Yun Yu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Hung-Fu Liao
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Chun Chen
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Fan Evan Tu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Marina Pinskaya
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University, Université Pierre et Marie Curie, F-75005, Paris, France
| | - Antonin Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University, Université Pierre et Marie Curie, F-75005, Paris, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Shau-Ping Lin
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan. .,Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, 106, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
52
|
Kent TV, Uzunović J, Wright SI. Coevolution between transposable elements and recombination. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0458. [PMID: 29109221 DOI: 10.1098/rstb.2016.0458] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
One of the most striking patterns of genome structure is the tight, typically negative, association between transposable elements (TEs) and meiotic recombination rates. While this is a highly recurring feature of eukaryotic genomes, the mechanisms driving correlations between TEs and recombination remain poorly understood, and distinguishing cause versus effect is challenging. Here, we review the evidence for a relation between TEs and recombination, and discuss the underlying evolutionary forces. Evidence to date suggests that overall TE densities correlate negatively with recombination, but the strength of this correlation varies across element types, and the pattern can be reversed. Results suggest that heterogeneity in the strength of selection against ectopic recombination and gene disruption can drive TE accumulation in regions of low recombination, but there is also strong evidence that the regulation of TEs can influence local recombination rates. We hypothesize that TE insertion polymorphism may be important in driving within-species variation in recombination rates in surrounding genomic regions. Furthermore, the interaction between TEs and recombination may create positive feedback, whereby TE accumulation in non-recombining regions contributes to the spread of recombination suppression. Further investigation of the coevolution between recombination and TEs has important implications for our understanding of the evolution of recombination rates and genome structure.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Tyler V Kent
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S3B2
| | - Jasmina Uzunović
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S3B2
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S3B2
| |
Collapse
|
53
|
McGurk MP, Barbash DA. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res 2018; 28:714-725. [PMID: 29588362 PMCID: PMC5932611 DOI: 10.1101/gr.231472.117] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomes are replete with repeated sequences in the form of transposable elements (TEs) dispersed across the genome or as satellite arrays, large stretches of tandemly repeated sequences. Many satellites clearly originated as TEs, but it is unclear how mobile genetic parasites can transform into megabase-sized tandem arrays. Comprehensive population genomic sampling is needed to determine the frequency and generative mechanisms of tandem TEs, at all stages from their initial formation to their subsequent expansion and maintenance as satellites. The best available population resources, short-read DNA sequences, are often considered to be of limited utility for analyzing repetitive DNA due to the challenge of mapping individual repeats to unique genomic locations. Here we develop a new pipeline called ConTExt that demonstrates that paired-end Illumina data can be successfully leveraged to identify a wide range of structural variation within repetitive sequence, including tandem elements. By analyzing 85 genomes from five populations of Drosophila melanogaster, we discover that TEs commonly form tandem dimers. Our results further suggest that insertion site preference is the major mechanism by which dimers arise and that, consequently, dimers form rapidly during periods of active transposition. This abundance of TE dimers has the potential to provide source material for future expansion into satellite arrays, and we discover one such copy number expansion of the DNA transposon hobo to approximately 16 tandem copies in a single line. The very process that defines TEs—transposition—thus regularly generates sequences from which new satellites can arise.
Collapse
Affiliation(s)
- Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
54
|
Li Z, You L, Yan D, James AA, Huang Y, Tan A. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genet 2018; 14:e1007245. [PMID: 29474354 PMCID: PMC5841826 DOI: 10.1371/journal.pgen.1007245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/07/2018] [Accepted: 02/09/2018] [Indexed: 01/02/2023] Open
Abstract
Sex determination is a hierarchically-regulated process with high diversity in different organisms including insects. The W chromosome-derived Fem piRNA has been identified as the primary sex determination factor in the lepidopteran insect, Bombyx mori, revealing a distinctive piRNA-mediated sex determination pathway. However, the comprehensive mechanism of silkworm sex determination is still poorly understood. We show here that the silkworm PIWI protein BmSiwi, but not BmAgo3, is essential for silkworm sex determination. CRISPR/Cas9-mediated depletion of BmSiwi results in developmental arrest in oogenesis and partial female sexual reversal, while BmAgo3 depletion only affects oogenesis. We identify three histone methyltransferases (HMTs) that are significantly down-regulated in BmSiwi mutant moths. Disruption one of these, BmAsh2, causes dysregulation of piRNAs and transposable elements (TEs), supporting a role for it in the piRNA signaling pathway. More importantly, we find that BmAsh2 mutagenesis results in oogenesis arrest and partial female-to-male sexual reversal as well as dysregulation of the sex determination genes, Bmdsx and BmMasc. Mutagenesis of other two HMTs, BmSETD2 and BmEggless, does not affect piRNA-mediated sex determination. Histological analysis and immunoprecipitation results support a functional interaction between the BmAsh2 and BmSiwi proteins. Our data provide the first evidence that the HMT, BmAsh2, plays key roles in silkworm piRNA-mediated sex determination.
Collapse
Affiliation(s)
- Zhiqian Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lang You
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Dong Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Anthony A. James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, United States of America
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Anjiang Tan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
55
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
56
|
Jakšić AM, Kofler R, Schlötterer C. Regulation of transposable elements: Interplay between TE-encoded regulatory sequences and host-specific trans-acting factors in Drosophila melanogaster. Mol Ecol 2017; 26:5149-5159. [PMID: 28742942 DOI: 10.1111/mec.14259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are mobile genetic elements that can move around the genome, and their expression is one precondition for this mobility. Because the insertion of TEs in new genomic positions is largely deleterious, the molecular mechanisms for transcriptional suppression have been extensively studied. In contrast, very little is known about their primary transcriptional regulation. Here, we characterize the expression dynamics of TE families in Drosophila melanogaster across a broad temperature range (13-29°C). In 71% of the expressed TE families, the expression is modulated by temperature. We show that this temperature-dependent regulation is specific for TE families and strongly affected by the genetic background. We deduce that TEs carry family-specific regulatory sequences, which are targeted by host-specific trans-acting factors, such as transcription factors. Consistent with the widespread dominant inheritance of gene expression, we also find the prevailing dominance of TE family expression. We conclude that TE family expression across a range of temperatures is regulated by an interaction between TE family-specific regulatory elements and trans-acting factors of the host.
Collapse
Affiliation(s)
- Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
57
|
Zhang S, Kelleher ES. Targeted identification of TE insertions in a Drosophila genome through hemi-specific PCR. Mob DNA 2017; 8:10. [PMID: 28775768 PMCID: PMC5534036 DOI: 10.1186/s13100-017-0092-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are major components of eukaryotic genomes and drivers of genome evolution, producing intraspecific polymorphism and interspecific differences through mobilization and non-homologous recombination. TE insertion sites are often highly variable within species, creating a need for targeted genome re-sequencing (TGS) methods to identify TE insertion sites. METHODS We present a hemi-specific PCR approach for TGS of P-elements in Drosophila genomes on the Illumina platform. We also present a computational framework for identifying new insertions from TGS reads. Finally, we describe a new method for estimating the frequency of TE insertions from WGS data, which is based precise insertion sites provided by TGS annotations. RESULTS By comparing our results to TE annotations based on whole genome re-sequencing (WGS) data for the same Drosophilamelanogaster strain, we demonstrate that TGS is powerful for identifying true insertions, even in repeat-rich heterochromatic regions. We also demonstrate that TGS offers enhanced annotation of precise insertion sites, which facilitates estimation of TE insertion frequency. CONCLUSIONS TGS by hemi-specific PCR is a powerful approach for identifying TE insertions of particular TE families in species with a high-quality reference genome, at greatly reduced cost as compared to WGS. It may therefore be ideal for population genomic studies of particular TE families. Additionally, TGS and WGS can be used as complementary approaches, with TGS annotations identifying more annotated insertions with greater precision for a target TE family, and WGS data allowing for estimates of TE insertion frequencies, and a broader picture of the location of non-target TEs across the genome.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd. Suite 342, Houston, TX 77204 USA
| | - Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd. Suite 342, Houston, TX 77204 USA
| |
Collapse
|
58
|
Lee YCG, Karpen GH. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 2017; 6. [PMID: 28695823 PMCID: PMC5505702 DOI: 10.7554/elife.25762] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored epigenetic impacts of TEs and provide the first genome-wide quantification of such effects in D. melanogaster and D. simulans. Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb. This results in differential epigenetic states of genic alleles and, in turn, selection against TEs. Interestingly, the lower TE content in D. simulans compared to D. melanogaster correlates with stronger epigenetic effects of TEs and higher levels of host genetic factors known to promote epigenetic silencing. Our study demonstrates that the epigenetic effects of euchromatic TEs, and host genetic factors modulating such effects, play a critical role in the evolution of TEs both within and between species. DOI:http://dx.doi.org/10.7554/eLife.25762.001 The DNA inside an organism encodes all the instructions needed for the organism to develop and work properly. Organisms carefully organize and maintain their DNA (collectively known as the genome) so that the genetic information remains intact and the cell can understand the instructions. However, there are some pieces of DNA that are capable of moving around the genome. For example, pieces known as transposable elements can make new copies of themselves and jump into new locations in the genome. Most transposons do not appear to have any important roles, and in fact they are usually harmful to organisms. Despite this, transposons are present in the genomes of almost all species. The number of transposons in a genome varies greatly between individuals and species, but it is not clear why this is the case. Organisms have evolved ways to limit the damage caused by transposons. For example, many cells package regions of DNA containing transposons into a tightly packed structure known as heterochromatin. However, this type of DNA packaging sometimes spreads to neighboring sections of DNA. This is a problem because cells are not usually able to read the information contained within heterochromatin. This means that transposons can prevent some instructions from being produced when they should be. Lee and Karpen used fruit flies to investigate to what extent transposons harm organisms by changing the way DNA is packaged, and whether this influences how transposons evolve. The experiments show that that more than half of the transposons in fruit flies cause neighboring sections of DNA to be packaged into heterochromatin. This can negatively impact up to 20% of genes in the genome. As a result, transposons that have harmful effects on DNA packaging are more likely to be lost from the fly population during evolution than transposons that do not have harmful effects. Fruit fly species containing transposons that tend to package more neighboring sections of DNA into heterochromatin generally have fewer transposons than genomes containing less harmful transposons. The findings of Lee and Karpen provide new insight as to why the numbers of transposons vary among organisms. The next challenge is to find out whether transposons that alter how DNA is packaged are also common in primates and other animals. DOI:http://dx.doi.org/10.7554/eLife.25762.002
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
| |
Collapse
|
59
|
Saint-Leandre B, Clavereau I, Hua-Van A, Capy P. Transcriptional polymorphism ofpiRNA regulatory genes underlies themarineractivity inDrosophila simulanstestes. Mol Ecol 2017; 26:3715-3731. [DOI: 10.1111/mec.14145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/28/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Bastien Saint-Leandre
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Isabelle Clavereau
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Aurelie Hua-Van
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS; Univ. Paris-Sud, IRD; Université Paris-Saclay; Gif-sur-Yvette Cedex France
| |
Collapse
|
60
|
Cis- and Trans-regulatory Effects on Gene Expression in a Natural Population of Drosophila melanogaster. Genetics 2017; 206:2139-2148. [PMID: 28615283 DOI: 10.1534/genetics.117.201459] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
Cis- and trans-regulatory mutations are important contributors to transcriptome evolution. Quantifying their relative contributions to intraspecific variation in gene expression is essential for understanding the population genetic processes that underlie evolutionary changes in gene expression. Here, we have examined this issue by quantifying genome-wide, allele-specific expression (ASE) variation using a crossing scheme that produces F1 hybrids between 18 different Drosophila melanogaster strains sampled from the Drosophila Genetic Reference Panel and a reference strain from another population. Head and body samples from F1 adult females were subjected to RNA sequencing and the subsequent ASE quantification. Cis- and trans-regulatory effects on expression variation were estimated from these data. A higher proportion of genes showed significant cis-regulatory variation (∼28%) than those that showed significant trans-regulatory variation (∼9%). The sizes of cis-regulatory effects on expression variation were 1.98 and 1.88 times larger than trans-regulatory effects in heads and bodies, respectively. A generalized linear model analysis revealed that both cis- and trans-regulated expression variation was strongly associated with nonsynonymous nucleotide diversity and tissue specificity. Interestingly, trans-regulated variation showed a negative correlation with local recombination rate. Also, our analysis on proximal transposable element (TE) insertions suggested that they affect transcription levels of ovary-expressed genes more pronouncedly than genes not expressed in the ovary, possibly due to defense mechanisms against TE mobility in the germline. Collectively, our detailed quantification of ASE variations from a natural population has revealed a number of new relationships between genomic factors and the effects of cis- and trans-regulatory factors on expression variation.
Collapse
|
61
|
Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:164-176. [PMID: 28602845 PMCID: PMC5487533 DOI: 10.1016/j.gpb.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established “transposition-selection” population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms.
Collapse
|
62
|
Adrion JR, Song MJ, Schrider DR, Hahn MW, Schaack S. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster. Genome Biol Evol 2017; 9:1329-1340. [PMID: 28338986 PMCID: PMC5447328 DOI: 10.1093/gbe/evx050] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species.
Collapse
Affiliation(s)
| | - Michael J. Song
- Department of Integrative Biology, University of California, Berkeley, CA
| | - Daniel R. Schrider
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN
- School of Informatics and Computing, Indiana University, Bloomington, IN
| | | |
Collapse
|
63
|
Si H, Cao Y, Zhu H, Li D, Lv Z, Sheng Q, Nie Z. Transposable Element Bm1645 is a Source of BmAGO2-associated Small RNAs that affect its expression in Bombyx mori. BMC Genomics 2017; 18:201. [PMID: 28231766 PMCID: PMC5324241 DOI: 10.1186/s12864-017-3598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 02/21/2017] [Indexed: 12/04/2022] Open
Abstract
Background A transposable element (TE) is a DNA fragment that can change its position within a genome. Transposable elements play important roles in maintaining the stability and diversity of organisms by transposition. Recent studies have shown that approximately half of the genes in Bombyx mori are TEs. Results We systematically identified and analyzed the BmAGO2-associated TEs, which exceed 100 in the B. mori genome. Additionally, we also mapped the small RNAs associated with BmAGO2 in B.mori. The transposon Bm1645 is the most abundant TE associated with BmAGO2, and Bm1645-derived small RNAs represent a small RNA pool. We determined the expression patterns of several Bm1645-derived small RNAs by northern blotting, and the results showed there was differential expression of multiple small RNAs in normal and BmNPV-infected BmN cells and silkworms from various developmental stages. We confirmed that four TE-siRNAs could bind to BmAGO2 using EMSA and also validated the recognition sites of these four TE-siRNAs in Bm1645 by dual-luciferase reporter assays. Furthermore, qRT-PCR analysis revealed the overexpression of the four TE-siRNAs could downregulate the expression of Bm1645 in BmN cells, and the transcription of Bm1645 was upregulated by the downregulation of BmAGO2. Conclusions Our results suggest Bm1645 functions as a source of small RNAs pool and this pool can produce many BmAGO2-associated small RNAs that regulate TE’s expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3598-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongqiang Si
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Yunjie Cao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Honglin Zhu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Dan Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Zhengbing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Qing Sheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Zuoming Nie
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
64
|
Blumenstiel JP, Erwin AA, Hemmer LW. What Drives Positive Selection in the Drosophila piRNA Machinery? The Genomic Autoimmunity Hypothesis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:499-512. [PMID: 28018141 PMCID: PMC5168828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) play a crucial role in genome defense. Moreover, because piRNAs can be maternally transmitted, they contribute to the epigenetic profile of inheritance. Multiple studies, especially in Drosophila, have demonstrated that the machinery of piRNA biogenesis is often the target of positive selection. Because transposable elements (TEs) are a form of genetic parasite, positive selection in the piRNA machinery is often explained by analogy to the signatures of positive selection commonly observed in genes that play a role in host-parasite dynamics. However, the precise mechanisms that drive positive selection in the piRNA machinery are not known. In this review, we outline several mechanistic models that might explain pervasive positive selection in the piRNA machinery of Drosophila species. We propose that recurrent positive selection in the piRNA machinery can be partly explained by an ongoing tension between selection for sensitivity required by genome defense and selection for specificity to avoid the off-target effects of maladaptive genic silencing by piRNA.
Collapse
Affiliation(s)
| | - Alexandra A. Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | - Lucas W. Hemmer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| |
Collapse
|
65
|
Liu P, Dong Y, Gu J, Puthiyakunnon S, Wu Y, Chen XG. Developmental piRNA profiles of the invasive vector mosquito Aedes albopictus. Parasit Vectors 2016; 9:524. [PMID: 27686069 PMCID: PMC5041409 DOI: 10.1186/s13071-016-1815-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background In eukaryotic organisms, Piwi-interacting RNAs (piRNAs) control the activities of mobile genetic elements and ensure genome maintenance. Recent evidence indicates that piRNAs are involved in multiple biological pathways, including transcriptional regulation of protein-coding genes, sex determination and even interactions between host and pathogens. Aedes albopictus is a major invasive species that transmits a number of viral diseases in humans. Ae. albopictus has the largest genome and the highest abundance of repetitive sequences when compared with members that belong to Culicidae with a published genome. Analysis of piRNA profiles will provide a developmental and evolutionary perspective on piRNAs in Ae. albopictus. Methods piRNAs were identified and characterized during the development of Ae. albopictus, and piRNA expression patterns in adult males and females as well as sugar-fed females and blood-fed females were compared. Results Our results reveal that, despite the large genome size of Ae. albopictus, the piRNA pool of Ae. albopictus (1.2 × 107) is smaller than those of Aedes aegypti (1.7 × 107) and Drosophila melanogaster (1.6 × 107). In Ae. albopictus, piRNAs displayed the highest abundance at the embryo stage and the lowest abundance at the pupal stage. Approximately 50 % of the piRNAs mapped to intergenic regions with no known functions. Approximately 30 % of the piRNAs mapped to repetitive elements, and 77.69 % of these repeat-derived piRNAs mapped to Class I TEs; 45.42 % of the observed piRNA reads originated from piRNA clusters, and most of the top 10 highest expressed piRNA clusters and 100 highest expressed piRNAs from each stage displayed biased expression patterns across the developmental stages. All anti-sense-derived piRNAs displayed a preference for uridine at the 5′ end; however, the sense-derived piRNAs showed adenine bias at the tenth nucleotide position and a typical ping-pong signature, suggesting that the biogenesis of piRNAs was conserved throughout development. Our results also show that 962 piRNAs displayed sex-biased expression, and 522 piRNAs showed higher expression in the blood-fed females than in the sugar-fed females. Conclusions Our results suggest that piRNAs, aside from silencing transposable elements in Ae. albopictus, may have a role in other biological pathways. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1815-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peiwen Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunqiao Dong
- Reproductive Medical Centre of Guangdong Women and Children Hospital, Guangzhou, Guangdong, 511442, China
| | - Jinbao Gu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Santhosh Puthiyakunnon
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yang Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
66
|
Dias GB, Heringer P, Svartman M, Kuhn GCS. Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression. Chromosome Res 2016; 23:597-613. [PMID: 26408292 DOI: 10.1007/s10577-015-9480-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drosophila INterspersed Elements (DINEs) constitute an abundant but poorly understood group of Helitrons present in several Drosophila species. The general structure of DINEs includes two conserved blocks that may or not contain a region with tandem repeats in between. These central tandem repeats (CTRs) are similar within species but highly divergent between species. It has been assumed that CTRs have independent origins. Herein, we identify a subset of DINEs, termed DINE-TR1, which contain homologous CTRs of approximately 150 bp. We found DINE-TR1 in the sequenced genomes of several Drosophila species and in Bactrocera tryoni (Acalyptratae, Diptera). However, interspecific high sequence identity (∼ 88 %) is limited to the first ∼ 30 bp of each tandem repeat, implying that evolutionary constraints operate differently over the monomer length. DINE-TR1 is unevenly distributed across the Drosophila phylogeny. Nevertheless, sequence analysis suggests vertical transmission. We found that CTRs within DINE-TR1 have independently expanded into satellite DNA-like arrays at least twice within Drosophila. By analyzing the genome of Drosophila virilis and Drosophila americana, we show that DINE-TR1 is highly abundant in pericentromeric heterochromatin boundaries, some telomeric regions and in the Y chromosome. It is also present in the centromeric region of one autosome from D. virilis and dispersed throughout several euchromatic sites in both species. We further found that DINE-TR1 is abundant at piRNA clusters, and small DINE-TR1-derived RNA transcripts (∼25 nt) are predominantly expressed in the testes and the ovaries, suggesting active targeting by the piRNA machinery. These features suggest potential piRNA-mediated regulatory roles for DINEs at local and genome-wide scales in Drosophila.
Collapse
Affiliation(s)
- Guilherme B Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Heringer
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo C S Kuhn
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
67
|
Merenciano M, Ullastres A, de Cara MAR, Barrón MG, González J. Multiple Independent Retroelement Insertions in the Promoter of a Stress Response Gene Have Variable Molecular and Functional Effects in Drosophila. PLoS Genet 2016; 12:e1006249. [PMID: 27517860 PMCID: PMC4982627 DOI: 10.1371/journal.pgen.1006249] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Promoters are structurally and functionally diverse gene regulatory regions. The presence or absence of sequence motifs and the spacing between the motifs defines the properties of promoters. Recent alternative promoter usage analyses in Drosophila melanogaster revealed that transposable elements significantly contribute to promote diversity. In this work, we analyzed in detail one of the transposable element insertions, named FBti0019985, that has been co-opted to drive expression of CG18446, a candidate stress response gene. We analyzed strains from different natural populations and we found that besides FBti0019985, there are another eight independent transposable elements inserted in the proximal promoter region of CG18446. All nine insertions are solo-LTRs that belong to the roo family. We analyzed the sequence of the nine roo insertions and we investigated whether the different insertions were functionally equivalent by performing 5'-RACE, gene expression, and cold-stress survival experiments. We found that different insertions have different molecular and functional consequences. The exact position where the transposable elements are inserted matters, as they all showed highly conserved sequences but only two of the analyzed insertions provided alternative transcription start sites, and only the FBti0019985 insertion consistently affects CG18446 expression. The phenotypic consequences of the different insertions also vary: only FBti0019985 was associated with cold-stress tolerance. Interestingly, the only previous report of transposable elements inserting repeatedly and independently in a promoter region in D. melanogaster, were also located upstream of a stress response gene. Our results suggest that functional validation of individual structural variants is needed to resolve the complexity of insertion clusters.
Collapse
Affiliation(s)
- Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
| | - Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
| | - M. A. R. de Cara
- Laboratoire d’Eco-anthropologie et Ethnobiologie, UMR 7206, CNRS/MNHN/Universite Paris 7, Museum National d’Histoire Naturelle, F-75116 Paris, France
| | - Maite G. Barrón
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona. Spain
- * E-mail:
| |
Collapse
|
68
|
Dias GB, Heringer P, Kuhn GCS. Helitrons in Drosophila: Chromatin modulation and tandem insertions. Mob Genet Elements 2016; 6:e1154638. [PMID: 27141326 DOI: 10.1080/2159256x.2016.1154638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022] Open
Abstract
Although Helitrons were discovered 15 y ago, they still represent an elusive group of transposable elements (TEs). They are thought to transpose via a rolling-circle mechanism, but no transposition assay has yet been conducted. We have recently characterized a group of Helitrons in Drosophila, named DINE-TR1, that display interesting features, including pronounced enrichment at β-heterochromatin, multiple tandem insertions (TIs) of the entire TE, and that experienced at least 2 independent expansion events of its internal tandem repeats (TRs) in distant Drosophila lineages. Here we discuss 2 aspects of TE dynamics displayed by the DINE-TR1 Helitrons: (i) the general evolutionary impact of piRNA-guided heterochromatin formation via TE-derived TR expansion and (ii) the possible mechanisms that could account for the recurrent TIs of Helitrons.
Collapse
Affiliation(s)
- Guilherme B Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brazil
| | - Pedro Heringer
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brazil
| | - Gustavo C S Kuhn
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais , Belo Horizonte, MG, Brazil
| |
Collapse
|
69
|
Hill T, Schlötterer C, Betancourt AJ. Hybrid Dysgenesis in Drosophila simulans Associated with a Rapid Invasion of the P-Element. PLoS Genet 2016; 12:e1005920. [PMID: 26982327 PMCID: PMC4794157 DOI: 10.1371/journal.pgen.1005920] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/14/2016] [Indexed: 11/22/2022] Open
Abstract
In a classic example of the invasion of a species by a selfish genetic element, the P-element was horizontally transferred from a distantly related species into Drosophila melanogaster. Despite causing ‘hybrid dysgenesis’, a syndrome of abnormal phenotypes that include sterility, the P-element spread globally in the course of a few decades in D. melanogaster. Until recently, its sister species, including D. simulans, remained P-element free. Here, we find a hybrid dysgenesis-like phenotype in the offspring of crosses between D. simulans strains collected in different years; a survey of 181 strains shows that around 20% of strains induce hybrid dysgenesis. Using genomic and transcriptomic data, we show that this dysgenesis-inducing phenotype is associated with the invasion of the P-element. To characterize this invasion temporally and geographically, we survey 631 D. simulans strains collected on three continents and over 27 years for the presence of the P-element. We find that the D. simulans P-element invasion occurred rapidly and nearly simultaneously in the regions surveyed, with strains containing P-elements being rare in 2006 and common by 2014. Importantly, as evidenced by their resistance to the hybrid dysgenesis phenotype, strains collected from the latter phase of this invasion have adapted to suppress the worst effects of the P-element. Some genes perform necessary organismal functions, others hijack the cellular machinery to replicate themselves, potentially harming the host in the process. These ‘selfish genes’ can spread through genomes and species; as a result, eukaryotic genomes are typically saddled with large amounts of parasitic DNA. Here, we chronicle the surprisingly rapid global spread of a selfish transposable element through a close relative of the genetic model, Drosophila melanogaster. We see that, as it spreads, the transposable element is associated with damaging effects, including sterility, but that the flies quickly adapt to the negative consequences of the transposable element.
Collapse
Affiliation(s)
- Tom Hill
- Institut für Populationsgenetik, Vetmeduni Vienna, Austria
| | | | | |
Collapse
|
70
|
Levine MT, Vander Wende HM, Hsieh E, Baker EP, Malik HS. Recurrent Gene Duplication Diversifies Genome Defense Repertoire in Drosophila. Mol Biol Evol 2016; 33:1641-53. [PMID: 26979388 DOI: 10.1093/molbev/msw053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) comprise large fractions of many eukaryotic genomes and imperil host genome integrity. The host genome combats these challenges by encoding proteins that silence TE activity. Both the introduction of new TEs via horizontal transfer and TE sequence evolution requires constant innovation of host-encoded TE silencing machinery to keep pace with TEs. One form of host innovation is the adaptation of existing, single-copy host genes. Indeed, host suppressors of TE replication often harbor signatures of positive selection. Such signatures are especially evident in genes encoding the piwi-interacting-RNA pathway of gene silencing, for example, the female germline-restricted TE silencer, HP1D/Rhino Host genomes can also innovate via gene duplication and divergence. However, the importance of gene family expansions, contractions, and gene turnover to host genome defense has been largely unexplored. Here, we functionally characterize Oxpecker, a young, tandem duplicate gene of HP1D/rhino We demonstrate that Oxpecker supports female fertility in Drosophila melanogaster and silences several TE families that are incompletely silenced by HP1D/Rhino in the female germline. We further show that, like Oxpecker, at least ten additional, structurally diverse, HP1D/rhino-derived daughter and "granddaughter" genes emerged during a short 15-million year period of Drosophila evolution. These young paralogs are transcribed primarily in germline tissues, where the genetic conflict between host genomes and TEs plays out. Our findings suggest that gene family expansion is an underappreciated yet potent evolutionary mechanism of genome defense diversification.
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Emily Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - EmilyClare P Baker
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle,
| |
Collapse
|
71
|
Mita P, Boeke JD. How retrotransposons shape genome regulation. Curr Opin Genet Dev 2016; 37:90-100. [PMID: 26855260 DOI: 10.1016/j.gde.2016.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/30/2015] [Accepted: 01/17/2016] [Indexed: 12/30/2022]
Abstract
Retrotransposons are mutagenic units able to move within the genome. Despite many defenses deployed by the host to suppress potentially harmful activities of retrotransposons, these genetic units have found ways to meld with normal cellular functions through processes of exaptation and domestication. The same host mechanisms targeting transposon mobility allow for expansion and rewiring of gene regulatory networks on an evolutionary time scale. Recent works demonstrating retrotransposon activity during development, cell differentiation and neurogenesis shed new light on unexpected activities of transposable elements. Moreover, new technological advances illuminated subtler nuances of the complex relationship between retrotransposons and the host genome, clarifying the role of retroelements in evolution, development and impact on human disease.
Collapse
Affiliation(s)
- Paolo Mita
- Institute for Systems Genetics, Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, 430 East 29 Street, NY, NY 10016, USA.
| | - Jef D Boeke
- Institute for Systems Genetics, Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, 430 East 29 Street, NY, NY 10016, USA
| |
Collapse
|
72
|
Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KSS, Saprunoff HL, Lam WL, Martinez VD. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 2016; 15:5. [PMID: 26768585 PMCID: PMC4714483 DOI: 10.1186/s12943-016-0491-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are emerging players in cancer genomics. Originally described in the germline, there are over 20,000 piRNA genes in the human genome. In contrast to microRNAs, piRNAs interact with PIWI proteins, another member of the Argonaute family, and function primarily in the nucleus. There, they are involved in the epigenetic silencing of transposable elements in addition to the transcriptional regulation of genes. It has recently been demonstrated that piRNAs are also expressed across a variety of human somatic tissue types in a tissue-specific manner. An increasing number of studies have shown that aberrant piRNA expression is a signature feature across multiple tumour types; however, their specific tumorigenic functions remain unclear. In this article, we discuss the emerging functional roles of piRNAs in a variety of cancers, and highlight their potential clinical utilities.
Collapse
Affiliation(s)
- Kevin W Ng
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Christine Anderson
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Erin A Marshall
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Brenda C Minatel
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Katey S S Enfield
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | | | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| | - Victor D Martinez
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, Canada.
| |
Collapse
|
73
|
Rahman R, Chirn GW, Kanodia A, Sytnikova YA, Brembs B, Bergman CM, Lau NC. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes. Nucleic Acids Res 2015; 43:10655-72. [PMID: 26578579 PMCID: PMC4678822 DOI: 10.1093/nar/gkv1193] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/24/2015] [Indexed: 01/01/2023] Open
Abstract
To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains.
Collapse
Affiliation(s)
- Reazur Rahman
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Gung-wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Abhay Kanodia
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Björn Brembs
- Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester M21 0RG, UK
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|