51
|
McCulloch GA, Foster BJ, Dutoit L, Harrop TWR, Guhlin J, Dearden PK, Waters JM. Genomics Reveals Widespread Ecological Speciation in Flightless Insects. Syst Biol 2020; 70:863-876. [DOI: 10.1093/sysbio/syaa094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Abstract
Recent genomic analyses have highlighted parallel divergence in response to ecological gradients, but the extent to which altitude can underpin such repeated speciation remains unclear. Wing reduction and flight loss have apparently evolved repeatedly in montane insect assemblages and have been suggested as important drivers of hexapod diversification. We test this hypothesis using genomic analyses of a widespread wing-polymorphic stonefly species complex in New Zealand. We identified over 50,000 polymorphic genetic markers generated across almost 200 Zelandoperla fenestrata stonefly specimens using a newly generated plecopteran reference genome, to reveal widespread parallel speciation between sympatric full-winged and wing-reduced ecotypes. Rather than the existence of a single, widespread, flightless taxon (Zelandoperla pennulata), evolutionary genomic data reveal that wing-reduced upland lineages have speciated repeatedly and independently from full-winged Z. fenestrata. This repeated evolution of reproductive isolation between local ecotype pairs that lack mitochondrial DNA differentiation suggests that ecological speciation has evolved recently. A cluster of outlier single-nucleotide polymorphisms detected in independently wing-reduced lineages, tightly linked in an approximately 85 kb genomic region that includes the developmental “supergene” doublesex, suggests that this “island of divergence” may play a key role in rapid ecological speciation. [Ecological speciation; genome assembly; genomic island of differentiation; genotyping-by-sequencing; incipient species; plecoptera; wing reduction.]
Collapse
Affiliation(s)
- Graham A McCulloch
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Brodie J Foster
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Joseph Guhlin
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jonathan M Waters
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
52
|
Popovic I, Bierne N, Gaiti F, Tanurdžić M, Riginos C. Pre-introduction introgression contributes to parallel differentiation and contrasting hybridization outcomes between invasive and native marine mussels. J Evol Biol 2020; 34:175-192. [PMID: 33251632 DOI: 10.1111/jeb.13746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Non-native species experience novel selection pressures in introduced environments and may interbreed with native lineages. Species introductions therefore provide opportunities to investigate repeated patterns of adaptation and introgression across replicated contact zones. Here, we investigate genetic parallelism between multiple introduced populations of the invasive marine mussel, Mytilus galloprovincialis, in the absence (South Africa and California) and presence of hybridization with a native congener (Mytilus planulatus in Batemans Bay and Sydney Harbour, Australia). Repeatability in post-introduction differentiation from native-range populations varied between genetically distinct Atlantic and Mediterranean lineages, with Atlantic-derived introductions displaying high differentiation (maxFST > 0.4) and parallelism at outlier loci. Identification of long noncoding RNA transcripts (lncRNA) additionally allowed us to clarify that parallel responses are largely limited to protein-coding loci, with lncRNAs likely evolving under evolutionary constraints. Comparisons of independent hybrid zones revealed differential introgression most strongly in Batemans Bay, with an excess of M. galloprovincialis ancestry and resistance to introgression at loci differentiating parental lineages (M. planulatus and Atlantic M. galloprovincialis). Additionally, contigs putatively introgressed with divergent alleles from a closely related species, Mytilus edulis, showed stronger introgression asymmetries compared with genome-wide trends and also diverged in parallel in both Atlantic-derived introductions. These results suggest that divergent demographic histories experienced by introduced lineages, including pre-introduction introgression, influence contemporary admixture dynamics. Our findings build on previous investigations reporting contributions of historical introgression to intrinsic reproductive architectures shared between marine lineages and illustrate that interspecific introgression history can shape differentiation between colonizing populations and their hybridization with native congeners.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution UMR 5554, Université de Montpellier, CNRS-IRD-EPHE-UM, Montpellier, France
| | - Federico Gaiti
- Weill Cornell Medicine, New York, NY, USA.,New York Genome Center, New York, NY, USA
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Cynthia Riginos
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
53
|
Kautt AF, Kratochwil CF, Nater A, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A. Contrasting signatures of genomic divergence during sympatric speciation. Nature 2020; 588:106-111. [PMID: 33116308 PMCID: PMC7759464 DOI: 10.1038/s41586-020-2845-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
Abstract
The transition from 'well-marked varieties' of a single species into 'well-defined species'-especially in the absence of geographic barriers to gene flow (sympatric speciation)-has puzzled evolutionary biologists ever since Darwin1,2. Gene flow counteracts the buildup of genome-wide differentiation, which is a hallmark of speciation and increases the likelihood of the evolution of irreversible reproductive barriers (incompatibilities) that complete the speciation process3. Theory predicts that the genetic architecture of divergently selected traits can influence whether sympatric speciation occurs4, but empirical tests of this theory are scant because comprehensive data are difficult to collect and synthesize across species, owing to their unique biologies and evolutionary histories5. Here, within a young species complex of neotropical cichlid fishes (Amphilophus spp.), we analysed genomic divergence among populations and species. By generating a new genome assembly and re-sequencing 453 genomes, we uncovered the genetic architecture of traits that have been suggested to be important for divergence. Species that differ in monogenic or oligogenic traits that affect ecological performance and/or mate choice show remarkably localized genomic differentiation. By contrast, differentiation among species that have diverged in polygenic traits is genomically widespread and much higher overall, consistent with the evolution of effective and stable genome-wide barriers to gene flow. Thus, we conclude that simple trait architectures are not always as conducive to speciation with gene flow as previously suggested, whereas polygenic architectures can promote rapid and stable speciation in sympatry.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Alexander Nater
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gonzalo Machado-Schiaffino
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Functional Biology, Area of Genetics, University of Oviedo, Oviedo, Spain
| | - Melisa Olave
- Department of Biology, University of Konstanz, Konstanz, Germany
- Argentine Dryland Research Institute of the National Council for Scientific Research (IADIZA-CONICET), Mendoza, Argentina
| | - Frederico Henning
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Andreas Härer
- Department of Biology, University of Konstanz, Konstanz, Germany
- Division of Biological Sciences, Section of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
54
|
Genomic islands of differentiation in a rapid avian radiation have been driven by recent selective sweeps. Proc Natl Acad Sci U S A 2020; 117:30554-30565. [PMID: 33199636 DOI: 10.1073/pnas.2015987117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Numerous studies of emerging species have identified genomic "islands" of elevated differentiation against a background of relative homogeneity. The causes of these islands remain unclear, however, with some signs pointing toward "speciation genes" that locally restrict gene flow and others suggesting selective sweeps that have occurred within nascent species after speciation. Here, we examine this question through the lens of genome sequence data for five species of southern capuchino seedeaters, finch-like birds from South America that have undergone a species radiation during the last ∼50,000 generations. By applying newly developed statistical methods for ancestral recombination graph inference and machine-learning methods for the prediction of selective sweeps, we show that previously identified islands of differentiation in these birds appear to be generally associated with relatively recent, species-specific selective sweeps, most of which are predicted to be soft sweeps acting on standing genetic variation. Many of these sweeps coincide with genes associated with melanin-based variation in plumage, suggesting a prominent role for sexual selection. At the same time, a few loci also exhibit indications of possible selection against gene flow. These observations shed light on the complex manner in which natural selection shapes genome sequences during speciation.
Collapse
|
55
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
56
|
Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d'Alençon E. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol Biol 2020; 20:152. [PMID: 33187468 PMCID: PMC7663868 DOI: 10.1186/s12862-020-01715-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The process of speciation involves differentiation of whole genome sequences between a pair of diverging taxa. In the absence of a geographic barrier and in the presence of gene flow, genomic differentiation may occur when the homogenizing effect of recombination is overcome across the whole genome. The fall armyworm is observed as two sympatric strains with different host-plant preferences across the entire habitat. These two strains exhibit a very low level of genetic differentiation across the whole genome, suggesting that genomic differentiation occurred at an early stage of speciation. In this study, we aim at identifying critical evolutionary forces responsible for genomic differentiation in the fall armyworm. RESULTS These two strains exhibit a low level of genomic differentiation (FST = 0.0174), while 99.2% of 200 kb windows have genetically differentiated sequences (FST > 0). We found that the combined effect of mild positive selection and genetic linkage to selectively targeted loci are responsible for the genomic differentiation. However, a single event of very strong positive selection appears not to be responsible for genomic differentiation. The contribution of chromosomal inversions or tight genetic linkage among positively selected loci causing reproductive barriers is not supported by our data. Phylogenetic analysis shows that the genomic differentiation occurred by sub-setting of genetic variants in one strain from the other. CONCLUSIONS From these results, we concluded that genomic differentiation may occur at the early stage of a speciation process in the fall armyworm and that mild positive selection targeting many loci alone is sufficient evolutionary force for generating the pattern of genomic differentiation. This genomic differentiation may provide a condition for accelerated genomic differentiation by synergistic effects among linkage disequilibrium generated by following events of positive selection. Our study highlights genomic differentiation as a key evolutionary factor connecting positive selection to divergent selection.
Collapse
Affiliation(s)
- Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Sandra Nhim
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Stéphanie Robin
- INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | - Anthony Bretaudeau
- INRAE, UMR-IGEPP, BioInformatics Platform for Agroecosystems Arthropods, Campus Beaulieu, Rennes, France
- INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
57
|
Choi JY, Purugganan M, Stacy EA. Divergent Selection and Primary Gene Flow Shape Incipient Speciation of a Riparian Tree on Hawaii Island. Mol Biol Evol 2020; 37:695-710. [PMID: 31693149 PMCID: PMC7038655 DOI: 10.1093/molbev/msz259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of evolutionary biology is to understand the mechanisms underlying the formation of species. Of particular interest is whether or not speciation can occur in the presence of gene flow and without a period of physical isolation. Here, we investigated this process within Hawaiian Metrosideros, a hypervariable and highly dispersible woody species complex that dominates the Hawaiian Islands in continuous stands. Specifically, we investigated the origin of Metrosideros polymorpha var. newellii (newellii), a riparian ecotype endemic to Hawaii Island that is purportedly derived from the archipelago-wide M. polymorpha var. glaberrima (glaberrima). Disruptive selection across a sharp forest-riparian ecotone contributes to the isolation of these varieties and is a likely driver of newellii's origin. We examined genome-wide variation of 42 trees from Hawaii Island and older islands. Results revealed a split between glaberrima and newellii within the past 0.3-1.2 My. Admixture was extensive between lineages within Hawaii Island and between islands, but introgression from populations on older islands (i.e., secondary gene flow) did not appear to contribute to the emergence of newellii. In contrast, recurrent gene flow (i.e., primary gene flow) between glaberrima and newellii contributed to the formation of genomic islands of elevated absolute and relative divergence. These regions were enriched for genes with regulatory functions as well as for signals of positive selection, especially in newellii, consistent with divergent selection underlying their formation. In sum, our results support riparian newellii as a rare case of incipient ecological speciation with primary gene flow in trees.
Collapse
Affiliation(s)
- Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Michael Purugganan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY.,Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Elizabeth A Stacy
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV
| |
Collapse
|
58
|
Hinojosa JC, Koubínová D, Dincă V, Hernández-Roldán J, Munguira ML, García-Barros E, Vila M, Alvarez N, Mutanen M, Vila R. Rapid colour shift by reproductive character displacement in Cupido butterflies. Mol Ecol 2020; 29:4942-4955. [PMID: 33051915 DOI: 10.1111/mec.15682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Reproductive character displacement occurs when competition for successful breeding imposes a divergent selection on the interacting species, causing a divergence of reproductive traits. Here, we show that a disputed butterfly taxon is actually a case of male wing colour shift, apparently produced by reproductive character displacement. Using double digest restriction-site associated DNA sequencing and mitochondrial DNA sequencing we studied four butterfly taxa of the subgenus Cupido (Lepidoptera: Lycaenidae): Cupido minimus and the taxon carswelli, both characterized by brown males and females, plus C. lorquinii and C. osiris, both with blue males and brown females. Unexpectedly, taxa carswelli and C. lorquinii were close to indistinguishable based on our genomic and mitochondrial data, despite displaying strikingly different male coloration. In addition, we report and analysed a brown male within the C. lorquinii range, which demonstrates that the brown morph occurs at very low frequency in C. lorquinii. Such evidence strongly suggests that carswelli is conspecific with C. lorquinii and represents populations with a fixed male brown colour morph. Considering that these brown populations occur in sympatry with or very close to the blue C. osiris, and that the blue C. lorquinii populations never do, we propose that the taxon carswelli could have lost the blue colour due to reproductive character displacement with C. osiris. Since male colour is important for conspecific recognition during courtship, we hypothesize that the observed colour shift may eventually trigger incipient speciation between blue and brown populations. Male colour seems to be an evolutionarily labile character in the Polyommatinae, and the mechanism described here might be at work in the wide diversification of this subfamily of butterflies.
Collapse
Affiliation(s)
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Juan Hernández-Roldán
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel L Munguira
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique García-Barros
- Departamento de Biología - Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Vila
- GIBE Research Group, Universidade da Coruña, A Coruña, Spain
| | | | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
59
|
Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, McFarlane SE, Dutoit L, Qvarnström A, Ellegren H. Tissue-specific patterns of regulatory changes underlying gene expression differences among Ficedula flycatchers and their naturally occurring F 1 hybrids. Genome Res 2020; 30:1727-1739. [PMID: 33144405 PMCID: PMC7706733 DOI: 10.1101/gr.254508.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Mi Wang
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marie Sémon
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,ENS de Lyon, Laboratory of Biology and Modelling of the Cell, Lyon University, 69364 Lyon Cedex 07, France
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
60
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Das I, Brown RM. Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Mol Ecol 2020; 29:3970-3987. [PMID: 32808335 DOI: 10.1111/mec.15603] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/29/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Most new cryptic species are described using conventional tree- and distance-based species delimitation methods (SDMs), which rely on phylogenetic arrangements and measures of genetic divergence. However, although numerous factors such as population structure and gene flow are known to confound phylogenetic inference and species delimitation, the influence of these processes is not frequently evaluated. Using large numbers of exons, introns, and ultraconserved elements obtained using the FrogCap sequence-capture protocol, we compared conventional SDMs with more robust genomic analyses that assess population structure and gene flow to characterize species boundaries in a Southeast Asian frog complex (Pulchrana picturata). Our results showed that gene flow and introgression can produce phylogenetic patterns and levels of divergence that resemble distinct species (up to 10% divergence in mitochondrial DNA). Hybrid populations were inferred as independent (singleton) clades that were highly divergent from adjacent populations (7%-10%) and unusually similar (<3%) to allopatric populations. Such anomalous patterns are not uncommon in Southeast Asian amphibians, which brings into question whether the high levels of cryptic diversity observed in other amphibian groups reflect distinct cryptic species-or, instead, highly admixed and structured metapopulation lineages. Our results also provide an alternative explanation to the conundrum of divergent (sometimes nonsister) sympatric lineages-a pattern that has been celebrated as indicative of true cryptic speciation. Based on these findings, we recommend that species delimitation of continuously distributed "cryptic" groups should not rely solely on conventional SDMs, but should necessarily examine population structure and gene flow to avoid taxonomic inflation.
Collapse
Affiliation(s)
- Kin O Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, Singapore
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Perry L Wood
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA.,Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL, USA
| | - L L Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA, USA
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
61
|
The Genomic Landscape of Divergence Across the Speciation Continuum in Island-Colonising Silvereyes ( Zosterops lateralis). G3-GENES GENOMES GENETICS 2020; 10:3147-3163. [PMID: 32660974 PMCID: PMC7466963 DOI: 10.1534/g3.120.401352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inferring the evolutionary dynamics at play during the process of speciation by analyzing the genomic landscape of divergence is a major pursuit in population genomics. However, empirical assessments of genomic landscapes under varying evolutionary scenarios that are known a priori are few, thereby limiting our ability to achieve this goal. Here we combine RAD-sequencing and individual-based simulations to evaluate the genomic landscape of divergence in the silvereye (Zosterops lateralis). Using pairwise comparisons that differ in divergence timeframe and the presence or absence of gene flow, we document how genomic patterns accumulate along the speciation continuum. In contrast to previous predictions, our results provide limited support for the idea that divergence accumulates around loci under divergent selection or that genomic islands widen with time. While a small number of genomic islands were found in populations diverging with and without gene flow, in few cases were SNPs putatively under selection tightly associated with genomic islands. The transition from localized to genome-wide levels of divergence was captured using individual-based simulations that considered only neutral processes. Our results challenge the ubiquity of existing verbal models that explain the accumulation of genomic differences across the speciation continuum and instead support the idea that divergence both within and outside of genomic islands is important during the speciation process.
Collapse
|
62
|
Junker J, Rick JA, McIntyre PB, Kimirei I, Sweke EA, Mosille JB, Wehrli B, Dinkel C, Mwaiko S, Seehausen O, Wagner CE. Structural genomic variation leads to genetic differentiation in Lake Tanganyika's sardines. Mol Ecol 2020; 29:3277-3298. [PMID: 32687665 DOI: 10.1111/mec.15559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Identifying patterns in genetic structure and the genetic basis of ecological adaptation is a core goal of evolutionary biology and can inform the management and conservation of species that are vulnerable to population declines exacerbated by climate change. We used reduced-representation genomic sequencing methods to gain a better understanding of genetic structure among and within populations of Lake Tanganyika's two sardine species, Limnothrissa miodon and Stolothrissa tanganicae. Samples of these ecologically and economically important species were collected across the length of Lake Tanganyika, as well as from nearby Lake Kivu, where L. miodon was introduced in 1959. Our results reveal differentiation within both S. tanganicae and L. miodon that is not explained by geography. Instead, this genetic differentiation is due to the presence of large sex-specific regions in the genomes of both species, but involving different polymorphic sites in each species. Our results therefore indicate rapidly evolving XY sex determination in the two species. Additionally, we found evidence of a large chromosomal rearrangement in L. miodon, creating two homokaryotypes and one heterokaryotype. We found all karyotypes throughout Lake Tanganyika, but the frequencies vary along a north-south gradient and differ substantially in the introduced Lake Kivu population. We do not find evidence for significant isolation by distance, even over the hundreds of kilometres covered by our sampling, but we do find shallow population structure.
Collapse
Affiliation(s)
- Julian Junker
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Jessica A Rick
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Peter B McIntyre
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Ismael Kimirei
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Emmanuel A Sweke
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania.,Deep Sea Fishing Authority (DSFA), Zanzibar, Tanzania
| | - Julieth B Mosille
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Bernhard Wehrli
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
| | - Christian Dinkel
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Salome Mwaiko
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Catherine E Wagner
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
63
|
Leder EH, André C, Le Moan A, Töpel M, Blomberg A, Havenhand JN, Lindström K, Volckaert FAM, Kvarnemo C, Johannesson K, Svensson O. Post-glacial establishment of locally adapted fish populations over a steep salinity gradient. J Evol Biol 2020; 34:138-156. [PMID: 32573797 DOI: 10.1111/jeb.13668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm. Thereafter, we show that genome variation at 22,190 single nucleotide polymorphisms (SNPs) shows strong differentiation among populations along the gradient. Sequences containing outlier SNPs and transcriptome sequences, mapped to a draft genome, reveal associations with genes with relevant functions for adaptation in this environment but without overall evidence of functional enrichment. The many contigs involved suggest polygenic differentiation. We trace the origin of this differentiation using demographic modelling and find the most likely scenario is that at least part of the genetic differentiation is older than the Baltic Sea and is a result of isolation of two lineages prior to the current contact over the North Sea-Baltic Sea transition zone.
Collapse
Affiliation(s)
- Erica H Leder
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology, University of Turku, Turku, Finland.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Carl André
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Alan Le Moan
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Mats Töpel
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan N Havenhand
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Kai Lindström
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Filip A M Volckaert
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Charlotta Kvarnemo
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Johannesson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Ola Svensson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Department for Pre-School and School Teacher Education, University of Borås, Borås, Sweden
| |
Collapse
|
64
|
Yamasaki YY, Kakioka R, Takahashi H, Toyoda A, Nagano AJ, Machida Y, Møller PR, Kitano J. Genome-wide patterns of divergence and introgression after secondary contact between Pungitius sticklebacks. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190548. [PMID: 32654635 DOI: 10.1098/rstb.2019.0548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Speciation is a continuous process. Although it is known that differential adaptation can initiate divergence even in the face of gene flow, we know relatively little about the mechanisms driving complete reproductive isolation and the genomic patterns of divergence and introgression at the later stages of speciation. Sticklebacks contain many pairs of sympatric species differing in levels of reproductive isolation and divergence history. Nevertheless, most previous studies have focused on young species pairs. Here, we investigated two sympatric stickleback species, Pungitius pungitius and P. sinensis, whose habitats overlap in eastern Hokkaido; these species show hybrid male sterility, suggesting that they may be at a late stage of speciation. Our demographic analysis using whole-genome sequence data showed that these species split 1.73 Ma and came into secondary contact 37 200 years ago after a period of allopatry. This long period of allopatry might have promoted the evolution of intrinsic incompatibility. Although we detected on-going gene flow and signatures of introgression, overall genomic divergence was high, with considerable heterogeneity across the genome. The heterogeneity was significantly associated with variation in recombination rate. This sympatric pair provides new avenues to investigate the late stages of the stickleback speciation continuum. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Ryo Kakioka
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Takahashi
- National Fisheries University, 2-7-1 Nagata-honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| | - Yoshiyasu Machida
- Bihoro Museum, Midori 253-4, Bihoro, Abashiri, Hokkaido 092-0002, Japan
| | - Peter R Møller
- Natural History Museum of Denmark, University of Copenhagen, Universitatetsparken 15, Copenhagen 2100, Denmark
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
65
|
Marin J, Achaz G, Crombach A, Lambert A. The genomic view of diversification. J Evol Biol 2020; 33:1387-1404. [PMID: 32654283 DOI: 10.1111/jeb.13677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
The process of species diversification is traditionally summarized by a single tree, the species tree, whose reconstruction from molecular data is hindered by frequent conflicts between gene genealogies. Here, we argue that instead of seeing these conflicts as nuisances, we can exploit them to inform the diversification process itself. We adopt a gene-based view of diversification to model the ubiquitous presence of gene flow between diverging lineages, one of the most important processes explaining disagreements among gene trees. We propose a new framework for modelling the joint evolution of gene and species lineages relaxing the hierarchy between the species tree and gene trees inherent to the standard view, as embodied in a popular model known as the multispecies coalescent (MSC). We implement this framework in two alternative models called the gene-based diversification models (GBD): (a) GBD-forward following all evolving genomes through time and (b) GBD-backward based on coalescent theory. They feature four parameters tuning colonization, gene flow, genetic drift and genetic differentiation. We propose an inference method based on differences between gene trees. Applied to two empirical data sets prone to gene flow, we find better support for the GBD-backward model than for the MSC model. Along with the increasing awareness of the extent of gene flow, this work shows the importance of considering the richer signal contained in genomic histories, rather than in the mere species tree, to better apprehend the complex evolutionary history of species.
Collapse
Affiliation(s)
- Julie Marin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France
| | - Guillaume Achaz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France.,Institut de Systématique, Évolution, Biodiversité (ISYEB), MNHN, CNRS, EPHE, Sorbonne Université, Paris, France.,UMR 7206 Eco-anthropologie, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
| | - Anton Crombach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France.,Inria, Lyon Antenne La Doua, Villeurbanne, France.,INSA-Lyon, LIRIS, UMR 5205, Université de Lyon, Villeurbanne, France
| | - Amaury Lambert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France.,Laboratoire de Probabilités, Statistique et Modélisation (LPSM), CNRS UMR 8001, Sorbonne Université, Paris, France
| |
Collapse
|
66
|
Feller AF, Selz OM, McGee MD, Meier JI, Mwaiko S, Seehausen O. Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids. Ecol Evol 2020; 10:7445-7462. [PMID: 32760540 PMCID: PMC7391563 DOI: 10.1002/ece3.6471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/25/2023] Open
Abstract
The East African cichlid radiations are characterized by repeated and rapid diversification into many distinct species with different ecological specializations and by a history of hybridization events between nonsister species. Such hybridization might provide important fuel for adaptive radiation. Interspecific hybrids can have extreme trait values or novel trait combinations and such transgressive phenotypes may allow some hybrids to explore ecological niches neither of the parental species could tap into. Here, we investigate the potential of second-generation (F2) hybrids between two generalist cichlid species from Lake Malawi to exploit a resource neither parental species is specialized on: feeding by sifting sand. Some of the F2 hybrids phenotypically resembled fish of species that are specialized on sand sifting. We combined experimental behavioral and morphometric approaches to test whether the F2 hybrids are transgressive in both morphology and behavior related to sand sifting. We then performed a quantitative trait loci (QTL) analysis using RADseq markers to investigate the genetic architecture of morphological and behavioral traits. We show that transgression is present in several morphological traits, that novel trait combinations occur, and we observe transgressive trait values in sand sifting behavior in some of the F2 hybrids. Moreover, we find QTLs for morphology and for sand sifting behavior, suggesting the existence of some loci with moderate to large effects. We demonstrate that hybridization has the potential to rapidly generate novel and ecologically relevant phenotypes that may be suited to a niche neither of the parental species occupies. Interspecific hybridization may thereby contribute to the rapid generation of ecological diversity in cichlid radiations.
Collapse
Affiliation(s)
- Anna F. Feller
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Oliver M. Selz
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Matthew D. McGee
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Joana I. Meier
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Department of ZoologyUniversity of CambridgeCambridgeUK
- St John’s CollegeUniversity of CambridgeCambridgeUK
| | - Salome Mwaiko
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Ole Seehausen
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| |
Collapse
|
67
|
Waters J, Emerson B, Arribas P, McCulloch G. Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences. Trends Ecol Evol 2020; 35:512-522. [DOI: 10.1016/j.tree.2020.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
|
68
|
Öhlund G, Bodin M, Nilsson KA, Öhlund S, Mobley KB, Hudson AG, Peedu M, Brännström Å, Bartels P, Præbel K, Hein CL, Johansson P, Englund G. Ecological speciation in European whitefish is driven by a large-gaped predator. Evol Lett 2020; 4:243-256. [PMID: 32547784 PMCID: PMC7293097 DOI: 10.1002/evl3.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/21/2019] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.
Collapse
Affiliation(s)
- Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Department of Business Administration, Technology, and Social SciencesLuleå University of TechnologyLuleåSE‐971 87Sweden
- Department of Wildlife, Fish, and Environmental StudiesSLUUmeåSE‐901 83Sweden
| | - Mats Bodin
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSE‐901 87Sweden
| | - Karin A. Nilsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Department of Integrative BiologyUniversity of GuelphGuelphONN1G 2W1Canada
| | - Sven‐Ola Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Kenyon B. Mobley
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Max Planck Institute for Evolutionary BiologyPlönD‐24302Germany
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki00014Finland
| | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- School of Biological Sciences, Life Sciences BuildingUniversity of BristolBristolBS8 1TQUnited Kingdom
| | - Mikael Peedu
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSE‐901 87Sweden
- Evolution and Ecology ProgramInternational Institute for Applied Systems AnalysisLaxenburgA‐2361Austria
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Kim Præbel
- Norwegian College of Fishery ScienceUiT The Arctic University of NorwayTromsøN‐9037Norway
| | - Catherine L. Hein
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
- Climate Impacts Research Centre (CIRC)Abisko Scientific Research StationAbiskoSE‐981 07Sweden
| | - Petter Johansson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSE‐901 87Sweden
| |
Collapse
|
69
|
Duranton M, Allal F, Valière S, Bouchez O, Bonhomme F, Gagnaire PA. The contribution of ancient admixture to reproductive isolation between European sea bass lineages. Evol Lett 2020; 4:226-242. [PMID: 32547783 PMCID: PMC7293100 DOI: 10.1002/evl3.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/02/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how new species arise through the progressive establishment of reproductive isolation (RI) barriers between diverging populations is a major goal in Evolutionary Biology. An important result of speciation genomics studies is that genomic regions involved in RI frequently harbor anciently diverged haplotypes that predate the reconstructed history of species divergence. The possible origins of these old alleles remain much debated, as they relate to contrasting mechanisms of speciation that are not yet fully understood. In the European sea bass (Dicentrarchus labrax), the genomic regions involved in RI between Atlantic and Mediterranean lineages are enriched for anciently diverged alleles of unknown origin. Here, we used haplotype-resolved whole-genome sequences to test whether divergent haplotypes could have originated from a closely related species, the spotted sea bass (Dicentrarchus punctatus). We found that an ancient admixture event between D. labrax and D. punctatus is responsible for the presence of shared derived alleles that segregate at low frequencies in both lineages of D. labrax. An exception to this was found within regions involved in RI between the two D. labrax lineages. In those regions, archaic tracts originating from D. punctatus locally reached high frequencies or even fixation in Atlantic genomes but were almost absent in the Mediterranean. We showed that the ancient admixture event most likely occurred between D. punctatus and the D. labrax Atlantic lineage, while Atlantic and Mediterranean D. labrax lineages were experiencing allopatric isolation. Our results suggest that local adaptive introgression and/or the resolution of genomic conflicts provoked by ancient admixture have probably contributed to the establishment of RI between the two D. labrax lineages.
Collapse
Affiliation(s)
- Maud Duranton
- ISEM Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| | - François Allal
- MARBEC Université de Montpellier, Ifremer-CNRS-IRD-UM Palavas-les-Flots 34250 France
| | - Sophie Valière
- INRA, US 1426, GeT-PlaGe Genotoul Castanet-Tolosan 31326 France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe Genotoul Castanet-Tolosan 31326 France
| | | | | |
Collapse
|
70
|
Bresadola L, Link V, Buerkle CA, Lexer C, Wegmann D. Estimating and accounting for genotyping errors in RAD‐seq experiments. Mol Ecol Resour 2020; 20:856-870. [DOI: 10.1111/1755-0998.13153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Luisa Bresadola
- Department of Biology University of Fribourg Fribourg Switzerland
| | - Vivian Link
- Department of Biology University of Fribourg Fribourg Switzerland
- Swiss Institute of Bioinformatics Fribourg Switzerland
| | | | - Christian Lexer
- Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - Daniel Wegmann
- Department of Biology University of Fribourg Fribourg Switzerland
- Swiss Institute of Bioinformatics Fribourg Switzerland
| |
Collapse
|
71
|
Terekhanova NV, Barmintseva AE, Kondrashov AS, Bazykin GA, Mugue NS. Architecture of Parallel Adaptation in Ten Lacustrine Threespine Stickleback Populations from the White Sea Area. Genome Biol Evol 2020; 11:2605-2618. [PMID: 31406984 PMCID: PMC6761963 DOI: 10.1093/gbe/evz175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptation of threespine stickleback to freshwater involves parallel recruitment of freshwater alleles in clusters of closely linked sites, or divergence islands (DIs). However, it remains unclear to what extent the DIs and the alleles that constitute them coincide between populations that underwent adaptation to freshwater independently. We examine threespine sticklebacks from ten freshwater lakes that emerged 500–1500 years ago in the White Sea basin, with the emphasis on repeatability of genomic patterns of adaptation among the lake populations and the role of local recombination rate in the distribution and structure of DIs. The 65 detected DIs are clustered in the genome, forming 12 aggregations, and this clustering cannot be explained by the variation of the recombination rate. Only 21 of the DIs are present in all the freshwater populations, likely being indispensable for successful colonization of freshwater environment by the ancestral marine population. Within most DIs, the same set of single nucleotide polymorphisms (SNPs) distinguish marine and freshwater haplotypes in all the lake populations; however, in some DIs, freshwater alleles differ between populations, suggesting that they could have been established by recruitment of different haplotypes in different populations.
Collapse
Affiliation(s)
- Nadezhda V Terekhanova
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Anna E Barmintseva
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Alexey S Kondrashov
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A Bazykin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Nikolai S Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia.,N. K. Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
72
|
Abstract
Threespine stickleback populations provide a striking example of local adaptation to divergent habitats in populations that are connected by recurrent gene flow. These small fish occur in marine and freshwater habitats throughout the Northern Hemisphere, and in numerous cases the smaller freshwater populations have been established “de novo” from marine colonists. Independently evolved freshwater populations exhibit similar phenotypes that have been shown to derive largely from the same standing genetic variants. Geographic isolation prevents direct migration between the freshwater populations, strongly suggesting that these shared locally adaptive alleles are transported through the marine population. However it is still largely unknown how gene flow, recombination, and selection jointly impact the standing variation that might fuel this adaptation. Here we use individual-based, spatially explicit simulations to determine the levels of gene flow that best match observed patterns of allele sharing among habitats in stickleback. We aim to better understand how gene flow and local adaptation in large metapopulations determine the speed of adaptation and re-use of standing genetic variation. In our simulations we find that repeated adaptation uses a shared set of alleles that are maintained at low frequency by migration-selection balance in oceanic populations. This process occurs over a realistic range of intermediate levels of gene flow that match previous empirical population genomic studies in stickleback. Examining these simulations more deeply reveals how lower levels of gene flow leads to slow, independent adaptation to different habitats, whereas higher levels of gene flow leads to significant mutation load – but an increased probability of successful population genomic scans for locally adapted alleles. Surprisingly, we find that the genealogical origins of most freshwater adapted alleles can be traced back to the original generation of marine individuals that colonized the lakes, as opposed to subsequent migrants. These simulations provide deeper context for existing studies of stickleback evolutionary genomics, and guidance for future empirical studies in this model. More broadly, our results support existing theory of local adaptation but extend it by more completely documenting the genealogical history of adaptive alleles in a metapopulation.
Collapse
|
73
|
Ishikawa A, Kabeya N, Ikeya K, Kakioka R, Cech JN, Osada N, Leal MC, Inoue J, Kume M, Toyoda A, Tezuka A, Nagano AJ, Yamasaki YY, Suzuki Y, Kokita T, Takahashi H, Lucek K, Marques D, Takehana Y, Naruse K, Mori S, Monroig O, Ladd N, Schubert CJ, Matthews B, Peichel CL, Seehausen O, Yoshizaki G, Kitano J. A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science 2019; 364:886-889. [PMID: 31147520 DOI: 10.1126/science.aau5656] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 04/17/2019] [Indexed: 01/10/2023]
Abstract
Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic acid (DHA), an essential ω-3 fatty acid, can constrain freshwater colonization by marine fishes. Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase gene Fads2 in stickleback lineages that subsequently colonized and radiated in freshwater habitats, but not in close relatives that failed to colonize. Transgenic manipulation of Fads2 in marine stickleback increased their ability to synthesize DHA and survive on DHA-deficient diets. Multiple freshwater ray-finned fishes also show a convergent increase in Fads2 copies, indicating its key role in freshwater colonization.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan.,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan.,Department of Aquatic Bioscience, The University of Tokyo, Tokyo, Japan
| | - Koki Ikeya
- Gifu World Freshwater Aquarium, Gifu, Japan
| | - Ryo Kakioka
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Jennifer N Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Naoki Osada
- Graduate School of Bioengineering and Bioinformatics, Hokkaido University, Sapporo, Japan
| | - Miguel C Leal
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Jun Inoue
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Manabu Kume
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Ayumi Tezuka
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | | | - Yo Y Yamasaki
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yuto Suzuki
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan
| | - Tomoyuki Kokita
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, Japan
| | - Hiroshi Takahashi
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Yamaguchi, Japan
| | - Kay Lucek
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David Marques
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Yusuke Takehana
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Seiichi Mori
- Biological Laboratory, Gifu Kyoritsu University, Ogaki, Gifu, Japan
| | - Oscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Nemiah Ladd
- Department of Surface Waters-Research and Management, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,Department of Earth Sciences, ETH-Zurich, Zurich Switzerland
| | - Carsten J Schubert
- Department of Surface Waters-Research and Management, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,Department of Aquatic Ecology, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Catherine L Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan. .,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| |
Collapse
|
74
|
Quilodrán CS, Ruegg K, Sendell‐Price AT, Anderson EC, Coulson T, Clegg SM. The multiple population genetic and demographic routes to islands of genomic divergence. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kristen Ruegg
- Department of Zoology University of Oxford Oxford UK
- Center for Tropical Research Institute of the Environment and Sustainability University of California, Los Angeles Los Angeles CA USA
- Department of Biology Colorado State University Fort Collins CO USA
| | | | - Eric C. Anderson
- Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries ServiceNOAA Santa Cruz CA USA
| | - Tim Coulson
- Department of Zoology University of Oxford Oxford UK
| | | |
Collapse
|
75
|
Delling B, Palm S. Evolution and disappearance of sympatric Coregonus albula in a changing environment-A case study of the only remaining population pair in Sweden. Ecol Evol 2019; 9:12727-12753. [PMID: 31788210 PMCID: PMC6875587 DOI: 10.1002/ece3.5745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
During the past 50 years, Fennoscandian populations of spring-spawning Baltic cisco (Coregonus albula), sympatric to common autumn-spawners, have declined or disappeared; for example, three out of four known spring-spawning populations in Sweden are regarded as extinct. Over the same period, the climate has changed and populations have been subject to other anthropogenic stressors. We compared historic (1960s) and recent (1990-2000s) morphological data from the still-existent sympatric cisco populations in Lake Fegen, Sweden. Phenotypic changes were found for spring-spawners making them more similar to the sympatric autumn-spawners that had remained virtually unchanged. Based on results for other salmoniform fishes, a phenotypically plastic response to increased temperature during early development appears unlikely. The recent material was also analyzed with microsatellite markers; long-term effective population size in spring-spawners was estimated to be about 20 times lower than autumn-spawners, with signs of long-term gene flow in both directions and a recent genetic bottleneck in spring-spawners. We suggest the change toward a less distinct phenotype in spring-spawners to reflect a recent increase in gene flow from autumn-spawners. Time since divergence was estimated to only c. 1,900 years (95% CI: 400-5,900), but still the Fegen populations represent the most morphologically and genetically distinct sympatric populations studied. Consequently, we hypothesize that less distinct population pairs can be even younger and that spring-spawning may have repeatedly evolved and disappeared in several lakes since the end of the last glaciation, concurrent with changed environmental conditions.
Collapse
Affiliation(s)
- Bo Delling
- Department of ZoologySwedish Museum of Natural HistoryStockholmSweden
| | - Stefan Palm
- Swedish University of Agricultural SciencesDepartment of Aquatic ResourcesInstitute of Freshwater ResearchDrottningholmSweden
| |
Collapse
|
76
|
Currey MC, Bassham SL, Cresko WA. Genetic divergence outpaces phenotypic evolution among threespine stickleback populations in old freshwater habitats. Biol J Linn Soc Lond 2019; 128:415-434. [PMID: 36846094 PMCID: PMC9957565 DOI: 10.1093/biolinnean/blz106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Species such as threespine stickleback (Gasterosteus aculeatus) that inhabit divergent selective environments and that have diversified on different time scales can be of value for understanding evolutionary processes. Here we synthesize high-resolution genotypic and phenotypic data to explore a largely unstudied distribution of threespine stickleback populations living in oceanic and freshwater habitats along coastal and inland regions of Oregon. Many inland aquatic habitats of Oregon remained unglaciated during the last ice age, meaning that some extant Oregon lake and river stickleback may have descended from freshwater populations established long before more well-studied, post-glacial freshwater populations. To address the degree of congruence between genetic and phenotypic divergence, we directly compared Oregon stickleback to much younger (post-glacial) Alaskan populations. We found phenotypic variation in Oregon stickleback to be primarily partitioned between oceanic and freshwater habitats, as has been documented in other stickleback systems. However, the main axis of genetic divergence was between coastal and inland regions regardless of habitat type. Furthermore, when comparing patterns between Oregon and Alaska we found similar levels of phenotypic divergence, but much greater genetic divergence among Oregon's populations. The Oregon stickleback system therefore appears well suited for future studies linking genotypic and phenotypic change, further extending the utility of this small fish to provide general insights into evolutionary processes.
Collapse
Affiliation(s)
- Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-1254, USA
| | - Susan L Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-1254, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-1254, USA
| |
Collapse
|
77
|
Rieder JM, Vonlanthen P, Seehausen O, Lucek K. Allopatric and sympatric diversification within roach (Rutilus rutilus) of large pre-alpine lakes. J Evol Biol 2019; 32:1174-1185. [PMID: 31257688 DOI: 10.1111/jeb.13502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Intraspecific differentiation in response to divergent natural selection between environments is a common phenomenon in some northern freshwater fishes, especially salmonids and stickleback. Understanding why these taxa diversify and undergo adaptive radiations while most other fish species in the same environments do not, remains an open question. The possibility for intraspecific diversification has rarely been evaluated for most northern freshwater fish species. Here, we assess the potential for intraspecific differentiation between and within lake populations of roach (Rutilus rutilus)-a widespread and abundant cyprinid species-in lakes in which salmonids have evolved endemic adaptive radiations. Based on more than 3,000 polymorphic RADseq markers, we detected low but significant genetic differentiation between roach populations of two ultraoligotrophic lakes and between these and populations from other lakes. This, together with differentiation in head morphology and stable isotope signatures, suggests evolutionary and ecological differentiation among some of our studied populations. Next, we tested for intralacustrine diversification of roach within Lake Brienz, the most pristine lake surveyed in this study. We found significant phenotypic evidence for ecological intralacustrine differentiation between roach caught over a muddy substrate and those caught over a rocky substrate. However, evidence for intralacustrine genetic differentiation is at best subtle and phenotypic changes may therefore be mostly plastic. Overall, our findings suggest roach can differ between ecologically distinct lakes, but the extent of intralacustrine ecological differentiation is weak, which contrasts with the strong differentiation among endemic species of whitefish in the same lakes.
Collapse
Affiliation(s)
- Jessica M Rieder
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Eawag Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Center of Ecology, Evolution, and Biogeochemistry, Kastanienbaum, Switzerland.,Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Pascal Vonlanthen
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Eawag Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Center of Ecology, Evolution, and Biogeochemistry, Kastanienbaum, Switzerland.,Aquabios GmbH, Cordast, Switzerland
| | - Ole Seehausen
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Eawag Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Center of Ecology, Evolution, and Biogeochemistry, Kastanienbaum, Switzerland
| | - Kay Lucek
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Eawag Swiss Federal Institute of Aquatic Science and Technology, Department of Fish Ecology and Evolution, Center of Ecology, Evolution, and Biogeochemistry, Kastanienbaum, Switzerland.,Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
78
|
Marques DA, Lucek K, Sousa VC, Excoffier L, Seehausen O. Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback. Nat Commun 2019; 10:4240. [PMID: 31534121 PMCID: PMC6751218 DOI: 10.1038/s41467-019-12182-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Abstract
Ecological speciation can sometimes rapidly generate reproductively isolated populations coexisting in sympatry, but the origin of genetic variation permitting this is rarely known. We previously explored the genomics of very recent ecological speciation into lake and stream ecotypes in stickleback from Lake Constance. Here, we reconstruct the origin of alleles underlying ecological speciation by combining demographic modelling on genome-wide single nucleotide polymorphisms, phenotypic data and mitochondrial sequence data in the wider European biogeographical context. We find that parallel differentiation between lake and stream ecotypes across replicate lake-stream ecotones resulted from recent secondary contact and admixture between old East and West European lineages. Unexpectedly, West European alleles that introgressed across the hybrid zone at the western end of the lake, were recruited to genomic islands of differentiation between ecotypes at the eastern end of the lake. Our results highlight an overlooked outcome of secondary contact: ecological speciation facilitated by admixture variation. Ecological speciation can proceed rapidly, but the origin of genetic variation facilitating it has remained elusive. Here, the authors show that secondary contact and introgression between deeply diverged lineages of stickleback fish facilitated rapid ecological speciation into lake and stream ecotypes in Lake Constance.
Collapse
Affiliation(s)
- David A Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.,Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland
| | - Kay Lucek
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Vitor C Sousa
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Laurent Excoffier
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012, Bern, Switzerland. .,Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047, Kastanienbaum, Switzerland.
| |
Collapse
|
79
|
Nelson TC, Crandall JG, Ituarte CM, Catchen JM, Cresko WA. Selection, Linkage, and Population Structure Interact To Shape Genetic Variation Among Threespine Stickleback Genomes. Genetics 2019; 212:1367-1382. [PMID: 31213503 PMCID: PMC6707445 DOI: 10.1534/genetics.119.302261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022] Open
Abstract
The outcome of selection on genetic variation depends on the geographic organization of individuals and populations as well as the organization of loci within the genome. Spatially variable selection between marine and freshwater habitats has had a significant and heterogeneous impact on patterns of genetic variation across the genome of threespine stickleback fish. When marine stickleback invade freshwater habitats, more than a quarter of the genome can respond to divergent selection, even in as little as 50 years. This process largely uses standing genetic variation that can be found ubiquitously at low frequency in marine populations, can be millions of years old, and is likely maintained by significant bidirectional gene flow. Here, we combine population genomic data of marine and freshwater stickleback from Cook Inlet, Alaska, with genetic maps of stickleback fish derived from those same populations to examine how linkage to loci under selection affects genetic variation across the stickleback genome. Divergent selection has had opposing effects on linked genetic variation on chromosomes from marine and freshwater stickleback populations: near loci under selection, marine chromosomes are depauperate of variation, while these same regions among freshwater genomes are the most genetically diverse. Forward genetic simulations recapitulate this pattern when different selective environments also differ in population structure. Lastly, dense genetic maps demonstrate that the interaction between selection and population structure may impact large stretches of the stickleback genome. These findings advance our understanding of how the structuring of populations across geography influences the outcomes of selection, and how the recombination landscape broadens the genomic reach of selection.
Collapse
Affiliation(s)
- Thomas C Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | | | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Julian M Catchen
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Illinois 61801
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
80
|
Hämälä T, Savolainen O. Genomic Patterns of Local Adaptation under Gene Flow in Arabidopsis lyrata. Mol Biol Evol 2019; 36:2557-2571. [PMID: 31236594 DOI: 10.1093/molbev/msz149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractShort-scale local adaptation is a complex process involving selection, migration, and drift. The expected effects on the genome are well grounded in theory but examining these on an empirical level has proven difficult, as it requires information about local selection, demographic history, and recombination rate variation. Here, we use locally adapted and phenotypically differentiated Arabidopsis lyrata populations from two altitudinal gradients in Norway to test these expectations at the whole-genome level. Demography modeling indicates that populations within the gradients diverged <2 kya and that the sites are connected by gene flow. The gene flow estimates are, however, highly asymmetric with migration from high to low altitudes being several times more frequent than vice versa. To detect signatures of selection for local adaptation, we estimate patterns of lineage-specific differentiation among these populations. Theory predicts that gene flow leads to concentration of adaptive loci in areas of low recombination; a pattern we observe in both lowland-alpine comparisons. Although most selected loci display patterns of conditional neutrality, we found indications of genetic trade-offs, with one locus particularly showing high differentiation and signs of selection in both populations. Our results further suggest that resistance to solar radiation is an important adaptation to alpine environments, while vegetative growth and bacterial defense are indicated as selected traits in the lowland habitats. These results provide insights into genetic architectures and evolutionary processes driving local adaptation under gene flow. We also contribute to understanding of traits and biological processes underlying alpine adaptation in northern latitudes.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
81
|
Marques DA. Adaptation despite gene flow? Low recombination helps. Mol Ecol 2019; 26:4361-4363. [PMID: 28837259 DOI: 10.1111/mec.14251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
Abstract
About 15,000 years earlier, the Northern half of Europe and North America was buried under a few kilometres of ice. Since then, many organisms have colonized and rapidly adapted to the new, vacant habitats. Some, like the threespine stickleback fish, have done so more successfully than others: from the sea, stickleback have adapted to a multitude of lake and stream habitats with a vast array of complex phenotypes and life histories. Previous studies showed that most of these "ecotypes" differ in multiple divergently selected genes throughout the genome. But how are well-adapted ecotypes of one habitat protected from maladaptive gene flow from ecotypes of another, adjacent habitat? According to a From the Cover meta-analysis in this issue of Molecular Ecology (Samuk et al., 2017), low recombination rate regions in the genome offer such protection. While inversions have often been highlighted as an efficient way to maintain linkage disequilibrium among sets of adaptive variants in the face of gene flow, Samuk et al. (2017) show that variation in recombination rate across the genome may perform a similar role in threespine stickleback. With this study, theoretical predictions for the importance of low recombination regions in adaptation are for the first time tested with a highly replicated population genomic data set. The findings from this study have implications for the adaptability of species, speciation and the evolution of genome architecture.
Collapse
Affiliation(s)
- David A Marques
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Fish Ecology and Evolution, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
82
|
Torres-Paz J, Hyacinthe C, Pierre C, Rétaux S. Towards an integrated approach to understand Mexican cavefish evolution. Biol Lett 2019; 14:rsbl.2018.0101. [PMID: 30089659 DOI: 10.1098/rsbl.2018.0101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The Mexican tetra, Astyanax mexicanus, comes in two forms: a classical river-dwelling fish and a blind and depigmented cave-dwelling fish. The two morphotypes are used as models for evolutionary biology, to decipher mechanisms of morphological and behavioural evolution in response to environmental change. Over the past 40 years, insights have been obtained from genetics, developmental biology, physiology and metabolism, neuroscience, genomics, population biology and ecology. Here, we promote the idea that A. mexicanus, as a model, has reached a stage where an integrated approach or a multi-disciplinary method of analysis, whereby a phenomenon is examined from several angles, is a powerful tool that can be applied to understand general evolutionary processes. Mexican cavefish have undergone considerable selective pressure and extreme morphological evolution, an obvious advantage to contribute to our understanding of evolution through comparative analyses and to pinpoint the specific traits that may have helped their ancestors to colonize caves.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Carole Hyacinthe
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Constance Pierre
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
83
|
Bell KL, Nice CC, Hulsey D. Population Genomic Evidence Reveals Subtle Patterns of Differentiation in the Trophically Polymorphic Cuatro Ciénegas Cichlid, Herichthys minckleyi. J Hered 2019; 110:361-369. [PMID: 30657932 DOI: 10.1093/jhered/esz004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/16/2019] [Indexed: 11/12/2022] Open
Abstract
In recent decades, an increased understanding of molecular ecology has led to a reinterpretation of the role of gene flow during the evolution of reproductive isolation and biological novelty. For example, even in the face of ongoing gene flow strong selection may maintain divergent polymorphisms, or gene flow may introduce novel biological diversity via hybridization and introgression from a divergent species. Herein, we elucidate the evolutionary history and genomic basis of a trophically polymorphic trait in a species of cichlid fish, Herichthys minckleyi. We explored genetic variation at 3 hierarchical levels; between H. minckleyi (n = 69) and a closely related species Herichthys cyanoguttatus (n = 10), between H. minckleyi individuals from 2 geographic locations, and finally between individuals with alternate morphotypes at both a genome-wide and locus-specific scale. We found limited support for the hypothesis that the H. minckleyi polymorphism is the result of ongoing hybridization between the 2 species. Within H. minckleyi we found evidence of geographic genetic structure, and using traditional population genetic analyses found that individuals of alternate morphotypes within a pool appear to be panmictic. However, when we used a locus-specific approach to examine the relationship between multi-locus genotype, tooth size, and geographic sampling, we found the first evidence for molecular genetic differences between the H. minckleyi morphotypes.
Collapse
Affiliation(s)
- Katherine L Bell
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, TX
| | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, TX
| | - Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
84
|
Larson WA, Dann TH, Limborg MT, McKinney GJ, Seeb JE, Seeb LW. Parallel signatures of selection at genomic islands of divergence and the major histocompatibility complex in ecotypes of sockeye salmon across Alaska. Mol Ecol 2019; 28:2254-2271. [DOI: 10.1111/mec.15082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Tyler H. Dann
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
- Gene Conservation Laboratory Alaska Department of Fish and Game Anchorage Alaska
| | - Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| |
Collapse
|
85
|
Haselhorst MSH, Parchman TL, Buerkle CA. Genetic evidence for species cohesion, substructure and hybrids in spruce. Mol Ecol 2019; 28:2029-2045. [DOI: 10.1111/mec.15056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
|
86
|
Barth JMI, Villegas-Ríos D, Freitas C, Moland E, Star B, André C, Knutsen H, Bradbury I, Dierking J, Petereit C, Righton D, Metcalfe J, Jakobsen KS, Olsen EM, Jentoft S. Disentangling structural genomic and behavioural barriers in a sea of connectivity. Mol Ecol 2019; 28:1394-1411. [PMID: 30633410 PMCID: PMC6518941 DOI: 10.1111/mec.15010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022]
Abstract
Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod (Gadus morhua), by exploring a unique data set combining whole‐genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord‐type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord‐type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.
Collapse
Affiliation(s)
- Julia M I Barth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Zoological Institute, University of Basel, Basel, Switzerland
| | - David Villegas-Ríos
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies, IMEDEA CSIC-UIB, Esporles, Spain.,Department of Ecology and Marine Resources, Institute of Marine Research, (IIM CSIC), Vigo, Spain
| | - Carla Freitas
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway.,Oceanic Observatory of Madeira, Funchal, Portugal
| | - Even Moland
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl André
- Department of Marine Sciences - Tjärnö, University of Gothenburg, Gothenburg, Sweden
| | - Halvor Knutsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.,Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Ian Bradbury
- Science Branch, Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, Canada
| | - Jan Dierking
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - David Righton
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
| | - Julian Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Esben M Olsen
- Institute for Marine Research, Flødevigen, Norway.,Centre for Coastal Research, University of Agder, Agder, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
87
|
Linnen CR. Predicting evolutionary predictability. Mol Ecol 2019; 27:2647-2650. [PMID: 29894580 DOI: 10.1111/mec.14716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
The observation that phenotypic convergence and genetic convergence are widespread in nature implies that evolution is at least somewhat predictable. But to what extent and under what circumstances? In other words, how predictable is evolutionary predictability? Answering this question requires going beyond documenting examples of repeated evolution to actually quantifying predictability at different hierarchical levels. At present, few such studies exist. In this issue of Molecular Ecology, Chaturvedi et al. () quantify the predictability of genomewide changes that accompany shifts to an introduced host plant (alfalfa) in populations of the Melissa blue butterfly (Lycaeides melissa). They evaluate predictability in two contexts: (i) overlap in host-associated loci among populations that have independently colonized alfalfa, and (ii) overlap between host-associated loci in nature and loci associated with host performance in laboratory experiments. Overall, they find that the genomic changes that accompany host shifts in this system are indeed somewhat predictable. However, the degree of predictability depends on the type of comparison (among natural populations vs. between natural and experimental populations), type of convergence (specific genomic locations vs. direction of allele frequency change), geographic scale (rangewide vs. specific population pairs) and location in the genome (autosomes vs. sex chromosomes). Together with a handful of comparable data sets, Chaturvedi et al.'s () work suggests that the relative contribution of stochastic and deterministic processes to genomewide responses to novel selection pressures may be highly variable, but possibly predictably so.
Collapse
|
88
|
Trevoy SAL, Janes JK, Muirhead K, Sperling FAH. Repurposing population genetics data to discern genomic architecture: A case study of linkage cohort detection in mountain pine beetle ( Dendroctonus ponderosae). Ecol Evol 2019; 9:1147-1159. [PMID: 30805148 PMCID: PMC6374669 DOI: 10.1002/ece3.4803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic surveys of the population structure of species can be used as resources for exploring their genomic architecture. By adjusting filtering assumptions, genome-wide single-nucleotide polymorphism (SNP) datasets can be reused to give new insights into the genetic basis of divergence and speciation without targeted resampling of specimens. Filtering only for missing data and minor allele frequency, we used a combination of principal components analysis and linkage disequilibrium network analysis to distinguish three cohorts of variable SNPs in the mountain pine beetle in western Canada, including one that was sex-linked and one that was geographically associated. These marker cohorts indicate genomically localized differentiation, and their detection demonstrates an accessible and intuitive method for discovering potential islands of genomic divergence without a priori knowledge of a species' genomic architecture. Thus, this method has utility for directly addressing the genomic architecture of species and generating new hypotheses for functional research.
Collapse
Affiliation(s)
| | - Jasmine K. Janes
- School of Environmental & Rural SciencesUniversity of New EnglandArmidaleNew South WalesAustralia
- Biology DepartmentVancouver Island UniversityNanaimoBritish ColumbiaCanada
| | - Kevin Muirhead
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | |
Collapse
|
89
|
Feulner PGD, Seehausen O. Genomic insights into the vulnerability of sympatric whitefish species flocks. Mol Ecol 2019; 28:615-629. [PMID: 30554444 DOI: 10.1111/mec.14977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022]
Abstract
The erosion of habitat heterogeneity can reduce species diversity directly but can also lead to the loss of distinctiveness of sympatric species through speciation reversal. We know little about changes in genomic differentiation during the early stages of these processes, which can be mediated by anthropogenic perturbation. Here, we analyse three sympatric whitefish species (Coregonus spp) sampled across two neighbouring and connected Swiss pre-alpine lakes, which have been differentially affected by anthropogenic eutrophication. Our data set comprises 16,173 loci genotyped across 138 whitefish using restriction-site associated DNA sequencing (RADseq). Our analysis suggests that in each of the two lakes, the population of a different, but ecologically similar, whitefish species declined following a recent period of eutrophication. Genomic signatures consistent with hybridization are more pronounced in the more severely impacted lake. Comparisons between sympatric pairs of whitefish species with contrasting ecology, where one is shallow benthic and the other one more profundal pelagic, reveal genomic differentiation that is largely correlated along the genome, while differentiation is uncorrelated between pairs of allopatric provenance with similar ecology. We identify four genomic loci that provide evidence of parallel divergent adaptation between the shallow benthic species and the two different more profundal species. Functional annotations available for two of those loci are consistent with divergent ecological adaptation. Our genomic analysis indicates the action of divergent natural selection between sympatric whitefish species in pre-alpine lakes and reveals the vulnerability of these species to anthropogenic alterations of the environment and associated adaptive landscape.
Collapse
Affiliation(s)
- Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
90
|
Schmid DW, McGee MD, Best RJ, Seehausen O, Matthews B. Rapid Divergence of Predator Functional Traits Affects Prey Composition in Aquatic Communities. Am Nat 2019; 193:331-345. [PMID: 30794448 DOI: 10.1086/701784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Identifying traits that underlie variation in individual performance of consumers (i.e., trait utility) can help reveal the ecological causes of population divergence and the subsequent consequences for species interactions and community structure. Here, we document a case of rapid divergence (over the past 100 generations, or ∼150 years) in foraging traits and feeding efficiency between a lake and stream population pair of threespine stickleback. Building on predictions from functional trait models of fish feeding, we analyzed foraging experiments with a Bayesian path analysis and elucidated the traits explaining variation in foraging performance and the species composition of ingested prey. Despite extensive previous research on the divergence of foraging traits among populations and ecotypes of stickleback, our results provide novel experimental evidence of trait utility for jaw protrusion, gill raker length, and gill raker spacing when foraging on a natural zooplankton assemblage. Furthermore, we discuss how these traits might contribute to the differential effects of lake and stream stickleback on their prey communities, observed in both laboratory and mesocosm conditions. More generally, our results illustrate how the rapid divergence of functional foraging traits of consumers can impact the biomass, species composition, and trophic structure of prey communities.
Collapse
|
91
|
Hohenlohe PA, Magalhaes IS. The Population Genomics of Parallel Adaptation: Lessons from Threespine Stickleback. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2019_67] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
92
|
Jones KS, Weisrock DW. Genomic data reject the hypothesis of sympatric ecological speciation in a clade of Desmognathus salamanders. Evolution 2018; 72:2378-2393. [PMID: 30246244 DOI: 10.1111/evo.13606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
Closely related taxa with dissimilar morphologies are often considered to have diverged via natural selection favoring different phenotypes. However, some studies have found these scenarios to be paired with limited or no genetic differentiation. Desmognathus quadramaculatus and D. marmoratus are sympatric salamander species thought to represent a case of ecological speciation based on distinct morphologies, but the results of previous studies have not resolved corresponding patterns of lineage divergence. Here, we use genome-wide data to test this hypothesis of ecological speciation. Population structure analyses partitioned individuals geographically, but not morphologically, into two adjacent regions of western North Carolina: Pisgah and Nantahala. Phylogenetic analyses confirmed the nominal species are nonmonophyletic and resolved deep divergence between the two geographic clusters. Model-testing overwhelmingly supported the hypothesis that lineage divergence followed geography. Finally, ecological niche modeling showed that Pisgah and Nantahala individuals occupy different climatic niches, and geographic boundaries for the two lineages correspond to differences in precipitation regimes across southern Appalachia. Overall, we reject the previous hypothesis of ecological speciation based on microhabitat partitioning. Instead, our results suggest that there are two cryptic lineages, each containing the same pair of morphotypes.
Collapse
Affiliation(s)
- Kara S Jones
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506
| |
Collapse
|
93
|
Bernardi G, Nelson P, Paddack M, Rulmal J, Crane N. Genomic islands of divergence in the Yellow Tang and the Brushtail Tang Surgeonfishes. Ecol Evol 2018; 8:8676-8685. [PMID: 30271536 PMCID: PMC6157655 DOI: 10.1002/ece3.4417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
The current ease of obtaining thousands of molecular markers challenges the notion that full phylogenetic concordance, as proposed by phylogenetic species concepts, is a requirement for defining species delimitations. Indeed, the presence of genomic islands of divergence, which may be the cause, or in some cases the consequence, of speciation, precludes concordance. Here, we explore this issue using thousands of RAD markers on two sister species of surgeonfishes (Teleostei: Acanthuridae), Zebrasoma flavescens and Z. scopas, and several populations within each species. Species are readily distinguished based on their colors (solid yellow and solid brown, respectively), yet populations and species are neither distinguishable using mitochondrial markers (cytochrome c oxidase 1), nor using 5193 SNPs (pairwise Φst = 0.034). In contrast, when using outlier loci, some of them presumably under selection, species delimitations, and strong population structure follow recognized taxonomic positions (pairwise Φst = 0.326). Species and population delimitation differences based on neutral and selected markers are likely due to local adaptation, thus being consistent with the idea that these genomic islands of divergence arose as a consequence of isolation. These findings, which are not unique, raise the question of a potentially important pathway of divergence based on local adaptation that is only evident when looking at thousands of loci.
Collapse
Affiliation(s)
- Giacomo Bernardi
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCalifornia
| | | | | | - John Rulmal
- Ulithi Falalop Community Action ProgramYapFederated States of Micronesia
| | - Nicole Crane
- Department of BiologyCabrillo CollegeAptosCalifornia
| |
Collapse
|
94
|
Jorde PE, Andersson A, Ryman N, Laikre L. Are we underestimating the occurrence of sympatric populations? Mol Ecol 2018; 27:4011-4025. [PMID: 30137668 DOI: 10.1111/mec.14846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022]
Abstract
Sympatric populations are conspecific populations that coexist spatially. They are of interest in evolutionary biology by representing the potential first steps of sympatric speciation and are important to identify and monitor in conservation management. Reviewing the literature pertaining to sympatric populations, we find that most cases of sympatry appear coupled to phenotypic divergence, implying ease of detection. In comparison, phenotypically cryptic, sympatric populations seem rarely documented. We explore the statistical power for detecting population mixtures from genetic marker data, using commonly applied tests for heterozygote deficiency (i.e., Wahlund effect) and the structure software, through computer simulations. We find that both tests are efficient at detecting population mixture only when genetic differentiation is high, sample size and number of genetic markers are reasonable and the sympatric populations happen to occur in similar proportions in the sample. We present an approximate expression based on these experimental factors for the lower limit of FST , beyond which power for structure collapses and only the heterozygote-deficiency tests retain some, although low, power. The findings suggest that cases of cryptic sympatry may have passed unnoticed in population genetic screenings using number of loci typical of the pre-genomics era. Hence, cryptic sympatric populations may be more common than hitherto thought, and we urge more attention being diverted to their detection and characterization.
Collapse
Affiliation(s)
| | - Anastasia Andersson
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Nils Ryman
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Linda Laikre
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
95
|
Moser FN, van Rijssel JC, Mwaiko S, Meier JI, Ngatunga B, Seehausen O. The onset of ecological diversification 50 years after colonization of a crater lake by haplochromine cichlid fishes. Proc Biol Sci 2018; 285:rspb.2018.0171. [PMID: 30111604 DOI: 10.1098/rspb.2018.0171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022] Open
Abstract
Adaptive radiation research typically relies on the study of evolution in retrospective, leaving the predictive value of the concept hard to evaluate. Several radiations, including the cichlid fishes in the East African Great Lakes, have been studied extensively, yet no study has investigated the onset of the intraspecific processes of niche expansion and differentiation shortly after colonization of an adaptive zone by cichlids. Haplochromine cichlids of one of the two lineages that seeded the Lake Victoria radiation recently arrived in Lake Chala, a lake perfectly suited for within-lake cichlid speciation. Here, we infer the colonization and demographic history, quantify phenotypic, ecological and genomic diversity and diversification, and investigate the selection regime to ask if the population shows signs of diversification resembling the onset of adaptive radiation. We find that since their arrival in the lake, haplochromines have colonized a wide range of depth habitats associated with ecological and morphological expansion and the beginning of phenotypic differentiation and potentially nascent speciation, consistent with the very early onset of an adaptive radiation process. Moreover, we demonstrate evidence of rugged phenotypic fitness surfaces, indicating that current ecological selection may contribute to the phenotypic diversification.
Collapse
Affiliation(s)
- Florian N Moser
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Jacco C van Rijssel
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland.,Wageningen Marine Research, Wageningen University and Research, Ijmuiden, The Netherlands
| | - Salome Mwaiko
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Joana I Meier
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Benjamin Ngatunga
- Tanzania Fisheries Research Institute, Box 9750, Dar Es Salaam, Tanzania
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland .,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
96
|
Blankers T, Oh KP, Bombarely A, Shaw KL. The Genomic Architecture of a Rapid Island Radiation: Recombination Rate Variation, Chromosome Structure, and Genome Assembly of the Hawaiian Cricket Laupala. Genetics 2018; 209:1329-1344. [PMID: 29875253 PMCID: PMC6063224 DOI: 10.1534/genetics.118.300894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/03/2018] [Indexed: 12/30/2022] Open
Abstract
Phenotypic evolution and speciation depend on recombination in many ways. Within populations, recombination can promote adaptation by bringing together favorable mutations and decoupling beneficial and deleterious alleles. As populations diverge, crossing over can give rise to maladapted recombinants and impede or reverse diversification. Suppressed recombination due to genomic rearrangements, modifier alleles, and intrinsic chromosomal properties may offer a shield against maladaptive gene flow eroding coadapted gene complexes. Both theoretical and empirical results support this relationship. However, little is known about this relationship in the context of behavioral isolation, where coevolving signals and preferences are the major hybridization barrier. Here we examine the genomic architecture of recently diverged, sexually isolated Hawaiian swordtail crickets (Laupala). We assemble a de novo genome and generate three dense linkage maps from interspecies crosses. In line with expectations based on the species' recent divergence and successful interbreeding in the laboratory, the linkage maps are highly collinear and show no evidence for large-scale chromosomal rearrangements. Next, the maps were used to anchor the assembly to pseudomolecules and estimate recombination rates across the genome to test the hypothesis that loci involved in behavioral isolation (song and preference divergence) are in regions of low interspecific recombination. Contrary to our expectations, the genomic region where a male song and female preference QTL colocalize is not associated with particularly low recombination rates. This study provides important novel genomic resources for an emerging evolutionary genetics model system and suggests that trait-preference coevolution is not necessarily facilitated by locally suppressed recombination.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Kevin P Oh
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| |
Collapse
|
97
|
Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat Ecol Evol 2018; 2:1258-1267. [DOI: 10.1038/s41559-018-0606-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
98
|
Lucek K, Keller I, Nolte AW, Seehausen O. Distinct colonization waves underlie the diversification of the freshwater sculpin (Cottus gobio
) in the Central European Alpine region. J Evol Biol 2018; 31:1254-1267. [DOI: 10.1111/jeb.13339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences; University of Basel; Basel Switzerland
- Department of Aquatic Ecology and Macroevolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center of Ecology, Evolution and Biochemistry; Kastanienbaum Switzerland
| | - Irene Keller
- Department of BioMedical Research and Swiss Institute of Bioinformatics; University of Bern; Bern Switzerland
| | - Arne W. Nolte
- Institute for Biology; Carl von Ossietzky University Oldenburg; Oldenburg Germany
- Department for Evolutionary Genetics; Max-Planck Institute for Evolutionary Biology; Plön Germany
| | - Ole Seehausen
- Department of Aquatic Ecology and Macroevolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center of Ecology, Evolution and Biochemistry; Kastanienbaum Switzerland
| |
Collapse
|
99
|
Feulner PGD, Schwarzer J, Haesler MP, Meier JI, Seehausen O. A Dense Linkage Map of Lake Victoria Cichlids Improved the Pundamilia Genome Assembly and Revealed a Major QTL for Sex-Determination. G3 (BETHESDA, MD.) 2018; 8:2411-2420. [PMID: 29760203 PMCID: PMC6027883 DOI: 10.1534/g3.118.200207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/13/2018] [Indexed: 01/09/2023]
Abstract
Genetic linkage maps are essential for comparative genomics, high quality genome sequence assembly and fine scale quantitative trait locus (QTL) mapping. In the present study we identified and genotyped markers via restriction-site associated DNA (RAD) sequencing and constructed a genetic linkage map based on 1,597 SNP markers of an interspecific F2 cross of two closely related Lake Victoria cichlids (Pundamilia pundamilia and P sp. 'red head'). The SNP markers were distributed on 22 linkage groups and the total map size was 1,594 cM with an average marker distance of 1.01 cM. This high-resolution genetic linkage map was used to anchor the scaffolds of the Pundamilia genome and estimate recombination rates along the genome. Via QTL mapping we identified a major QTL for sex in a ∼1.9 Mb region on Pun-LG10, which is homologous to Oreochromis niloticus LG 23 (Ore-LG23) and includes a well-known vertebrate sex-determination gene (amh).
Collapse
Affiliation(s)
- Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Julia Schwarzer
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
- Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Marcel P Haesler
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Joana I Meier
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Switzerland
| |
Collapse
|
100
|
Bassham S, Catchen J, Lescak E, von Hippel FA, Cresko WA. Repeated Selection of Alternatively Adapted Haplotypes Creates Sweeping Genomic Remodeling in Stickleback. Genetics 2018; 209:921-939. [PMID: 29794240 PMCID: PMC6028257 DOI: 10.1534/genetics.117.300610] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
Heterogeneous genetic divergence can accumulate across the genome when populations adapt to different habitats while still exchanging alleles. How long does diversification take and how much of the genome is affected? When divergence occurs in parallel from standing genetic variation, how often are the same haplotypes involved? We explore these questions using restriction site-associated DNA sequencing genotyping data and show that broad-scale genomic repatterning, fueled by copious standing variation, can emerge in just dozens of generations in replicate natural populations of threespine stickleback fish (Gasterosteus aculeatus). After the catastrophic 1964 Alaskan earthquake, marine stickleback colonized newly created ponds on seismically uplifted islands. We find that freshwater fish in these young ponds differ from their marine ancestors across the same genomic segments previously shown to have diverged in much older lake populations. Outside of these core divergent regions the genome shows no population structure across the ocean-freshwater divide, consistent with strong local selection acting in alternative environments on stickleback populations still connected by significant gene flow. Reinforcing this inference, a majority of divergent haplotypes that are at high frequency in ponds are detectable in the sea, even across great geographic distances. Building upon previous population genomics work in this model species, our data suggest that a long history of divergent selection and gene flow among stickleback populations in oceanic and freshwater habitats has maintained polymorphisms of alternatively adapted DNA sequences that facilitate parallel evolution.
Collapse
Affiliation(s)
- Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Julian Catchen
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Emily Lescak
- Department of Biological Sciences, University of Alaska Anchorage, Alaska 99508
- College of Fisheries and Ocean Science, University of Alaska Fairbanks, Alaska 99775
| | - Frank A von Hippel
- Department of Biological Sciences , Northern Arizona University, Flagstaff, Arizona 86011
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona 86011
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|