51
|
Molineris I, Ala U, Provero P, Di Cunto F. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs). BMC Bioinformatics 2013; 14:288. [PMID: 24088245 PMCID: PMC3851137 DOI: 10.1186/1471-2105-14-288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022] Open
Abstract
Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation.
Collapse
Affiliation(s)
- Ivan Molineris
- Molecular Biotechnology Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| | | | | | | |
Collapse
|
52
|
Abstract
The improvement in outcome for patients with localized and metastatic Ewing sarcoma since the development of cytotoxic chemotherapy remains one of the most profound advances in oncology and one of the proudest achievements of sarcoma researchers. Identification of molecular targets for new treatments has become an intense area within Ewing sarcoma research. The development of improved preclinical Ewing sarcoma models and advanced molecular techniques will build on knowledge of EWS/FLI1 function, EWS/FLI1 transcription targets, and the other critical driver events in these tumors.
Collapse
Affiliation(s)
- Gregory M Cote
- Division of Hematology Oncology, Yawkey Center for Outpatient Care, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, MA 02114, USA
| | | |
Collapse
|
53
|
Gorlick R, Janeway K, Lessnick S, Randall RL, Marina N. Children's Oncology Group's 2013 blueprint for research: bone tumors. Pediatr Blood Cancer 2013; 60:1009-15. [PMID: 23255238 PMCID: PMC4610028 DOI: 10.1002/pbc.24429] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022]
Abstract
In the US, approximately 650 children are diagnosed with osteosarcoma and Ewing sarcoma (ES) each year. Five-year survival ranges from 65% to 75% for localized disease and <30% for patients with metastases. Recent findings include interval-compressed five drug chemotherapy improves survival with localized ES. In osteosarcoma a large international trial investigating the addition of ifosfamide/etoposide or interferon to standard therapy has completed accrual. For ES an ongoing trial explores the addition of cyclophosphamide/topotecan to interval-compressed chemotherapy. Trials planned by the Children's Oncology Group will investigate new target(s) including IGF-1R and mTOR in ES, and RANKL and GD2 in osteosarcoma.
Collapse
Affiliation(s)
- Richard Gorlick
- The Department of Pediatrics and Molecular Pharmacology, The Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10467, USA.
| | - Katherine Janeway
- Department of Pediatric Hematology-Oncology, Dana-Farber/Children’s Hospital Cancer Center, Boston, Massachusetts
| | - Stephen Lessnick
- Division of Pediatric Hematology/Oncology, Department of Oncological Sciences, University of Utah School of Medicine, Center for Children’s Cancer Research at Huntsman Cancer Institute, Salt Lake City, Utah
| | - R. Lor Randall
- Orthopaedics Huntsman Cancer Institute & Primary Children’s Medical Center, University of Utah, Salt Lake City, Utah
| | - Neyssa Marina
- Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital & Stanford University, Palo Alto, California
| | | |
Collapse
|
54
|
Fujita T, Mizukami T, Okawara T, Inoue K, Fujimori M. Identification of a novel inhibitor of triple-negative breast cancer cell growth by screening of a small-molecule library. Breast Cancer 2013; 21:738-47. [PMID: 23456737 DOI: 10.1007/s12282-013-0452-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Triple-negative breast cancers (TNBC) are defined as not having amplification of the estrogen receptor, progesterone receptor, or epidermal growth factor receptor 2. Recovery of patients is, currently, severely limited after diagnosis of metastatic TNBC, with fewer than 30 % of patients surviving more than 5 years. The most effective therapy to date is chemotherapy, which has been unsuccessful because of lack of therapeutic targets for these aggressive cancers. To identify new molecular targets for TNBC, we have developed a novel method for drug discovery using active compounds for identification of pharmacodynamic biomarkers. METHODS We used chemical informatics to design a small-molecule library with structural diversity. This library was used to screen for compounds that selectively inhibit proliferation of TNBC cell lines. Different gene-expression profiles in cell lines before and after the addition of selected compounds were analyzed and compared with those of control cells. RESULTS We identified (E)-3-(3,4-dihydroxybenzylidene)benzofuran-2(3H)-one (DBBF) which specifically inhibited proliferation of a TNBC cell line, MDA-MB-468, with an IC50 of 2.4 μM. Microarray analysis identified several signaling pathways, including the irinotecan pathway, which changed specifically in the TNBC cell lines on addition of DBBF. CONCLUSION We have developed a novel research strategy that involves screening of selective inhibitors of TNBC cell line proliferation that can be used for identification of pharmacodynamic biomarkers for TNBC. The discovery of new pathways by this technique should lead to the identification of new therapeutic targets for this aggressive cancer.
Collapse
Affiliation(s)
- Tomoyuki Fujita
- Department of Breast Surgery, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami Inashiki, Ibaraki, 300-0395, Japan
| | | | | | | | | |
Collapse
|
55
|
Chen C, Shanmugasundaram K, Rigby AC, Kung AL. Shikonin, a natural product from the root of Lithospermum erythrorhizon, is a cytotoxic DNA-binding agent. Eur J Pharm Sci 2013; 49:18-26. [PMID: 23422689 DOI: 10.1016/j.ejps.2013.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/10/2013] [Accepted: 02/02/2013] [Indexed: 01/05/2023]
Abstract
To search for compounds that disrupt binding of the EWS-FLI1 fusion protein to its cognate targets, we developed a homogeneous high-throughput proximity assay and screened 5200 small molecule compounds. Many well-known DNA-binding chemotherapeutic agents, such as actinomycin D, cisplatin, doxorubicin, daunorubicin, and epirubicin scored in the assay and not surprising also disrupted the binding of other transcription factors. Unexpectedly, we found that Shikonin, a natural product from the root of Lithospermum erythrorhizon, similarly disrupted protein-DNA interactions. Mechanistic studies demonstrated that Shikonin displaces SYBR green from binding to the minor groove of DNA and is able to inhibit topoisomerase mediated DNA relaxation. In cells, Shikonin blocked the binding of EWS-FLI1 to the NR0B1 promoter, and attenuated gene expression. Shikonin rapidly induced G2/M arrest and apoptosis in Ewing sarcoma cells. These results demonstrate that contrary to other purported mechanisms of action, Shikonin is a DNA-binding cytotoxic agent.
Collapse
Affiliation(s)
- Changmin Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kumaran Shanmugasundaram
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan C Rigby
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew L Kung
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
56
|
Prospects and challenges for the development of new therapies for Ewing sarcoma. Pharmacol Ther 2012; 137:216-24. [PMID: 23085431 DOI: 10.1016/j.pharmthera.2012.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 01/09/2023]
Abstract
The Ewing sarcoma family of tumors or Ewing sarcoma (ES) is the second most common malignant bone tumor of childhood. The prognosis for localized Ewing sarcoma has improved through the development of intense multimodal therapy over the past several decades. Unfortunately, patients with recurrent or metastatic disease continue to have a poor prognosis. Therefore, a number of complementary approaches are being developed in both the preclinical and clinical arenas to improve these outcomes. In this review, we will discuss efforts to directly target the biologic drivers of this disease and relate these efforts to the experience with several different agents both in the clinic and under development. We will review the data for compounds that have shown excellent activity in the clinic, such as the camptothecins, and summarize the biological data that supports this activity. In addition, we will review the clinical experience with IGF1 targeted agents, ET-743 and epigenetically targeted therapies, the substantial amount of literature that supports their activity in Ewing sarcoma and the challenges remaining translating these therapies to the clinic. Finally, we will highlight recent work aimed at directly targeting the EWS-FLI1 transcription factor with small molecules in Ewing tumors.
Collapse
|
57
|
|
58
|
Sampson ER, McMurray HR, Hassane DC, Newman L, Salzman P, Jordan CT, Land H. Gene signature critical to cancer phenotype as a paradigm for anticancer drug discovery. Oncogene 2012; 32:3809-18. [PMID: 22964631 DOI: 10.1038/onc.2012.389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/25/2012] [Accepted: 07/20/2012] [Indexed: 02/06/2023]
Abstract
Malignant cell transformation commonly results in the deregulation of thousands of cellular genes, an observation that suggests a complex biological process and an inherently challenging scenario for the development of effective cancer interventions. To better define the genes/pathways essential to regulating the malignant phenotype, we recently described a novel strategy based on the cooperative nature of carcinogenesis that focuses on genes synergistically deregulated in response to cooperating oncogenic mutations. These so-called 'cooperation response genes' (CRGs) are highly enriched for genes critical for the cancer phenotype, thereby suggesting their causal role in the malignant state. Here, we show that CRGs have an essential role in drug-mediated anticancer activity and that anticancer agents can be identified through their ability to antagonize the CRG expression profile. These findings provide proof-of-concept for the use of the CRG signature as a novel means of drug discovery with relevance to underlying anticancer drug mechanisms.
Collapse
Affiliation(s)
- E R Sampson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Lissat A, Chao MM, Kontny U. Targeted therapy in Ewing sarcoma. ISRN ONCOLOGY 2012; 2012:609439. [PMID: 22690342 PMCID: PMC3368441 DOI: 10.5402/2012/609439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 12/17/2022]
Abstract
Despite marked improvement in the prognosis of patients with nonmetastatic Ewing sarcoma (ES), the outcome for patients with recurrent or metastatic disease remains poor. Insight into key biologic processes in ES could provide new therapeutic targets. The particular biologic feature of ES, the fusion of the EWS gene with a member of the ETS family of genes, is present in >95% of cases. The EWS-ETS chimeric protein leads to aberrant transcription that promotes tumor initiation and propagation via prosurvival and antiapoptotic pathways. Recent research has identified cooperating mutations important for ES tumorigenesis. This paper provides a summary of the latest research in ES and discusses potential novel targets for therapy.
Collapse
Affiliation(s)
- A Lissat
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Medical Center Freiburg, 79106 Freiburg, Germany
| | | | | |
Collapse
|
60
|
Boro A, Prêtre K, Rechfeld F, Thalhammer V, Oesch S, Wachtel M, Schäfer BW, Niggli FK. Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing's sarcoma. Int J Cancer 2012; 131:2153-64. [PMID: 22323082 DOI: 10.1002/ijc.27472] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 01/17/2012] [Indexed: 01/30/2023]
Abstract
Ewing's sarcoma family of tumors (EFT) is characterized by the presence of chromosomal translocations leading to the expression of oncogenic transcription factors such as, in the majority of cases, EWS/FLI1. Because of its key role in Ewing's sarcoma development and maintenance, EWS/FLI1 represents an attractive therapeutic target. Here, we characterize PHLDA1 as a novel direct target gene whose expression is repressed by EWS/FLI1. Using this gene and additional specific well-characterized target genes such as NROB1, NKX2.2 and CAV1, all activated by EWS/FLI1, as a read-out system, we screened a small-molecule compound library enriched for FDA-approved drugs that modulated the expression of EWS/FLI1 target genes. Among a hit-list of nine well-known drugs such as camptothecin, fenretinide, etoposide and doxorubicin, we also identified the kinase inhibitor midostaurin (PKC412). Subsequent experiments demonstrated that midostaurin is able to induce apoptosis in a panel of six Ewing's sarcoma cell lines in vitro and can significantly suppress xenograft tumor growth in vivo. These results suggest that midostaurin might be a novel drug that is active against Ewing's cells, which might act by modulating the expression of EWS/FLI1 target genes.
Collapse
Affiliation(s)
- Aleksandar Boro
- Department of Oncology and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Griffin DE, Lin WH, Pan CH. Measles virus, immune control, and persistence. FEMS Microbiol Rev 2012; 36:649-62. [PMID: 22316382 DOI: 10.1111/j.1574-6976.2012.00330.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 12/31/2022] Open
Abstract
Measles remains one of the most important causes of child morbidity and mortality worldwide with the greatest burden in the youngest children. Most acute measles deaths are owing to secondary infections that result from a poorly understood measles-induced suppression of immune responses. Young children are also vulnerable to late development of subacute sclerosing panencephalitis, a progressive, uniformly fatal neurologic disease caused by persistent measles virus (MeV) infection. During acute infection, the rash marks the appearance of the adaptive immune response and CD8(+) T cell-mediated clearance of infectious virus. However, after clearance of infectious virus, MeV RNA persists and can be detected in blood, respiratory secretions, urine, and lymphoid tissue for many weeks to months. This prolonged period of virus clearance may help to explain measles immunosuppression and the development of lifelong immunity to re-infection, as well as occasional infection of the nervous system. Once MeV infects neurons, the virus can spread trans-synaptically and the envelope proteins needed to form infectious virus are unnecessary, accumulate mutations, and can establish persistent infection. Identification of the immune mechanisms required for the clearance of MeV RNA from multiple sites will enlighten our understanding of the development of disease owing to persistent infection.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
62
|
Simmons O, Maples PB, Senzer N, Nemunaitis J. Ewing's Sarcoma: Development of RNA Interference-Based Therapy for Advanced Disease. ISRN ONCOLOGY 2012; 2012:247657. [PMID: 22523703 PMCID: PMC3317005 DOI: 10.5402/2012/247657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/04/2011] [Indexed: 12/12/2022]
Abstract
Ewing's sarcoma tumors are associated with chromosomal translocation between the EWS gene and the ETS transcription factor gene. These unique target sequences provide opportunity for RNA interference(i)-based therapy. A summary of RNAi mechanism and therapeutically designed products including siRNA, shRNA and bi-shRNA are described. Comparison is made between each of these approaches. Systemic RNAi-based therapy, however, requires protected delivery to the Ewing's sarcoma tumor site for activity. Delivery systems which have been most effective in preclinical and clinical testing are reviewed, followed by preclinical assessment of various silencing strategies with demonstration of effectiveness to EWS/FLI-1 target sequences. It is concluded that RNAi-based therapeutics may have testable and achievable activity in management of Ewing's sarcoma.
Collapse
Affiliation(s)
| | | | - Neil Senzer
- Gradalis, Inc., Dallas, TX 75201, USA
- Mary Crowley Cancer Research Centers, Dallas, TX 75201, USA
- Texas Oncology, PA, Dallas, TX 75251, USA
- Medical City Dallas Hospital, Dallas, TX 75230, USA
| | - John Nemunaitis
- Gradalis, Inc., Dallas, TX 75201, USA
- Mary Crowley Cancer Research Centers, Dallas, TX 75201, USA
- Texas Oncology, PA, Dallas, TX 75251, USA
- Medical City Dallas Hospital, Dallas, TX 75230, USA
| |
Collapse
|
63
|
Tan XL, Marquardt G, Massimi AB, Shi M, Han W, Spivack SD. High-throughput library screening identifies two novel NQO1 inducers in human lung cells. Am J Respir Cell Mol Biol 2012; 46:365-71. [PMID: 22021338 PMCID: PMC3326428 DOI: 10.1165/rcmb.2011-0301oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/19/2011] [Indexed: 01/18/2023] Open
Abstract
Many phytochemicals possess antioxidant and cancer-preventive properties, some putatively through antioxidant response element-mediated phase II metabolism, entailing mutagen/oxidant quenching. In our recent studies, however, most candidate phytochemical agents were not potent in inducing phase II genes in normal human lung cells. In this study, we applied a messenger RNA (mRNA)-specific gene expression-based high throughput in vitro screening approach to discover new, potent plant-derived phase II inducing chemopreventive agents. Primary normal human bronchial epithelial (NHBE) cells and immortalized human bronchial epithelial cells (HBECs) were exposed to 800 individual compounds in the MicroSource Natural Products Library. At a level achievable in humans by diet (1.0 μM), 2,3-dihydroxy-4-methoxy-4'-ethoxybenzophenone (DMEBP), triacetylresveratrol (TRES), ivermectin, sanguinarine sulfate, and daunorubicin induced reduced nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1 (NQO1) mRNA and protein expression in NHBE cells. DMEBP and TRES were the most attractive agents as coupling potency and low toxicity for induction of NQO1 (mRNA level, ≥3- to 10.8-fold that of control; protein level, ≥ two- to fourfold that of control). Induction of glutathione S-transferase pi mRNA expression was modest, and none was apparent for glutathione S-transferase pi protein expression. Measurements of reactive oxygen species and glutathione/oxidized glutathione ratio showed an antioxidant effect for DMEBP, but no definite effect was found for TRES in NHBE cells. Exposure of NHBE cells to H(2)O(2) induced nuclear translocation of nuclear factor erythroid 2-related factor 2, but this translocation was not significantly inhibited by TRES and DMEBP. These studies show that potency and low toxicity may align for two potential NQO1-inducing agents, DMEBP and TRES.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- M.D. Department of Health Science Research, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Cong F, Cheung AK, Huang SMA. Chemical Genetics–Based Target Identification in Drug Discovery. Annu Rev Pharmacol Toxicol 2012; 52:57-78. [DOI: 10.1146/annurev-pharmtox-010611-134639] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Feng Cong
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139;
| | - Atwood K. Cheung
- Global Discovery Chemistry – Chemogenetics and Proteomics, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Shih-Min A. Huang
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139;
- Current address: Sanofi-Aventis Oncology, Cambridge, Massachusetts 02139
| |
Collapse
|
65
|
Dhani NC, Emmenegger U, Adams L, Jongstra J, Tannock IF, Sridhar SS, Knox JJ, Day JR, Groskopf J, Joshua AM. Phase II study of cytarabine in men with docetaxel-refractory, castration-resistant prostate cancer with evaluation of TMPRSS2-ERG and SPINK1 as serum biomarkers. BJU Int 2012; 110:840-5. [PMID: 22313860 DOI: 10.1111/j.1464-410x.2011.10922.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED What's known on the subject? and What does the study add? To date, there has been limited impetus to examine the use of cytarabine in prostate cancer. We presented preliminary laboratory data to suggest its utility in the castration refractory prostate cancer (CRPC) population which, combined with a previous case report, suggested it may have hitherto unrecognized utility in this setting. Embedded in this study was peripheral blood sampling for TMPRSS2-ERG and SPINK1, two genes that are believed to define prostate cancer genotypes, to assess their utility as biomarkers This study suggests that at the delivered doses, cytarabine has limited efficacy and significant myelotoxicity suggesting, it does not have a role in the treatment of docetaxel-refractory CRPC. The presence of serum TMPRSS2-ERG and SPINK1 mRNA biomarkers recovered from blood suggest that their analysis is worthy of further study. OBJECTIVES To run a phase II clinical trial of cytarabine in men with docetaxel-refractory, castration-resistant prostate cancer (CRPC), based on evidence that cytarabine might be effective in men with abnormalities of ERG oncogenes. To measure mRNA levels of prostate cancer-related genes in blood as biomarkers. PATIENTS AND METHODS Ten of a planned maximum of 30 men received i.v. cytarabine at doses of 0.25-1g/m(2) at 21-day intervals. The primary endpoint was prostate-specific antigen (PSA) response. Archival tumour samples were assessed by fluorescence in-situ hybridization for TMPRSS2:ERG translocation, and by immunohistochemistry for serine peptidase inhibitor Kazal type 1 (SPINK1). Blood was processed for mRNA quantification of TMPRSS2:ERG (exon1:exon4), SPINK1 and PSA. RESULTS A PSA response was not observed in any patient. The trial was stopped at the end of stage 1 of a modified Flemming design. The median number of cycles administered was 3. Grade 3-4 haematological toxicity was common. Five patients were subsequently excluded from the study for toxicity, and five for disease progression. Analysis of whole blood mRNA for T1:E4 translocation in TMPRSS2:ERG was consistent with that in the tumour in 8/9 evaluable cases (one was concordantly positive, seven were concordantly negative), SPINK1 results were concordant in 9/10 cases (two were concordantly positive, seven were concordantly negative [P = 0.047 for the predictive value]). There was no correlation between PSA or SPINK protein and their respective mRNA copy levels in blood. CONCLUSIONS Cytarabine at the doses used is ineffective for men with CRPC. Blood mRNA levels of prostate cancer genes may represent a novel aspect of monitoring prostate cancer and have implications for the understanding of tumour-derived mRNA.
Collapse
Affiliation(s)
- Neesha C Dhani
- Department of Medical Oncology, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Ewing sarcoma, a rare malignancy of childhood and adolescence, has attracted wide research interest. Tumor-specific chromosomal translocations generate aberrant EWS-ETS transcription factors, which alter intracellular signaling networks through gene and protein expression and are considered to be the primary tumor-initiating event. Ewing sarcoma therefore offers insights into principle molecular mechanisms of cancer development and maintenance. Still, despite long-standing research, biology-based targeted treatment strategies for Ewing sarcoma are only beginning to emerge. This article provides an overview of the biological basis and putative targeted treatment options.
Collapse
Affiliation(s)
- Jenny Potratz
- Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | | | | | | |
Collapse
|
67
|
Kovar H, Alonso J, Aman P, Aryee DNT, Ban J, Burchill SA, Burdach S, De Alava E, Delattre O, Dirksen U, Fourtouna A, Fulda S, Helman LJ, Herrero-Martin D, Hogendoorn PCW, Kontny U, Lawlor ER, Lessnick SL, Llombart-Bosch A, Metzler M, Moriggl R, Niedan S, Potratz J, Redini F, Richter GHS, Riedmann LT, Rossig C, Schäfer BW, Schwentner R, Scotlandi K, Sorensen PH, Staege MS, Tirode F, Toretsky J, Ventura S, Eggert A, Ladenstein R. The first European interdisciplinary ewing sarcoma research summit. Front Oncol 2012; 2:54. [PMID: 22662320 PMCID: PMC3361960 DOI: 10.3389/fonc.2012.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
The European Network for Cancer Research in Children and Adolescents (ENCCA) provides an interaction platform for stakeholders in research and care of children with cancer. Among ENCCA objectives is the establishment of biology-based prioritization mechanisms for the selection of innovative targets, drugs, and prognostic markers for validation in clinical trials. Specifically for sarcomas, there is a burning need for novel treatment options, since current chemotherapeutic treatment protocols have met their limits. This is most obvious for metastatic Ewing sarcoma (ES), where long term survival rates are still below 20%. Despite significant progress in our understanding of ES biology, clinical translation of promising laboratory results has not yet taken place due to fragmentation of research and lack of an institutionalized discussion forum. To fill this gap, ENCCA assembled 30 European expert scientists and five North American opinion leaders in December 2011 to exchange thoughts and discuss the state of the art in ES research and latest results from the bench, and to propose biological studies and novel promising therapeutics for the upcoming European EWING2008 and EWING2012 clinical trials.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
- Department of Pediatrics, Medical UniversityVienna, Austria
- *Correspondence: Heinrich Kovar, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung and Medical University, Zimmermannplatz 10, 1090 Vienna, Austria. e-mail:
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMajadahonda, Spain
| | - Pierre Aman
- Department of Pathology, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of GothenburgGothenburg, Sweden
| | - Dave N. T. Aryee
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
- Department of Pediatrics, Medical UniversityVienna, Austria
| | - Jozef Ban
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
| | | | - Stefan Burdach
- Children’s Cancer Research Center and Roman Herzog Comprehensive Cancer Center, Klinikum rechts der Isar, Technical UniversityMunich, Germany
| | - Enrique De Alava
- Department of Pathology, University Hospital of Salamanca, Cancer Research Center-IBMCC, University of Salamanca-CSICSalamanca, Spain
| | - Olivier Delattre
- INSERM, U830 Génétique et Biologie des CancersInstitut Curie, Paris, France
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children’s Hospital MünsterMünster, Germany
| | - Argyro Fourtouna
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University FrankfurtFrankfurt am Main, Germany
| | - Lee J. Helman
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| | - David Herrero-Martin
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
| | | | - Udo Kontny
- Division of Pediatric Hematology and Oncology, University Children’s HospitalFreiburg, Germany
| | - Elizabeth R. Lawlor
- Department of Pediatrics, University of MichiganAnn Arbor, MI, USA
- Department of Pathology, University of MichiganAnn Arbor, MI, USA
| | - Stephen L. Lessnick
- Division of Pediatric Hematology and Oncology, Department of Oncological Sciences, Center for Children’s Cancer Research at Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake City, UT, USA
| | | | | | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer ResearchVienna, Austria
| | - Stephan Niedan
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
| | - Jenny Potratz
- Pediatric Hematology and Oncology, University Children’s Hospital MünsterMünster, Germany
| | - Françoise Redini
- INSERM, UMR 957, LUNAM Université, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives EA3822Nantes, France
| | - Günther H. S. Richter
- Children’s Cancer Research Center and Roman Herzog Comprehensive Cancer Center, Klinikum rechts der Isar, Technical UniversityMunich, Germany
| | - Lucia T. Riedmann
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
| | - Claudia Rossig
- Pediatric Hematology and Oncology, University Children’s Hospital MünsterMünster, Germany
| | - Beat W. Schäfer
- Department of Oncology, University Children’s HospitalZurich, Switzerland
| | - Raphaela Schwentner
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, Rizzoli InstituteBologna, Italy
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research CentreVancouver, BC, Canada
| | - Martin S. Staege
- Department of Pediatrics, Children’s Cancer Research Centre, Martin-Luther-University Halle-WittenbergHalle, Germany
| | - Franck Tirode
- INSERM, U830 Génétique et Biologie des CancersInstitut Curie, Paris, France
| | - Jeffrey Toretsky
- Lombardi Comprehensive Cancer Center, Georgetown UniversityWashington, DC, USA
| | - Selena Ventura
- Department of Oncology, University Children’s HospitalZurich, Switzerland
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, University Children’s HospitalEssen, Germany
| | - Ruth Ladenstein
- Children’s Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria
- Department of Pediatrics, Medical UniversityVienna, Austria
| |
Collapse
|
68
|
Herrero-Martin D, Fourtouna A, Niedan S, Riedmann LT, Schwentner R, Aryee DNT. Factors Affecting EWS-FLI1 Activity in Ewing's Sarcoma. Sarcoma 2011; 2011:352580. [PMID: 22135504 PMCID: PMC3216314 DOI: 10.1155/2011/352580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 02/06/2023] Open
Abstract
Ewing's sarcoma family tumors (ESFT) are characterized by specific chromosomal translocations, which give rise to EWS-ETS chimeric proteins. These aberrant transcription factors are the main pathogenic drivers of ESFT. Elucidation of the factors influencing EWS-ETS expression and/or activity will guide the development of novel therapeutic agents against this fatal disease.
Collapse
Affiliation(s)
- David Herrero-Martin
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Argyro Fourtouna
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Stephan Niedan
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Lucia T. Riedmann
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Raphaela Schwentner
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Dave N. T. Aryee
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| |
Collapse
|
69
|
A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 2011; 7:787-93. [PMID: 21946274 PMCID: PMC3306898 DOI: 10.1038/nchembio.695] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/16/2011] [Indexed: 02/06/2023]
Abstract
Linking the molecular aberrations of cancer to drug responses could guide treatment choice and identify new therapeutic applications. However, there has been no systematic approach for analyzing gene-drug interactions in human cells. We establish a multiplexed assay to study the cellular fitness of a panel of engineered isogenic cancer cells in response to a collection of drugs, enabling the systematic analysis of thousands of gene-drug interactions. Applying this approach to breast cancer revealed various synthetic-lethal interactions and drug resistance mechanisms, some of which were known, thereby validating the method. NOTCH pathway activation, which occurs frequently in breast cancer, unexpectedly conferred resistance to PI3K inhibitors, which are currently undergoing clinical trials in breast cancer patients. NOTCH1 and downstream induction of c-MYC overrode the dependency of cells on the PI3K/mTOR pathway for proliferation. These data reveal a novel mechanism of resistance to PI3K inhibitors with direct clinical implications.
Collapse
|
70
|
Lessnick SL, Ladanyi M. Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. ANNUAL REVIEW OF PATHOLOGY 2011; 7:145-59. [PMID: 21942527 PMCID: PMC3555146 DOI: 10.1146/annurev-pathol-011110-130237] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Approximately one-third of sarcomas contain specific translocations. Ewing sarcoma is the prototypical member of this group of sarcomas; it was the first to be recognized pathologically as a singular entity and to have its signature translocation defined cytogenetically, which led to the identification of its key driver alteration, the EWS-FLI1 gene fusion that encodes this aberrant, chimeric transcription factor. We review recent progress in selected areas of Ewing sarcoma research, including the application of genome-wide chromatin immunoprecipitation analyses, to provide a comprehensive view of the EWS-FLI1 target gene repertoire, the identification of EWS-FLI1 target genes that may also point to therapeutically targetable pathways, and data from model systems as they relate to the elusive cell of origin of Ewing sarcoma and its possible similarities to mesenchymal stem cells.
Collapse
Affiliation(s)
- Stephen L. Lessnick
- Center for Children's Cancer Research at Huntsman Cancer Institute, Department of Oncological Sciences, and Division of Pediatric Hematology and Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| | - Marc Ladanyi
- Molecular Diagnostics Service, Department of Pathology, and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065;
| |
Collapse
|
71
|
Grohar PJ, Woldemichael GM, Griffin LB, Mendoza A, Chen QR, Yeung C, Currier DG, Davis S, Khanna C, Khan J, McMahon JB, Helman LJ. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst 2011; 103:962-78. [PMID: 21653923 DOI: 10.1093/jnci/djr156] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Chromosomal translocations generating oncogenic transcription factors are the hallmark of a variety of tumors, including many sarcomas. Ewing sarcoma family of tumors (ESFTs) are characterized by the t(11;22)(q24;q12) translocation that generates the Ewing sarcoma breakpoint region 1 and Friend leukemia virus integration 1 (EWS-FLI1) fusion transcription factor responsible for the highly malignant phenotype of this tumor. Although continued expression of EWS-FLI1 is believed to be critical for ESFT cell survival, a clinically effective small-molecule inhibitor remains elusive likely because EWS-FLI1 is a transcription factor and therefore widely felt to be "undruggable." METHODS We developed a high-throughput screen to evaluate more than 50 000 compounds for inhibition of EWS-FLI1 activity in TC32 ESFT cells. We used a TC32 cell-based luciferase reporter screen using the EWS-FLI1 downstream target NR0B1 promoter and a gene signature secondary screen to sort and prioritize the compounds. We characterized the lead compound, mithramycin, based on its ability to inhibit EWS-FLI1 activity in vitro using microarray expression profiling, quantitative reverse transcription-polymerase chain reaction, and immunoblot analysis, and in vivo using immunohistochemistry. We studied the impact of this inhibition on cell viability in vitro and on tumor growth in ESFT xenograft models in vivo (n = 15-20 mice per group). All statistical tests were two-sided. RESULTS Mithramycin inhibited expression of EWS-FLI1 downstream targets at the mRNA and protein levels and decreased the growth of ESFT cells at half maximal inhibitory concentrations between 10 (95% confidence interval [CI] = 8 to 13 nM) and 15 nM (95% CI = 13 to 19 nM). Mithramycin suppressed the growth of two different ESFT xenograft tumors and prolonged the survival of ESFT xenograft-bearing mice by causing a decrease in mean tumor volume. For example, in the TC32 xenograft model, on day 15 of treatment, the mean tumor volume for the mithramycin-treated mice was approximately 3% of the tumor volume observed in the control mice (mithramycin vs control: 69 vs 2388 mm(3), difference = 2319 mm(3), 95% CI = 1766 to 2872 mm(3), P < .001). CONCLUSION Mithramycin inhibits EWS-FLI1 activity and demonstrates ESFT antitumor activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Patrick J Grohar
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr-MSC 1104, 10 CRC 1W-3816, Bethesda, MD 20892-1104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Konstantopoulos N, Foletta VC, Segal DH, Shields KA, Sanigorski A, Windmill K, Swinton C, Connor T, Wanyonyi S, Dyer TD, Fahey RP, Watt RA, Curran JE, Molero JC, Krippner G, Collier GR, James DE, Blangero J, Jowett JB, Walder KR. A gene expression signature for insulin resistance. Physiol Genomics 2011; 43:110-20. [DOI: 10.1152/physiolgenomics.00115.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made “insulin resistant” by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone (“resensitized”). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study ( n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes.
Collapse
Affiliation(s)
| | | | - David H. Segal
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | | | - Andrew Sanigorski
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | - Kelly Windmill
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | - Courtney Swinton
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | - Tim Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | - Stephen Wanyonyi
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | - Thomas D. Dyer
- Southwest Foundation for Biomedical Research, San Antonio, Texas; and
| | - Richard P. Fahey
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | - Rose A. Watt
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | - Joanne E. Curran
- Southwest Foundation for Biomedical Research, San Antonio, Texas; and
| | - Juan-Carlos Molero
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
| | | | | | - David E. James
- Diabetes and Obesity Research Program, Garvan Institute, Sydney; and
| | - John Blangero
- Southwest Foundation for Biomedical Research, San Antonio, Texas; and
| | | | - Ken R. Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong and
- Institute of Technology and Research Innovation, Deakin University, Geelong, Australia
| |
Collapse
|
73
|
Houghton PJ, Morton CL, Kang M, Reynolds CP, Billups CA, Favours E, Payne-Turner D, Tucker C, Smith MA. Evaluation of cytarabine against Ewing sarcoma xenografts by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55:1224-6. [PMID: 20979180 PMCID: PMC4675330 DOI: 10.1002/pbc.22355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Treatment with the nucleoside analog cytarabine has been shown to mimic changes in gene expression associated with downregulation of the EWS-FLI1 oncogene in Ewing sarcoma cell lines, selectively inhibit their growth in vitro, and cause tumor regression in athymic nude mice. For this report cytarabine was studied in vitro against a panel of 23 pediatric cancer cell lines and in vivo against 6 Ewing sarcoma xenografts. Acute lymphoblastic leukemia cell lines were the most sensitive to cytarabine in vitro (median IC(50) 9 nM), while Ewing sarcoma cell lines showed intermediate sensitivity (median IC(50) 232 nM). Cytarabine at a dose of 150 mg/kg administered daily 5× failed to significantly inhibit growth of five xenograft models, but reduced growth rate of the A673 xenograft by 50%. Cytarabine shows no differential in vitro activity against Ewing sarcoma cell lines and is ineffective in vivo against Ewing sarcoma xenografts at the dose and schedule studied.
Collapse
Affiliation(s)
- Peter J. Houghton
- St. Jude Children’s Research Hospital, Memphis, Tennessee,Correspondence to: Peter J. Houghton, Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, 332 North Lauderdale St., Memphis, TN 38105.,
| | | | - Min Kang
- Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | | | - Edward Favours
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Chandra Tucker
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
74
|
Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 2010; 116:5983-90. [PMID: 20889920 DOI: 10.1182/blood-2010-04-278044] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that the plant-derived compound parthenolide (PTL) can impair the survival and leukemogenic activity of primary human acute myeloid leukemia (AML) stem cells. However, despite the activity of this agent, PTL also induces cellular protective responses that likely function to reduce its overall cytotoxicity. Thus, we sought to identify pharmacologic agents that enhance the antileukemic potential of PTL. Toward this goal, we used the gene expression signature of PTL to identify compounds that inhibit cytoprotective responses by performing chemical genomic screening of the Connectivity Map database. This screen identified compounds acting along the phosphatidylinositol 3-kinase and mammalian target of rapamycin pathways. Compared with single agent treatment, exposure of AML cells to the combination of PTL and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitors significantly decreased viability of AML cells and reduced tumor burden in vitro and in murine xenotransplantation models. Taken together, our data show that rational drug combinations can be identified using chemical genomic screening strategies and that inhibition of cytoprotective functions can enhance the eradication of primary human AML cells.
Collapse
|
75
|
Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing's sarcoma. Oncogene 2010; 29:4504-16. [PMID: 20543858 PMCID: PMC3555143 DOI: 10.1038/onc.2010.205] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/23/2010] [Accepted: 04/25/2010] [Indexed: 12/17/2022]
Abstract
Tumor development is a complex process resulting from interplay between mutations in oncogenes and tumor suppressors, host susceptibility factors, and cellular context. Great advances have been made by studying rare tumors with unique clinical, genetic, or molecular features. Ewing's sarcoma serves as an excellent paradigm for understanding tumorigenesis because it exhibits some very useful and important characteristics. For example, nearly all cases of Ewing's sarcoma contain the (11;22)(q24;q12) chromosomal translocation that encodes the EWS/FLI oncoprotein. Besides the t(11;22), however, many cases have otherwise simple karyotypes with no other demonstrable abnormalities. Furthermore, it seems that an underlying genetic susceptibility to Ewing's sarcoma, if it exists, must be rare. These two features suggest that EWS/FLI is the primary mutation that drives the development of this tumor. Finally, Ewing's sarcoma is an aggressive tumor that requires aggressive treatment. Thus, improved understanding of the pathogenesis of this tumor will not only be of academic interest, but may also lead to new therapeutic approaches for individuals afflicted with this disease. The purpose of this review is to highlight recent advances in understanding the molecular pathogenesis of Ewing's sarcoma, while considering the questions surrounding this disease that still remain and how this knowledge may be applied to developing new treatments for patients with this highly aggressive disease.
Collapse
Affiliation(s)
- Elizabeth C. Toomey
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Joshua D. Schiffman
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT
| | - Stephen L. Lessnick
- Department of Oncological Sciences and Center for Children's Cancer Research at Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
76
|
Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, Ross K, Chang CY, Bosco J, West N, Morse E, Lin K, Shen JP, Kwiatkowski NP, Gheldof N, Dekker J, DeAngelo DJ, Carr SA, Schreiber SL, Golub TR, Ebert BL. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A 2010; 107:12617-22. [PMID: 20616024 PMCID: PMC2906581 DOI: 10.1073/pnas.1006774107] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The worldwide burden of sickle cell disease is enormous, with over 200,000 infants born with the disease each year in Africa alone. Induction of fetal hemoglobin is a validated strategy to improve symptoms and complications of this disease. The development of targeted therapies has been limited by the absence of discrete druggable targets. We developed a unique bead-based strategy for the identification of inducers of fetal hemoglobin transcripts in primary human erythroid cells. A small-molecule screen of bioactive compounds identified remarkable class-associated activity among histone deacetylase (HDAC) inhibitors. Using a chemical genetic strategy combining focused libraries of biased chemical probes and reverse genetics by RNA interference, we have identified HDAC1 and HDAC2 as molecular targets mediating fetal hemoglobin induction. Our findings suggest the potential of isoform-selective inhibitors of HDAC1 and HDAC2 for the treatment of sickle cell disease.
Collapse
Affiliation(s)
- James E. Bradner
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
- The Dana-Farber Cancer Institute
| | - Raymond Mak
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Shyam K. Tanguturi
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Ralph Mazitschek
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Stephen J. Haggarty
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Kenneth Ross
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Cindy Y. Chang
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Jocelyn Bosco
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Nathan West
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
- The Dana-Farber Cancer Institute
| | - Elizabeth Morse
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
- The Dana-Farber Cancer Institute
| | - Katherine Lin
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - John Paul Shen
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | | | - Nele Gheldof
- University of Massachusetts Medical School, Worcester, MA 01655
| | - Job Dekker
- University of Massachusetts Medical School, Worcester, MA 01655
| | | | - Steven A. Carr
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
| | - Stuart L. Schreiber
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
- Harvard University, Cambridge, MA 02138
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815; and
| | - Todd R. Golub
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
- The Dana-Farber Cancer Institute
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815; and
| | - Benjamin L. Ebert
- Broad Institute of Harvard and Massachusetts Institute Technology, Cambridge, MA 02142
- The Dana-Farber Cancer Institute
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
77
|
Sukardi H, Ung CY, Gong Z, Lam SH. Incorporating zebrafish omics into chemical biology and toxicology. Zebrafish 2010; 7:41-52. [PMID: 20384484 DOI: 10.1089/zeb.2009.0636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this communication, we describe the general aspects of omics approaches for analyses of transcriptome, proteome, and metabolome, and how they can be strategically incorporated into chemical screening and perturbation studies using the zebrafish system. Pharmacological efficacy and selectivity of chemicals can be evaluated based on chemical-induced phenotypic effects; however, phenotypic observation has limitations in identifying mechanistic action of chemicals. We suggest adapting gene-expression-based high-throughput screening as a complementary strategy to zebrafish-phenotype-based screening for mechanistic insights about the mode of action and toxicity of a chemical, large-scale predictive applications and comparative analysis of chemical-induced omics signatures, which are useful to identify conserved biological responses, signaling pathways, and biomarkers. The potential mechanistic, predictive, and comparative applications of omics approaches can be implemented in the zebrafish system. Examples of these using the omics approaches in zebrafish, including data of ours and others, are presented and discussed. Omics also facilitates the translatability of zebrafish studies across species through comparison of conserved chemical-induced responses. This review is intended to update interested readers with the current omics approaches that have been applied in chemical studies on zebrafish and their potential in enhancing discovery in chemical biology.
Collapse
Affiliation(s)
- Hendrian Sukardi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
78
|
Abstract
Chromosomal rearrangements that result in high level expression of ETS gene family members are common events in human prostate cancer. Most frequently, the androgen-activated gene TMPRSS2 is found fused to the ERG gene. Fusions involving ETV1, ETV4 and ETV5 occur less frequently but exhibit greater variability in fusion structure with 12 unique 5' fusion partners identified so far. ETS gene rearrangement seems to be a key event in driving prostate neoplastic development: the rearrangement occurs as an early event and continues to be expressed in metastatic and castration-resistant disease. However, ETS alterations seem insufficient on their own to induce cancer formation. No consistent associations are seen between the presence of ETS alteration and clinical outcome, with the possible exception that duplication of rearranged ERG, reflecting aneuploidy, is associated with poor outcome. Thus, factors other than ERG gene status may be the major determinants of poor clinical outcome. Expression signatures of prostate cancers containing the TMPRSS2-ERG fusion suggest involvement of beta-estradiol signaling, and reveal higher levels of expression of HDAC1 and ion channel genes when compared to cancers that lack the rearrangement. These observations suggest new therapeutic possibilities for patients harboring ETS gene fusions.
Collapse
|
79
|
|
80
|
Abstract
Ewing's sarcoma family tumors are a good example of how genome research has advanced our understanding of the molecular pathogenesis of an otherwise enigmatic disease. This group of embryonal bone tumors is characterized by the expression of a chimeric ETS-family oncogene, predominantly EWS/FLI1. There is now convincing evidence for a mesenchymal descent from an early pluripotent progenitor. EWS/FLI1 has been shown to drive proliferation of Ewing's sarcoma cells and block most of the differentiation potential except for a partial neural gene expression program. The EWS/FLI1 fusion protein acts mainly as a gene activator, directly interacting with chromatin at two kinds of binding site: distant enhancers enriched in GGAA microsatellites, and proximal promoters containing classical ETS-binding motifs and recognition motifs for other transcription factors. EWS/FLI1 also represses a large number of genes, mainly indirectly, presumably by altering microRNA expression and epigenetic mechanisms, and potentially affecting post-transcriptional gene regulation. Modulation of EWS/FLI1 expression is not only a desirable therapeutic goal, but may also occur under physiological conditions and influence the course of the disease.
Collapse
|
81
|
Hahn CK, Berchuck JE, Ross KN, Kakoza RM, Clauser K, Schinzel AC, Ross L, Galinsky I, Davis TN, Silver SJ, Root DE, Stone RM, DeAngelo DJ, Carroll M, Hahn WC, Carr SA, Golub TR, Kung AL, Stegmaier K. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 2009; 16:281-94. [PMID: 19800574 PMCID: PMC2803063 DOI: 10.1016/j.ccr.2009.08.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 07/08/2009] [Accepted: 08/19/2009] [Indexed: 12/18/2022]
Abstract
Cell-based screening can facilitate the rapid identification of compounds inducing complex cellular phenotypes. Advancing a compound toward the clinic, however, generally requires the identification of precise mechanisms of action. We previously found that epidermal growth factor receptor (EGFR) inhibitors induce acute myeloid leukemia (AML) differentiation via a non-EGFR mechanism. In this report, we integrated proteomic and RNAi-based strategies to identify their off-target, anti-AML mechanism. These orthogonal approaches identified Syk as a target in AML. Genetic and pharmacological inactivation of Syk with a drug in clinical trial for other indications promoted differentiation of AML cells and attenuated leukemia growth in vivo. These results demonstrate the power of integrating diverse chemical, proteomic, and genomic screening approaches to identify therapeutic strategies for cancer.
Collapse
MESH Headings
- Aminopyridines
- Animals
- Antineoplastic Agents/pharmacology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Gefitinib
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genomics/methods
- HL-60 Cells
- Humans
- Inhibitory Concentration 50
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Morpholines
- Oxazines/pharmacology
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proteomics/methods
- Pyridines/pharmacology
- Pyrimidines
- Quinazolines/pharmacology
- RNA Interference
- Syk Kinase
- Tandem Mass Spectrometry
- Time Factors
- Tumor Cells, Cultured
- Tyrosine
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cynthia K Hahn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
AIM OF THE STUDY In this report we describe experience with gemcitabine-docetaxel in pediatric patients with relapsed or refractory sarcomas. PATIENTS AND METHODS Ten relapsed/refractory pediatric sarcoma patients including 6 Ewing sarcoma, 2 synovial sarcoma, 1 osteosarcoma, and 1 undifferentiated sarcoma, were treated prospectively, in an outpatient setting, with gemcitabine 1000 mg/m over 90 minutes on day 1 and 8, and docetaxel 100 mg/m over 2 to 4 hours on day 8 of a 21-day cycle, as an investigational rescue therapy. RESULTS The patients (ages 4 to 18) received a total of 70 cycles of therapy (median 6 cycles; range: 4 to 10 y). All symptomatic patients responded clinically to the new regimen. By Response Evaluation Criteria in Solid Tumors criteria, 4 (40%) patients had a complete response (CR), 1 (10%) had a partial response (PR), 3 (30%) had stable disease (SD), and 2 (20%) had a progressive disease (PD), which provides an objective response rate (CR+PR) of 50%. Median duration of response (CR+PR+SD) was 10 months (range: 6 to 32+ mo). Five out of the 10 patients (50%) are alive, with a median follow-up of 48 months from diagnosis. Mild toxicities (no grades 3 to 4) were encountered and managed in the ambulatory setting. CONCLUSIONS The gemcitabine-docetaxel regimen demonstrated antitumor activity against advanced pediatric (mainly Ewing) sarcomas, allowing for good quality of life. Evaluation in a large, formal phase 2 trials for Ewing patients is ongoing.
Collapse
|
83
|
Luo W, Gangwal K, Sankar S, Boucher KM, Thomas D, Lessnick SL. GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing's sarcoma oncogenesis and therapeutic resistance. Oncogene 2009; 28:4126-32. [DOI: 10.1038/onc.2009.262] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Mori S, Chang JT, Andrechek ER, Potti A, Nevins JR. Utilization of genomic signatures to identify phenotype-specific drugs. PLoS One 2009; 4:e6772. [PMID: 19714244 PMCID: PMC2729377 DOI: 10.1371/journal.pone.0006772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/26/2009] [Indexed: 11/18/2022] Open
Abstract
Genetic and genomic studies highlight the substantial complexity and heterogeneity of human cancers and emphasize the general lack of therapeutics that can match this complexity. With the goal of expanding opportunities for drug discovery, we describe an approach that makes use of a phenotype-based screen combined with the use of multiple cancer cell lines. In particular, we have used the NCI-60 cancer cell line panel that includes drug sensitivity measures for over 40,000 compounds assayed on 59 independent cells lines. Targets are cancer-relevant phenotypes represented as gene expression signatures that are used to identify cells within the NCI-60 panel reflecting the signature phenotype and then connect to compounds that are selectively active against those cells. As a proof-of-concept, we show that this strategy effectively identifies compounds with selectivity to the RAS or PI3K pathways. We have then extended this strategy to identify compounds that have activity towards cells exhibiting the basal phenotype of breast cancer, a clinically-important breast cancer characterized as ER-, PR-, and Her2- that lacks viable therapeutic options. One of these compounds, Simvastatin, has previously been shown to inhibit breast cancer cell growth in vitro and importantly, has been associated with a reduction in ER-, PR- breast cancer in a clinical study. We suggest that this approach provides a novel strategy towards identification of therapeutic agents based on clinically relevant phenotypes that can augment the conventional strategies of target-based screens.
Collapse
Affiliation(s)
- Seiichi Mori
- Duke Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey T. Chang
- Duke Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eran R. Andrechek
- Duke Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anil Potti
- Duke Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph R. Nevins
- Duke Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
85
|
Walia V, Ding M, Kumar S, Nie D, Premkumar LS, Elble RC. hCLCA2 Is a p53-Inducible Inhibitor of Breast Cancer Cell Proliferation. Cancer Res 2009; 69:6624-32. [PMID: 19654313 DOI: 10.1158/0008-5472.can-08-4101] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
hCLCA2 is frequently down-regulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours postinfection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl(-) channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl(-) current in breast cancer cells and reduces pH to approximately 6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its down-regulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Vijay Walia
- Department of Pharmacology, SimmonsCooper Cancer Institute, Southern Illinois University School of Medicine, Springfield, USA
| | | | | | | | | | | |
Collapse
|
86
|
André N, Verschuur A, Rome A, Coze C, Gentet JC, Padovani L. Low dose cytarabine in patients with relapsed or refractory Ewing sarcoma. Pediatr Blood Cancer 2009; 53:238. [PMID: 19441111 DOI: 10.1002/pbc.21940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
87
|
Mertens F, Antonescu CR, Hohenberger P, Ladanyi M, Modena P, D'Incalci M, Casali PG, Aglietta M, Alvegård T. Translocation-Related Sarcomas. Semin Oncol 2009; 36:312-23. [DOI: 10.1053/j.seminoncol.2009.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
88
|
Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat Rev Drug Discov 2009; 8:567-78. [PMID: 19568283 DOI: 10.1038/nrd2876] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.
Collapse
Affiliation(s)
- Yan Feng
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
89
|
Subbiah V, Anderson P, Lazar AJ, Burdett E, Raymond K, Ludwig JA. Ewing’s Sarcoma: Standard and Experimental Treatment Options. Curr Treat Options Oncol 2009; 10:126-40. [PMID: 19533369 DOI: 10.1007/s11864-009-0104-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/21/2009] [Indexed: 12/21/2022]
MESH Headings
- Adolescent
- Adult
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Neoplasms/drug therapy
- Bone Neoplasms/radiotherapy
- Bone Neoplasms/surgery
- Child
- Clinical Trials as Topic
- Combined Modality Therapy
- Drug Delivery Systems
- Drug Screening Assays, Antitumor
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/mortality
- Lung Neoplasms/secondary
- Lung Neoplasms/surgery
- Multicenter Studies as Topic
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Protein c-fli-1
- RNA-Binding Protein EWS
- Receptor, IGF Type 1/antagonists & inhibitors
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/radiotherapy
- Sarcoma, Ewing/secondary
- Sarcoma, Ewing/surgery
- Survival Rate
- Therapies, Investigational
- Transcription Factors/antagonists & inhibitors
- Translocation, Genetic
- Young Adult
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, Labortory of Sarcoma Molecular Therapeutics, M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
90
|
Herrero-Martín D, Osuna D, Ordóñez JL, Sevillano V, Martins AS, Mackintosh C, Campos M, Madoz-Gúrpide J, Otero-Motta AP, Caballero G, Amaral AT, Wai DH, Braun Y, Eisenacher M, Schaefer KL, Poremba C, de Alava E. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer 2009; 101:80-90. [PMID: 19491900 PMCID: PMC2694277 DOI: 10.1038/sj.bjc.6605104] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ewing sarcoma is a paradigm of solid tumour -bearing chromosomal translocations resulting in fusion proteins that act as deregulated transcription factors. Ewing sarcoma translocations fuse the EWS gene with an ETS transcription factor, mainly FLI1. Most of the EWS-FLI1 target genes still remain unknown and many have been identified in heterologous model systems. METHODS We have developed a stable RNA interference model knocking down EWS-FLI1 in the Ewing sarcoma cell line TC71. Gene expression analyses were performed to study the effect of RNA interference on the genetic signature of EWS-FLI1 and to identify genes that could contribute to tumourigenesis. RESULTS EWS-FLI1 inhibition induced apoptosis, reduced cell migratory and tumourigenic capacities, and caused reduction in tumour growth. IGF-1 was downregulated and the IGF-1/IGF-1R signalling pathway was impaired. PBK/TOPK (T-LAK cell-originated protein kinase) expression was decreased because of EWS-FLI1 inhibition. We showed that TOPK is a new target gene of EWS-FLI1. TOPK inhibition prompted a decrease in the proliferation rate and a dramatic change in the cell's ability to grow in coalescence. CONCLUSION This is the first report of TOPK activity in Ewing sarcoma and suggests a significant role of this MAPKK-like protein kinase in the Ewing sarcoma biology.
Collapse
Affiliation(s)
- D Herrero-Martín
- Molecular Pathology Program, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Campus Unamuno s/n, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, Schalken JA. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 2009; 56:275-86. [PMID: 19409690 DOI: 10.1016/j.eururo.2009.04.036] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/15/2009] [Indexed: 11/28/2022]
Abstract
CONTEXT In 2005, fusions between the androgen-regulated transmembrane protease serine 2 gene, TMPRSS2, and E twenty-six (ETS) transcription factors were discovered in prostate cancer. OBJECTIVE To review advances in our understanding of ETS gene fusions, focusing on challenges affecting translation to clinical application. EVIDENCE ACQUISITION The PubMed database was searched for reports on ETS fusions in prostate cancer. EVIDENCE SYNTHESIS Since the discovery of ETS fusions, novel 5' and 3' fusion partners and multiple splice isoforms have been reported. The most common fusion, TMPRSS2:ERG, is present in approximately 50% of prostate-specific antigen (PSA)-screened localized prostate cancers and in 15-35% of population-based cohorts. ETS fusions can be detected noninvasively in the urine of men with prostate cancer, with a specificity rate in PSA-screened cohorts of >90%. Reports from untreated population-based cohorts suggest an association between ETS fusions and cancer-specific death and metastatic spread. In retrospective prostatectomy cohorts, conflicting results have been published regarding associations between ETS fusions and cancer aggressiveness. In addition to serving as a potential biomarker, tissue and functional studies suggest a specific role for ETS fusions in the transition to carcinoma. Finally, recent results suggest that the 5' and 3' ends of ETS fusions as well as downstream targets may be targeted therapeutically. CONCLUSIONS Recent studies suggest that the first clinical applications of ETS fusions are likely to be in noninvasive detection of prostate cancer and in aiding with difficult diagnostic cases. Additional studies are needed to clarify the association between gene fusions and cancer aggressiveness, particularly those studies that take into account the multifocal and heterogeneous nature of localized prostate cancer. Multiple promising strategies have been identified to potentially target ETS fusions. Together, these results suggest that ETS fusions will affect multiple aspects of prostate cancer diagnosis and management.
Collapse
Affiliation(s)
- Scott A Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | |
Collapse
|
92
|
Vilar E, Mukherjee B, Kuick R, Raskin L, Misek DE, Taylor JMG, Giordano TJ, Hanash SM, Fearon ER, Rennert G, Gruber SB. Gene expression patterns in mismatch repair-deficient colorectal cancers highlight the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway. Clin Cancer Res 2009; 15:2829-39. [PMID: 19351759 DOI: 10.1158/1078-0432.ccr-08-2432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE High-frequency microsatellite-instable (MSI-H) tumors account for approximately 15% of colorectal cancers. Therapeutic decisions for colorectal cancer are empirically based and currently do not emphasize molecular subclassification despite an increasing collection of gene expression information. Our objective was to identify low molecular weight compounds with preferential activity against MSI colorectal cancers using combined gene expression data sets. EXPERIMENTAL DESIGN Three expression/query signatures (discovery data set) characterizing MSI-H colorectal cancer were matched with information derived from changes induced in cell lines by 164 compounds using the systems biology tool "Connectivity Map." A series of sequential filtering and ranking algorithms were used to select the candidate compounds. Compounds were validated using two additional expression/query signatures (validation data set). Cytotoxic, cell cycle, and apoptosis effects of validated compounds were evaluated in a panel of cell lines. RESULTS Fourteen of the 164 compounds were validated as targeting MSI-H cell lines using the bioinformatics approach; rapamycin, LY-294002, 17-(allylamino)-17-demethoxygeldanamycin, and trichostatin A were the most robust candidate compounds. In vitro results showed that MSI-H cell lines due to hypermethylation of MLH1 are preferentially targeted by rapamycin (18.3 versus 4.4 mumol/L; P = 0.0824) and LY-294002 (15.02 versus 10.37 mumol/L; P = 0.0385) when compared with microsatellite-stable cells. Preferential activity was also observed in MSH2 and MSH6 mutant cells. CONCLUSION Our study shows that the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is of special relevance in mismatch repair-deficient colorectal cancer. In addition, we show that amalgamation of gene expression information across studies provides a robust approach for selection of potential therapies corresponding to specific groups of patients.
Collapse
Affiliation(s)
- Eduardo Vilar
- Department of Internal Medicine, The University of Michigan Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
With the sequencing of the human genome and the development of new genomic technologies, biomedical discovery has been transformed. The applications of these new approaches are ever-expanding from disease classification, to identification of new targets, to outcome prediction. A logical next step is the integration of genomic approaches into small molecule discovery. This review will focus on the application of genomics to compound discovery, with an emphasis on the hematological malignancies. It will focus on the use of genomic tools to discover cancer targets and the development and application of both cell-based and in silico gene expression-based approaches to small molecule discovery.
Collapse
|
94
|
DuBois SG, Krailo MD, Lessnick SL, Smith R, Chen Z, Marina N, Grier HE, Stegmaier K. Phase II study of intermediate-dose cytarabine in patients with relapsed or refractory Ewing sarcoma: a report from the Children's Oncology Group. Pediatr Blood Cancer 2009; 52:324-7. [PMID: 18989890 PMCID: PMC2791370 DOI: 10.1002/pbc.21822] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Patients with relapsed or refractory Ewing sarcoma have a poor outcome with conventional therapies. Cytarabine decreases EWS/FLI1 protein levels in Ewing sarcoma cells and has demonstrated preclinical activity against Ewing sarcoma in vitro and in vivo. The purpose of this phase II clinical trial was to estimate the response rate of intermediate-dose cytarabine in patients with relapsed or refractory Ewing sarcoma. PROCEDURE Patients with a histologic diagnosis of Ewing sarcoma were eligible if they were <30 years of age, had relapsed or refractory measurable disease, and met standard organ function requirements. Patients received cytarabine 500 mg/m(2)/dose intravenously over 2 hr every 12 hr for 10 doses with cycles repeated every 21 days. Response was assessed according to RECIST criteria. RESULTS Ten patients (median age 20 years; 7 males) were treated. Only five patients had documented EWS/FLI1 translocated tumors. No objective responses were seen. One patient had stable disease for 5 cycles before developing progressive disease. All patients evaluable for hematologic toxicity developed grade 4 neutropenia and thrombocytopenia during protocol therapy. Patients were not able to receive therapy according to the planned 21-day cycles, with a median interval of 26.5 days. CONCLUSIONS Cytarabine at the dose and schedule utilized in this trial resulted in hematologic toxicity that limited delivery of this therapy. This regimen also had minimal activity in this patient population.
Collapse
Affiliation(s)
| | - Mark D. Krailo
- Children's Oncology Group,Keck School of Medicine, University of Southern California
| | - Stephen L. Lessnick
- Center for Children, Huntsman Cancer Institute and the Division of Pediatric Hematology/Oncology, University of Utah School of Medicine
| | - Richard Smith
- Center for Children, Huntsman Cancer Institute and the Division of Pediatric Hematology/Oncology, University of Utah School of Medicine
| | | | - Neyssa Marina
- Department of Pediatrics, Stanford University School of Medicine and Lucile Packard Children's Hospital
| | - Holcombe E. Grier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School
| | | |
Collapse
|
95
|
Affiliation(s)
- Peter J Houghton
- Department Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
96
|
Abstract
Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics.
Collapse
Affiliation(s)
- Susan Ann Burchill
- Candlelighter's Children's Cancer Research Group, Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|
97
|
Beauchamp E, Bulut G, Abaan O, Chen K, Merchant A, Matsui W, Endo Y, Rubin JS, Toretsky J, Uren A. GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J Biol Chem 2009; 284:9074-82. [PMID: 19189974 DOI: 10.1074/jbc.m806233200] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ewing sarcoma family of tumors (ESFT) is an undifferentiated neoplasm of the bone and soft tissue. ESFT is characterized by a specific chromosomal translocation occurring between chromosome 22 and (in most cases) chromosome 11, which generates an aberrant transcription factor, EWS-FLI1. The function of EWS-FLI1 is essential for the maintenance of ESFT cell survival and tumorigenesis. The Hedgehog pathway is activated in several cancers. Oncogenic potential of the Hedgehog pathway is mediated by increasing the activity of the GLI family of transcription factors. Recent evidence suggests that EWS-FLI1 increases expression of GLI1 by an unknown mechanism. Our data from chromatin immunoprecipitation and promoter reporter studies indicated GLI1 as a direct transcriptional target of EWS-FLI1. Expression of EWS-FLI1 in non-ESFT cells increased GLI1 expression and GLI-dependent transcription. We also detected high levels of GLI1 protein in ESFT cell lines. Pharmacological inhibition of GLI1 protein function decreased proliferation and soft agar colony formation of ESFT cells. Our results establish GLI1 as a direct transcriptional target of EWS-FLI1 and suggest a potential role for GLI1 in ESFT tumorigenesis.
Collapse
Affiliation(s)
- Elspeth Beauchamp
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D C 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Tan XL, Spivack SD. Dietary chemoprevention strategies for induction of phase II xenobiotic-metabolizing enzymes in lung carcinogenesis: A review. Lung Cancer 2009; 65:129-37. [PMID: 19185948 DOI: 10.1016/j.lungcan.2009.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/22/2008] [Accepted: 01/03/2009] [Indexed: 11/26/2022]
Abstract
Lung cancer is the leading cause of cancer mortality for men and women in the United States and is a growing worldwide problem. Protection against lung cancer is associated with higher dietary intake of fruits and vegetables, according to recent large epidemiologic studies. One strategy for lung cancer chemoprevention focuses on the use of agents to modulate the metabolism and disposition of tobacco, environmental and endogenous carcinogens through upregulation of detoxifying phase II enzymes. We summarize the substantial evidence that suggests that induction of phase II enzymes, particularly the glutathione S-transferases, plays a direct role in chemoprotection against lung carcinogenesis. The engagement of the Keap1-Nrf2 complex regulating the antioxidant response element (ARE) signaling pathway has been identified as a key molecular target of chemopreventive phase II inducers in several systems. Monitoring of phase II enzyme induction has led to identification of novel chemopreventive agents such as the isothiocyanate sulforaphane, and the 1,2-dithiole-3-thiones. However, no agents have yet demonstrated clear benefit in human cell systems, or in clinical trials. Alternative strategies include: (a) using intermediate cancer biomarkers for the endpoint in human trials; (b) high-throughput small molecule discovery approaches for induced expression of human phase II genes; and (c) integrative approaches that consider pharmacogenetics, along with pharmacokinetics and pharmacodynamics in target lung tissue. These approaches may lead to a more effective strategy of tailored chemoprevention efforts using compounds with proven human activity.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Division of Pulmonary Medicine, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.
| | | |
Collapse
|
99
|
Abstract
Current cancer chemotherapies heavily rely on the unspecific inhibition of proliferating cells. This lack of tumour cell specificity results in severe toxic side effects and may only hardly affect quiescent cancer stem cells consequently leading to relapse. Since oncogenes are exclusively expressed in malignant and pre-malignant cells, they may provide unique, cancer cell specific targets for therapeutic strategies. However, their role in maintaining the malignant phenotype is frequently unknown. Furthermore, oncogenic transcription factors are generally considered to be "undruggable" with conventional small molecule approaches. Oncogene-specific RNA interference offers here new and exciting options to analyse oncogene functions directly in the malignant environment. Moreover, such approaches may permit the targeting of oncogenic transcription factors, thereby considerably extending the number of cancer-specific target structures. In this chapter, several rationales and practical aspects of oncogene targeting with siRNAs are discussed. Special emphasis is given to the application of RNA interference to haematopoietic cells, which are generally hard to transfect. In particular, solving the problem of systemic siRNA/shRNA delivery will greatly advance the inclusion of RNA interference strategies into more efficient and specific therapeutic strategies.
Collapse
Affiliation(s)
- Olaf Heidenreich
- Newcastle University, Northern Institute for Cancer Research, Medical School, Newcastle upon Tyne, UK
| |
Collapse
|
100
|
Colombo R, Moll J. Target validation to biomarker development: focus on RNA interference. Mol Diagn Ther 2008; 12:63-70. [PMID: 18422370 DOI: 10.1007/bf03256271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
With the growing number of putative molecular targets and increased economic pressure on companies developing novel drugs, particularly in the cancer area, the need to work on highly validated targets is essential. The use of biomarkers for proof of mechanism of action is becoming an important tool in validation efforts in the preclinical phase of drug development, helping to reduce the attrition rate of candidate drugs once they have entered the clinic. In this review, we highlight how RNA interference (RNAi) has become the method of choice to perform both target validation and identification in academia and industry. RNAi takes advantage of a naturally occurring mechanism whereby cells regulate the expression of genes at the post-transcriptional level, and it introduces a new era in loss-of-function experiments, allowing for the rapid measurement of the phenotype observed upon target expression abrogation. Design of both small-interfering RNA and short-hairpin RNA constructs and their delivery into cells have emerged as the most important aspects of this technology, and reduction or measurement of potential unwanted off-target effects must also be taken into consideration. A number of successes have already been described, and several oncology targets and biomarkers have been identified and validated with this technique.
Collapse
|