51
|
A vaccine based on the rhesus cytomegalovirus UL128 complex induces broadly neutralizing antibodies in rhesus macaques. J Virol 2012; 87:1322-32. [PMID: 23152525 DOI: 10.1128/jvi.01669-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies (NAb) are important for interfering with horizontal transmission of human cytomegalovirus (HCMV) leading to primary and congenital HCMV infection. Recent findings have shown that a pentameric virion complex formed by the glycoproteins gH/gL, UL128, UL130, and UL131A (UL128C) is required for HCMV entry into epithelial/endothelial cells (Epi/EC) and is the target of potent NAb in HCMV-seropositive individuals. Using bacterial artificial chromosome technology, we have generated a modified vaccinia Ankara virus (MVA) that stably coexpresses all 5 rhesus CMV (RhCMV) proteins homologous to HCMV UL128C, termed MVA-RhUL128C. Coimmunoprecipitation confirmed the interaction of RhgH with the other 4 RhCMV subunits of the pentameric complex. All 8 RhCMV-naïve rhesus macaques (RM) vaccinated with MVA-RhUL128C developed NAb that blocked infection of monkey kidney epithelial cells (MKE) and rhesus fibroblasts. NAb titers induced by MVA-RhUL128C measured on both cell types at 2 to 6 weeks postvaccination were comparable to levels observed in naturally infected RM. In contrast, MVA expressing a subset of RhUL128C proteins or RhgB glycoprotein only minimally stimulated NAb that inhibited infection of MKE. In addition, following subcutaneous RhCMV challenge at 8 weeks postvaccination, animals vaccinated with MVA-RhUL128C showed reduced plasma viral loads. These results indicate that MVA expressing the RhUL128C induces NAb inhibiting RhCMV entry into both Epi/EC and fibroblasts and limits RhCMV replication in RM. This novel approach is the first step in developing a prophylactic HCMV vaccine designed to interfere with virus entry into major cell types permissive for viral replication, a required property of an effective vaccine.
Collapse
|
52
|
Deletion of the viral anti-apoptotic gene F1L in the HIV/AIDS vaccine candidate MVA-C enhances immune responses against HIV-1 antigens. PLoS One 2012; 7:e48524. [PMID: 23119046 PMCID: PMC3485360 DOI: 10.1371/journal.pone.0048524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
Vaccinia virus (VACV) encodes an anti-apoptotic Bcl-2-like protein F1 that acts as an inhibitor of caspase-9 and of the Bak/Bax checkpoint but the role of this gene in immune responses is not known. Because dendritic cells that have phagocytosed apoptotic infected cells cross-present viral antigens to cytotoxic T cells inducing an antigen-specific immunity, we hypothesized that deletion of the viral anti-apoptotic F1L gene might have a profound effect on the capacity of poxvirus vectors to activate specific immune responses to virus-expressed recombinant antigens. This has been tested in a mouse model with an F1L deletion mutant of the HIV/AIDS vaccine candidate MVA-C that expresses Env and Gag-Pol-Nef antigens (MVA-C-ΔF1L). The viral gene F1L is not required for virus replication in cultured cells and its deletion in MVA-C induces extensive apoptosis and expression of immunomodulatory genes in infected cells. Analysis of the immune responses induced in BALB/c mice after DNA prime/MVA boost revealed that, in comparison with parental MVA-C, the mutant MVA-C-ΔF1L improves the magnitude of the HIV-1-specific CD8 T cell adaptive immune responses and impacts on the CD8 T cell memory phase by enhancing the magnitude of the response, reducing the contraction phase and changing the memory differentiation pattern. These findings reveal the immunomodulatory role of F1L and that the loss of this gene is a valid strategy for the optimization of MVA as vaccine vector.
Collapse
|
53
|
Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques. J Virol 2012; 86:12605-15. [PMID: 22973033 DOI: 10.1128/jvi.00246-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a safe, attenuated orthopoxvirus that is being developed as a vaccine vector but has demonstrated limited immunogenicity in several early-phase clinical trials. Our objective was to rationally improve the immunogenicity of MVA-based HIV/AIDS vaccines via the targeted deletion of specific poxvirus immune-modulatory genes. Vaccines expressing codon-optimized HIV subtype C consensus Env and Gag antigens were generated from MVA vector backbones that (i) harbor simultaneous deletions of four viral immune-modulatory genes, encoding an interleukin-18 (IL-18) binding protein, an IL-1β receptor, a dominant negative Toll/IL-1 signaling adapter, and CC-chemokine binding protein (MVAΔ4-HIV); (ii) harbor a deletion of an additional (fifth) viral gene, encoding uracil-DNA glycosylase (MVAΔ5-HIV); or (iii) represent the parental MVA backbone as a control (MVA-HIV). We performed head-to-head comparisons of the cellular and humoral immune responses that were elicited by these vectors during homologous prime-boost immunization regimens utilizing either high-dose (2 × 10(8) PFU) or low-dose (1 × 10(7) PFU) intramuscular immunization of rhesus macaques. At all time points, a majority of the HIV-specific T cell responses, elicited by all vectors, were directed against Env, rather than Gag, determinants, as previously observed with other vector systems. Both modified vectors elicited up to 6-fold-higher frequencies of HIV-specific CD8 and CD4 T cell responses and up to 25-fold-higher titers of Env (gp120)-specific binding (nonneutralizing) antibody responses that were relatively transient in nature. While the correlates of protection against HIV infection remain incompletely defined, our results indicate that the rational deletion of specific genes from MVA vectors can positively alter their cellular and humoral immunogenicity profiles in nonhuman primates.
Collapse
|
54
|
Orubu T, Alharbi NK, Lambe T, Gilbert SC, Cottingham MG. Expression and cellular immunogenicity of a transgenic antigen driven by endogenous poxviral early promoters at their authentic loci in MVA. PLoS One 2012; 7:e40167. [PMID: 22761956 PMCID: PMC3384612 DOI: 10.1371/journal.pone.0040167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/02/2012] [Indexed: 01/12/2023] Open
Abstract
CD8(+) T cell responses to vaccinia virus are directed almost exclusively against early gene products. The attenuated strain modified vaccinia virus Ankara (MVA) is under evaluation in clinical trials of new vaccines designed to elicit cellular immune responses against pathogens including Plasmodium spp., M. tuberculosis and HIV-1. All of these recombinant MVAs (rMVA) utilize the well-established method of linking the gene of interest to a cloned poxviral promoter prior to insertion into the viral genome at a suitable locus by homologous recombination in infected cells. Using BAC recombineering, we show that potent early promoters that drive expression of non-functional or non-essential MVA open reading frames (ORFs) can be harnessed for immunogenic expression of recombinant antigen. Precise replacement of the MVA orthologs of C11R, F11L, A44L and B8R with a model antigen positioned to use the same translation initiation codon allowed early transgene expression similar to or slightly greater than that achieved by the commonly-used p7.5 or short synthetic promoters. The frequency of antigen-specific CD8(+) T cells induced in mice by single shot or adenovirus-prime, rMVA-boost vaccination were similarly equal or marginally enhanced using endogenous promoters at their authentic genomic loci compared to the traditional constructs. The enhancement in immunogenicity observed using the C11R or F11L promoters compared with p7.5 was similar to that obtained with the mH5 promoter compared with p7.5. Furthermore, the growth rates of the viruses were unimpaired and the insertions were genetically stable. Insertion of a transgenic ORF in place of a viral ORF by BAC recombineering can thus provide not only a potent promoter, but also, concomitantly, a suitable insertion site, potentially facilitating development of MVA vaccines expressing multiple recombinant antigens.
Collapse
Affiliation(s)
- Toritse Orubu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
55
|
Removal of vaccinia virus genes that block interferon type I and II pathways improves adaptive and memory responses of the HIV/AIDS vaccine candidate NYVAC-C in mice. J Virol 2012; 86:5026-38. [PMID: 22419805 DOI: 10.1128/jvi.06684-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Poxviruses encode multiple inhibitors of the interferon (IFN) system, acting at different levels and blocking the induction of host defense mechanisms. Two viral gene products, B19 and B8, have been shown to act as decoy receptors of type I and type II IFNs, blocking the binding of IFN to its receptor. Since IFN plays a major role in innate immune responses, in this investigation we asked to what extent the viral inhibitors of the IFN system impact the capacity of poxvirus vectors to activate immune responses. This was tested in a mouse model with single and double deletion mutants of the vaccine candidate NYVAC-C, which expresses the HIV-1 Env, Gag, Pol, and Nef antigens. When deleted individually or in double, the type I (B19) and type II (B8) IFN binding proteins were not required for virus replication in cultured cells. Studies of immune responses in mice after DNA prime/NYVAC boost revealed that deletion of B8R and/or B19R genes improved the magnitude and quality of HIV-1-specific CD8(+) T cell adaptive immune responses and impacted their memory phase, changing the contraction, the memory differentiation, the effect magnitude, and the functionality profile. For B cell responses, deletion of the viral gene B8R and/or B19R had no effect on antibody levels to HIV-1 Env. These findings revealed that single or double deletion of viral factors (B8 and B19) targeting the IFN pathway is a useful approach in the design of improved poxvirus-based vaccines.
Collapse
|
56
|
Viral bacterial artificial chromosomes: generation, mutagenesis, and removal of mini-F sequences. J Biomed Biotechnol 2012; 2012:472537. [PMID: 22496607 PMCID: PMC3303620 DOI: 10.1155/2012/472537] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 12/29/2022] Open
Abstract
Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process.
Collapse
|
57
|
Falivene J, Del Médico Zajac MP, Pascutti MF, Rodríguez AM, Maeto C, Perdiguero B, Gómez CE, Esteban M, Calamante G, Gherardi MM. Improving the MVA vaccine potential by deleting the viral gene coding for the IL-18 binding protein. PLoS One 2012; 7:e32220. [PMID: 22384183 PMCID: PMC3285208 DOI: 10.1371/journal.pone.0032220] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Modified Vaccinia Ankara (MVA) is an attenuated strain of Vaccinia virus (VACV) currently employed in many clinical trials against HIV/AIDS and other diseases. MVA still retains genes involved in host immune response evasion, enabling its optimization by removing some of them. The aim of this study was to evaluate cellular immune responses (CIR) induced by an IL-18 binding protein gene (C12L) deleted vector (MVAΔC12L). METHODOLOGY/PRINCIPAL FINDINGS BALB/c and C57BL/6 mice were immunized with different doses of MVAΔC12L or MVA wild type (MVAwt), then CIR to VACV epitopes in immunogenic proteins were evaluated in spleen and draining lymph nodes at acute and memory phases (7 and 40 days post-immunization respectively). Compared with parental MVAwt, MVAΔC12L immunization induced a significant increase of two to three-fold in CD8(+) and CD4(+) T-cell responses to different VACV epitopes, with increased percentage of anti-VACV cytotoxic CD8(+) T-cells (CD107a/b(+)) during the acute phase of the response. Importantly, the immunogenicity enhancement was also observed after MVAΔC12L inoculation with different viral doses and by distinct routes (systemic and mucosal). Potentiation of MVA's CIR was also observed during the memory phase, in correlation with a higher protection against an intranasal challenge with VACV WR. Of note, we could also show a significant increase in the CIR against HIV antigens such as Env, Gag, Pol and Nef from different subtypes expressed from two recombinants of MVAΔC12L during heterologous DNA prime/MVA boost vaccination regimens. CONCLUSIONS/SIGNIFICANCE This study demonstrates the relevance of IL-18 bp contribution in the immune response evasion during MVA infection. Our findings clearly show that the deletion of the viral IL-18 bp gene is an effective approach to increase MVA vaccine efficacy, as immunogenicity improvements were observed against vector antigens and more importantly to HIV antigens.
Collapse
Affiliation(s)
- Juliana Falivene
- Centro Nacional de Referencia para el SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - María Fernanda Pascutti
- Centro Nacional de Referencia para el SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Rodríguez
- Centro Nacional de Referencia para el SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cynthia Maeto
- Centro Nacional de Referencia para el SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz Perdiguero
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid, Spain
| | - Carmen E. Gómez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid, Spain
| | - Mariano Esteban
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Madrid, Spain
| | - Gabriela Calamante
- Instituto de Biotecnología, CICVyA-INTA Castelar, Buenos Aires, Argentina
| | - María Magdalena Gherardi
- Centro Nacional de Referencia para el SIDA, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
58
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|
59
|
Abstract
Modified vaccinia virus Ankara (MVA) has become a widely used vector for vaccine and laboratory purposes. Despite significant advances in recombinant MVA technology, the isolation of recombinant viruses remains a tedious and difficult process. This chapter describes the use of an efficient and easy-to-use selection system adapted for MVA. The system is based on the requirement of the viral gene F13L for efficient virus spread in cell culture, which results in a severe block in virus transmission when F13L gene is deleted (Blasco R, Moss B. J Virol 65:5910-5920, 1991; Blasco R, Moss B. J Virol 66:4170-4179, 1992). The insertion of foreign genes in the MVA genome is accomplished by recombination of a transfected plasmid carrying the foreign genes and the F13L with the genome of an F13L knockout virus. Subsequently, selection of virus recombinants is carried out by serial passage and/or plaque purification of viruses that have recovered the F13L gene.
Collapse
|
60
|
Employing Live Microbes for Vaccine Delivery. DEVELOPMENT OF NOVEL VACCINES 2012. [PMCID: PMC7123214 DOI: 10.1007/978-3-7091-0709-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
61
|
Cottingham MG. Genetic manipulation of poxviruses using bacterial artificial chromosome recombineering. Methods Mol Biol 2012; 890:37-57. [PMID: 22688760 DOI: 10.1007/978-1-61779-876-4_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional methods for genetic manipulation of poxviruses rely on low-frequency natural recombination in virus-infected cells. Although these powerful systems represent the technical foundation of current knowledge and applications of poxviruses, they require long (≥ 500 bp) flanking sequences for homologous recombination, an efficient viral selection method, and burdensome, time-consuming plaque purification. The beginning of the twenty-first century has seen the application of bacterial artificial chromosome (BAC) technology to poxviruses as an alternative method for their genetic manipulation, following the invention of a long-sought-after method for deriving a BAC clone of vaccinia virus (VAC-BAC) by Arban Domi and Bernard Moss. The key advantages of the BAC system are the ease and versatility of performing genetic manipulation using bacteriophage λ Red recombination (recombineering), which requires only ∼50 bp homology arms that can be easily created by PCR, and which allows seamless mutations lacking any marker gene without having to perform transient-dominant selection. On the other hand, there are disadvantages, including the significant setup time, the risk of contamination of the cloned genome with bacterial insertion sequences, and the nontrivial issue of removal of the BAC cassette from derived viruses. These must be carefully weighed to decide whether the use of BACs will be advantageous for a particular application, making pox-BAC systems likely to complement, rather than supplant, traditional methods in most laboratories.
Collapse
|
62
|
Ricci PS, Schäfer B, Kreil TR, Falkner FG, Holzer GW. Selection of recombinant MVA by rescue of the essential D4R gene. Virol J 2011; 8:529. [PMID: 22152060 PMCID: PMC3293099 DOI: 10.1186/1743-422x-8-529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) has become a promising vaccine vector due to its immunogenicity and its proven safety in humans. As a general approach for stringent and rapid selection of recombinant MVA, we assessed marker rescue of the essential viral D4R gene in an engineered deletion mutant that is fully replication defective in wild-type cells. Recombinant, replicating virus was obtained by re-introduction of the deleted viral gene as a dominant selection marker into the deletion mutant.
Collapse
Affiliation(s)
- Patricia S Ricci
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| | - Birgit Schäfer
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| | | | - Falko G Falkner
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| | - Georg W Holzer
- Baxter BioScience, Biomedical Research Center, Uferstrasse 15, 2304 Orth an der Donau, Austria
| |
Collapse
|
63
|
Roth SJ, Klopfleisch R, Osterrieder N, Tischer BK. Cowpox virus serpin CrmA is necessary but not sufficient for the red pock phenotype on chicken chorioallantoic membranes. Virus Res 2011; 163:254-61. [PMID: 22016035 DOI: 10.1016/j.virusres.2011.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 11/30/2022]
Abstract
It was previously reported that cowpox virus (CPXV) strain Brighton Red (BR) causes red pocks upon inoculation of chorioallantoic membranes (CAMs) of embryonated chicken eggs. Red pocks are characterized by hemorrhage and reduced numbers of inflammatory cells while white pocks induced by other members of the genus Orthopoxvirus lack hemorrhage and have higher numbers of infiltrating heterophils. Analyses of CPXV BR white pock variants identified the cytokine response modifier A (CrmA) as the factor responsible for the differences in pock phenotype through induction of hemorrhage and inhibition of chemotaxis. In the present study CPXV crmA deletion mutants were generated based on a full-length bacterial artificial chromosome clone of CPXV BR (pBR). Deletion of the first crmA start codon was sufficient to abolish protein expression, whereas modification of a potential second start codon had no impact on CrmA production as shown by Western blot analysis. Immunohistochemistry of CAMs inoculated with crmA-positive BR viruses showed accumulation of viral antigen in endothelial cells, which was consistent with the red pock phenotype. On the other hand, crmA-negative mutants were characterized by the induction of white pocks and the absence of CPXV antigen in endothelia. The introduction of the complete CPXV BR crmA gene into the homologous genome region of the attenuated vaccinia virus strain MVA (modified vaccinia virus Ankara), however, resulted in CrmA production but not the red pock phenotype. We therefore conclude that (i) CPXV CrmA is associated with increased accumulation of virus in endothelial cells and (ii) the poxvirus-encoded serpin is necessary but not sufficient for the red pock phenotype and the anti-chemotactic capabilities on CAMs.
Collapse
Affiliation(s)
- Swaantje J Roth
- Institut für Virologie, Freie Universität Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
64
|
García-Arriaza J, Nájera JL, Gómez CE, Tewabe N, Sorzano COS, Calandra T, Roger T, Esteban M. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS One 2011; 6:e24244. [PMID: 21909386 PMCID: PMC3164197 DOI: 10.1371/journal.pone.0024244] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nolawit Tewabe
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
65
|
Rollier CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AVS. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol 2011; 23:377-82. [DOI: 10.1016/j.coi.2011.03.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/25/2011] [Indexed: 02/06/2023]
|
66
|
Hwa SH, Iams KP, Hall JS, Kingstad BA, Osorio JE. Characterization of recombinant raccoonpox vaccine vectors in chickens. Avian Dis 2011; 54:1157-65. [PMID: 21313834 DOI: 10.1637/9315-032410-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Raccoonpox virus (RCN) has been used as a recombinant vector against several mammalian pathogens but has not been tested in birds. The replication of RCN in chick embryo fibroblasts (CEFs) and chickens was studied with the use of highly pathogenic avian influenza virus H5N1 hemagglutinin (HA) as a model antigen and luciferase (luc) as a reporter gene. Although RCN replicated to low levels in CEFs, it efficiently expressed recombinant proteins and, in vivo, elicited anti-HA immunoglobulin yolk (IgY) antibody responses comparable to inactivated influenza virus. Biophotonic in vivo imaging of 1-wk-old chicks with RCN-luc showed strong expression of the luc reporter gene lasting up to 3 days postinfection. These studies demonstrate the potential of RCN as a vaccine vector for avian influenza and other poultry pathogens.
Collapse
Affiliation(s)
- Shi-Hsia Hwa
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
67
|
Roth SJ, Höper D, Beer M, Feineis S, Tischer BK, Osterrieder N. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC). Vet Res 2011; 42:3. [PMID: 21314965 PMCID: PMC3031225 DOI: 10.1186/1297-9716-42-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/13/2010] [Indexed: 11/16/2022] Open
Abstract
Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool.
Collapse
Affiliation(s)
- Swaantje J Roth
- Institut für Virologie, Freie Universität Berlin; Philippstrasse 13, Haus 18; 10115 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
68
|
Cottingham MG, Gilbert SC. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome. J Virol Methods 2010; 168:233-6. [DOI: 10.1016/j.jviromet.2010.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/26/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
|
69
|
García-Arriaza J, Nájera JL, Gómez CE, Sorzano COS, Esteban M. Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS One 2010; 5:e12395. [PMID: 20811493 PMCID: PMC2927552 DOI: 10.1371/journal.pone.0012395] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. Methodology/Principal Findings In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. Conclusions/Significance These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Luis Nájera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
70
|
Alcock R, Cottingham MG, Rollier CS, Furze J, De Costa SD, Hanlon M, Spencer AJ, Honeycutt JD, Wyllie DH, Gilbert SC, Bregu M, Hill AVS. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci Transl Med 2010; 2:19ra12. [PMID: 20371486 DOI: 10.1126/scitranslmed.3000490] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Live recombinant viral vectors based on adenoviruses and poxviruses are among the most promising platforms for development of new vaccines against diseases such as malaria, tuberculosis, and HIV-AIDS. Vaccines based on live viruses must remain infectious to be effective, so therefore need continuous refrigeration to maintain stability and viability, a requirement that can be costly and difficult, especially in developing countries. The sugars sucrose and trehalose are commonly used as stabilizing agents and cryoprotectants for biological products. Here, we have exploited the ability of these sugars to vitrify on desiccation to develop a thermostabilization technique for live viral vaccine vectors. By slowly drying vaccines suspended in solutions of these disaccharide stabilizers onto a filter-like support membrane at ambient temperature, an ultrathin glass is deposited on the fibers of the inert matrix. Immobilization of two recombinant vaccine vectors-E1/E3-deleted human adenovirus type 5 and modified vaccinia virus Ankara-in this glass on the membranes enabled complete recovery of viral titer and immunogenicity after storage at up to 45 degrees C for 6 months and even longer with minimal losses. Furthermore, the membrane carrying the stabilized vaccine can be incorporated into a holder attached to a syringe for almost simultaneous reconstitution and injection at point of use. The technology may potentially be developed for the deployment of viral vector-based biopharmaceuticals in resource-poor settings.
Collapse
Affiliation(s)
- Robert Alcock
- Cambridge Biostability Ltd., Cambridge Science Park, Milton Road, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Immediate-early expression of a recombinant antigen by modified vaccinia virus ankara breaks the immunodominance of strong vector-specific B8R antigen in acute and memory CD8 T-cell responses. J Virol 2010; 84:8743-52. [PMID: 20538860 DOI: 10.1128/jvi.00604-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Efficient T-cell responses against recombinant antigens expressed by vaccinia virus vectors require expression of these antigens in the early phase of the virus replication cycle. The kinetics of recombinant gene expression in poxviruses are largely determined by the promoter chosen. We used the highly attenuated modified vaccinia virus Ankara (MVA) to determine the role of promoters in the induction of CD8 T-cell responses. We constructed MVA recombinants expressing either enhanced green fluorescent protein (EGFP) or chicken ovalbumin (OVA), each under the control of a hybrid early-late promoter (pHyb) containing five copies of a strong early element or the well-known early-late p7.5 or pS promoter for comparison. In primary or cultured cells, EGFP expression under the control of pHyb was detected within 30 min, as an immediate-early protein, and remained higher over the first 6 h of infection than p7.5- or pS-driven EGFP expression. Repeated immunizations of mice with recombinant MVA expressing OVA under the control of the pHyb promoter led to superior acute and memory CD8 T-cell responses compared to those to p7.5- and pS-driven OVA. Moreover, OVA expressed under the control of pHyb replaced the MVA-derived B8R protein as the immunodominant CD8 T-cell antigen after three or more immunizations. This is the first demonstration of an immediate-early neoantigen expressed by a poxviral vector resulting in superior induction of neoantigen-specific CD8 T-cell responses.
Collapse
|
72
|
Pradeau-Aubreton K, Ruff M, Garnier JM, Schultz P, Drillien R. Vectors for recombinational cloning and gene expression in mammalian cells using modified vaccinia virus Ankara. Anal Biochem 2010; 404:103-5. [PMID: 20450873 DOI: 10.1016/j.ab.2010.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/30/2010] [Indexed: 11/25/2022]
Abstract
Modified vaccinia virus Ankara (MVA) is a safe vector for high-level expression of proteins in mammalian cells. To simplify the molecular cloning procedures for shuttling genes into the MVA genome, we constructed generic destination plasmids that allow in vitro recombinational cloning (Gateway) and quick isolation of expression plasmids for any gene to be incorporated into the virus. Downstream purification steps were simplified by including N-terminal peptide tags (His, Strep, and Flag) in the generic plasmids. We demonstrate the ability to produce 10mg of beta-glucuronidase from 10(8) hamster cells and to purify tagged proteins with affinity gels.
Collapse
Affiliation(s)
- Karine Pradeau-Aubreton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Structural Biology and Genomics, CNRS UMR, INSERM U, University of Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
73
|
Di Lullo G, Soprana E, Panigada M, Palini A, Agresti A, Comunian C, Milani A, Capua I, Erfle V, Siccardi AG. The combination of marker gene swapping and fluorescence-activated cell sorting improves the efficiency of recombinant modified vaccinia virus Ankara vaccine production for human use. J Virol Methods 2010; 163:195-204. [PMID: 19778556 DOI: 10.1016/j.jviromet.2009.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/10/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Modified vaccinia virus Ankara (MVA) is employed as a human vaccine vector for the high expression of heterologous genes and the lack of replication in mammalian cells. This study demonstrates that cells infected by recombinant viruses can be obtained by fluorescence-activated cell sorting. Recombinant viruses are generated by a swapping event between a red fluorescent protein gene in the acceptor virus and a plasmid cassette coding for both a green fluorescent marker and a transgene. To prevent the carry-over of parental virus, due to superinfection of the cells harbouring recombinant viruses, the sorting is performed on cells infected at low m.o.i. in the presence of a reversible inhibitor of viral particle release. Terminal dilution cloning is then used to isolate both green and marker-free recombinant viruses, which can be identified by whole-plate fluoroimaging. The differential visualization of all the viral types involved allows a stepwise monitoring of all recombinations and leads to a straightforward and efficient flow cytometry-based cell sorting purification protocol. As an example of the efficacy of this sorting procedure, the construction of rMVA's coding for the rat nuclear protein HMGB1 and H5N1 influenza A virus hemagglutinin is reported. The entire recombinant MVA production process is carried out in serum-free media employing primary chicken embryo fibroblasts (CEF), which are certified for the preparation of human vaccines. This rMVA production method is faster, simpler and more reliable than any other available procedure for obtaining safe vaccine stocks for human use.
Collapse
|
74
|
Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 2010; 8:62-73. [PMID: 19966816 DOI: 10.1038/nrmicro2240] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent developments in the use of viruses as vaccine vectors have been facilitated by a better understanding of viral biology. Advances occur as we gain greater insight into the interrelationship of viruses and the immune system. Viral-vector vaccines remain the best means to induce cellular immunity and are now showing promise for the induction of strong humoral responses. The potential benefits for global health that are offered by this field reflect the scope and utility of viruses as vaccine vectors for human and veterinary applications, with targets ranging from certain types of cancer to a vast array of infectious diseases.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | | |
Collapse
|
75
|
Wussow F, Fickenscher H, Tischer BK. Red-mediated transposition and final release of the mini-F vector of a cloned infectious herpesvirus genome. PLoS One 2009; 4:e8178. [PMID: 19997639 PMCID: PMC2780728 DOI: 10.1371/journal.pone.0008178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/08/2009] [Indexed: 01/06/2023] Open
Abstract
Bacterial artificial chromosomes (BACs) are well-established cloning vehicles for functional genomics and for constructing targeting vectors and infectious viral DNA clones. Red-recombination-based mutagenesis techniques have enabled the manipulation of BACs in Escherichia coli without any remaining operational sequences. Here, we describe that the F-factor-derived vector sequences can be inserted into a novel position and seamlessly removed from the present location of the BAC-cloned DNA via synchronous Red-recombination in E. coli in an en passant mutagenesis-based procedure. Using this technique, the mini-F elements of a cloned infectious varicella zoster virus (VZV) genome were specifically transposed into novel positions distributed over the viral DNA to generate six different BAC variants. In comparison to the other constructs, a BAC variant with mini-F sequences directly inserted into the junction of the genomic termini resulted in highly efficient viral DNA replication-mediated spontaneous vector excision upon virus reconstitution in transfected VZV-permissive eukaryotic cells. Moreover, the derived vector-free recombinant progeny exhibited virtually indistinguishable genome properties and replication kinetics to the wild-type virus. Thus, a sequence-independent, efficient, and easy-to-apply mini-F vector transposition procedure eliminates the last hurdle to perform virtually any kind of imaginable targeted BAC modifications in E. coli. The herpesviral terminal genomic junction was identified as an optimal mini-F vector integration site for the construction of an infectious BAC, which allows the rapid generation of mutant virus without any unwanted secondary genome alterations. The novel mini-F transposition technique can be a valuable tool to optimize, repair or restructure other established BACs as well and may facilitate the development of gene therapy or vaccine vectors.
Collapse
Affiliation(s)
- Felix Wussow
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- * E-mail: (HF); (BKT)
| | - B. Karsten Tischer
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- * E-mail: (HF); (BKT)
| |
Collapse
|
76
|
Jacobs BL, Langland JO, Kibler KV, Denzler KL, White SD, Holechek SA, Wong S, Huynh T, Baskin CR. Vaccinia virus vaccines: past, present and future. Antiviral Res 2009; 84:1-13. [PMID: 19563829 PMCID: PMC2742674 DOI: 10.1016/j.antiviral.2009.06.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/30/2009] [Accepted: 06/04/2009] [Indexed: 12/23/2022]
Abstract
Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence.
Collapse
Affiliation(s)
- Bertram L Jacobs
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Rimmelzwaan GF, Sutter G. Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara. Expert Rev Vaccines 2009; 8:447-54. [PMID: 19348560 DOI: 10.1586/erv.09.4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recombinant modified vaccinia virus Ankara (MVA) is attractive and promising as a novel viral vector for the expression of foreign genes of interest because it possesses unique properties. In particular, its excellent safety profile and the availability of versatile vector technologies have frequently made MVA the vaccinia virus of choice for preclinical and clinical studies. Owing to its avirulence and deficiency to productively replicate after in vivo inoculation, MVA can be used under biosafety level 1 conditions. In addition to a better safety profile than replication competent vaccinia viruses, the use of MVA leads to similar levels of gene expression and has better immunostimulatory properties and improved efficacy as a recombinant vaccine. In animal models, recombinant MVA vaccines were immunogenic and induced protective immunity against various infectious agents, including viruses, bacteria and parasites. Here we review the progress that has been made in the development of recombinant MVA as a viral vector and candidate pandemic influenza H5N1 vaccine. Specifically, we will focus on the preclinical evaluation of recombinant MVA vector as pandemic influenza A/H5N1 vaccine candidates and discuss the possible future approaches for the use of these novel MVA-based vaccines.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Erasmus Medical Center, Department of Virology, Rotterdam, The Netherlands.
| | | |
Collapse
|
78
|
Alejo A, Saraiva M, Ruiz-Argüello MB, Viejo-Borbolla A, de Marco MF, Salguero FJ, Alcami A. A method for the generation of ectromelia virus (ECTV) recombinants: in vivo analysis of ECTV vCD30 deletion mutants. PLoS One 2009; 4:e5175. [PMID: 19365546 PMCID: PMC2664468 DOI: 10.1371/journal.pone.0005175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/10/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo. METHODOLOGY/PRINCIPAL FINDINGS To evaluate the contribution of viral CD30 (vCD30) to virus pathogenesis in the infected host, we have adapted a novel transient dominant method for the selection of recombinant ECTVs. Using this method, we have generated an ECTV vCD30 deletion mutant, its corresponding revertant control virus as well as a virus encoding the extracellular domain of murine CD30. These viruses contain no exogenous marker DNA sequences in their genomes, as opposed to other ECTVs reported up to date. CONCLUSIONS/SIGNIFICANCE We show that the vCD30 is expressed as a secreted disulfide linked trimer and that the absence of vCD30 does not impair mousepox induced fatality in vivo. Replacement of vCD30 by a secreted version of mouse CD30 caused limited attenuation of ECTV. The recombinant viruses generated may be of use in the study of the role of the cellular CD30-CD30L interaction in the development of the immune response. The method developed might be useful for the construction of ECTV mutants for the study of additional genes.
Collapse
Affiliation(s)
- Ali Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Margarida Saraiva
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Maria Begoña Ruiz-Argüello
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Abel Viejo-Borbolla
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Mar Fernández de Marco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Francisco Javier Salguero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Antonio Alcami
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
79
|
Hill AVS, Shirley M, Greenwood BM. Jenner reborn: a new vaccine institute. Lancet 2009; 373:445-6. [PMID: 19200904 DOI: 10.1016/s0140-6736(09)60150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Adrian V S Hill
- Jenner Institute Laboratories, Oxford University, Oxford OX3 7DQ, UK.
| | | | | |
Collapse
|