51
|
Abstract
BACKGROUND Surveillance colonoscopy using random biopsies to detect colitis-associated cancer (CAC) suffers from poor sensitivity. Although chromoendoscopy improves detection, acceptance in the community has been slow. Here, we examine the usefulness of near infrared fluorescence (NIRF) endoscopy to image molecular probes for cathepsin activity in colitis-induced dysplasia. METHODS In patient samples, cathepsin activity was correlated with colitis and dysplasia. In mice, cathepsin activity was detected as fluorescent hydrolysis product of substrate-based probes after injection into Il10(-/-) colitic mice. Fluorescence colonoscopy and colonic whole-mount imaging were performed before complete sectioning and pathology review of resected colons. RESULTS Cathepsin activity was 5-fold and 8-fold higher in dysplasia and CAC, respectively, compared with areas of mild colitis in patient tissue sections. The signal-to-noise ratios for dysplastic lesions seen by endoscopy in Il10(-/-) mice were 5.2 ± 1.3 (P = 0.0001). Lesions with increased NIRF emissions were classified as raised or flat dysplasia, lymphoid tissue, and ulcers. Using images collected by endoscopy, a receiver operating characteristic curve for correctly diagnosing dysplasia was calculated. The area under the curve was 0.927. At a cutoff of 1000 mean fluorescence intensity, the sensitivity and specificity for detecting dysplasia were 100% and 83%, respectively. Analysis revealed that focally enhanced NIRF emissions derived from increased numbers of infiltrating myeloid-derived suppressor cells and macrophages with equivalent cathepsin activity. CONCLUSIONS These studies indicate that cathepsin substrate-based probe imaging correctly identifies dysplastic foci within chronically inflamed colons. Combined white light and NIRF endoscopy presents unique advantages that may increase sensitivity and specificity of surveillance colonoscopy in patients with CAC.
Collapse
|
52
|
Khan MW, Keshavarzian A, Gounaris E, Melson JE, Cheon EC, Blatner NR, Chen ZE, Tsai FN, Lee G, Ryu H, Barrett TA, Bentrem DJ, Beckhove P, Khazaie K. PI3K/AKT signaling is essential for communication between tissue-infiltrating mast cells, macrophages, and epithelial cells in colitis-induced cancer. Clin Cancer Res 2013; 19:2342-54. [PMID: 23487439 DOI: 10.1158/1078-0432.ccr-12-2623] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To understand signaling pathways that shape inflamed tissue and predispose to cancer is critical for effective prevention and therapy for chronic inflammatory diseases. We have explored phosphoinositide 3-kinase (PI3K) activity in human inflammatory bowel diseases and mouse colitis models. EXPERIMENTAL DESIGN We conducted immunostaining of phosphorylated AKT (pAKT) and unbiased high-throughput image acquisition and quantitative analysis of samples of noninflamed normal colon, colitis, dysplasia, and colorectal cancer. Mechanistic insights were gained from ex vivo studies of cell interactions, the piroxicam/IL-10(-/-) mouse model of progressive colitis, and use of the PI3K inhibitor LY294002. RESULTS Progressive increase in densities of pAKT-positive tumor-associated macrophages (TAM) and increase in densities of mast cells in the colonic submucosa were noted with colitis and progression to dysplasia and cancer. Mast cells recruited macrophages in ex vivo migration assays, and both mast cells and TAMs promoted invasion of cancer cells. Pretreatment of mast cells with LY294002 blocked recruitment of TAMs. LY294002 inhibited mast cell and TAM-mediated tumor invasion, and in mice, blocked stromal PI3K, colitis, and cancer. CONCLUSION The PI3K/AKT pathway is active in cells infiltrating inflamed human colon tissue. This pathway sustains the recruitment of inflammatory cells through a positive feedback loop. The PI3K/AKT pathway is essential for tumor invasion and the malignant features of the piroxicam/IL-10(-/-) mouse model. LY294002 targets the PI3K pathway and hinders progressive colitis. These findings indicate that colitis and progression to cancer are dependent on stromal PI3K and sensitive to treatment with LY294002.
Collapse
Affiliation(s)
- Mohammad W Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Huntimer L, Ramer-Tait AE, Petersen LK, Ross KA, Walz KA, Wang C, Hostetter J, Narasimhan B, Wannemuehler MJ. Evaluation of biocompatibility and administration site reactogenicity of polyanhydride-particle-based platform for vaccine delivery. Adv Healthc Mater 2013. [PMID: 23184561 DOI: 10.1002/adhm.201200181] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Efficacy, purity, safety, and potency are important attributes of vaccines. Polyanhydride particles represent a novel class of vaccine adjuvants and delivery platforms that have demonstrated the ability to enhance the stability of protein antigens as well as elicit protective immunity against bacterial pathogens. This work aims to elucidate the biocompatibility, inflammatory reactions, and particle effects on mice injected with a 5 mg dose of polyanhydride nanoparticles via common parenteral routes (subcutaneous and intramuscular). Independent of polymer chemistry, nanoparticles more effectively disseminated away from the injection site as compared to microparticles, which exhibited a depot effect. Using fluorescent probes, the in vivo distribution of three formulations of nanoparticles, following subcutaneous administration, indicated migration away from the injection site. Less inflammation was observed at the injection sites of mice-administered nanoparticles as compared to Alum and incomplete Freund's adjuvant. Furthermore, histological evaluation revealed minimal adverse injection site reactions and minimal toxicological effects associated with the administration of nanoparticles at 30 days post-administration. Collectively, these results demonstrate that polyanhydride nanoparticles do not induce inflammation as a cumulative effect of particle persistence or degradation and are, therefore, a viable candidate for a vaccine delivery platform.
Collapse
Affiliation(s)
- Lucas Huntimer
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Arumugam T, Ramachandran V, Sun D, Peng Z, Pal A, Maxwell DS, Bornmann WG, Logsdon CD. Designing and developing S100P inhibitor 5-methyl cromolyn for pancreatic cancer therapy. Mol Cancer Ther 2013; 12:654-62. [PMID: 23303403 DOI: 10.1158/1535-7163.mct-12-0771] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously shown that the antiallergic drug cromolyn blocks S100P interaction with its receptor receptor for advanced glycation end product (RAGE) and improves gemcitabine effectiveness in pancreatic ductal adenocarcinoma (PDAC). However, the concentration required to achieve its effectiveness was high (100 μmol/L). In this study, we designed and synthesized analogs of cromolyn and analyzed their effectiveness compared with the parent molecule. An ELISA was used to confirm the binding of S100P with RAGE and to test the effectiveness of the different analogs. Analog 5-methyl cromolyn (C5OH) blocked S100P binding as well as the increases in NF-κB activity, cell growth, and apoptosis normally caused by S100P. In vivo C5OH systemic delivery reduced NF-κB activity to a greater extent than cromolyn and at 10 times lesser dose (50 mg vs. 5 mg). Treatment of mice-bearing syngeneic PDAC tumors showed that C5OH treatment reduced both tumor growth and metastasis. C5OH treatment of nude mice bearing orthotopic highly aggressive pancreatic Mpanc96 cells increased the overall animal survival. Therefore, the cromolyn analog, C5OH, was found to be more efficient and potent than cromolyn as a therapeutic for PDAC.
Collapse
|
55
|
Kapetanakis N, Kountouras J, Zavos C, Polyzos SA, Kouklakis G, Venizelos I, Nikolaidou C, Vardaka E, Paikos D, Katsinelos P, Romiopoulos I. Helicobacter pylori infection and colorectal carcinoma: pathologic aspects. J Gastrointest Oncol 2012. [PMID: 23205317 DOI: 10.3978/j.issn.2078-6891.2012.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Nikolaos Kapetanakis
- Department of Gastroenterology, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Lightfoot YL, Rehman HU, Myers AD, Mohamadzadeh M. Mitigating colon cancer with a novel strain of Lactobacillus acidophilus: a (re-)balancing act. Immunotherapy 2012. [PMID: 23194356 DOI: 10.2217/imt.12.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
57
|
Verdoes M, Edgington LE, Scheeren FA, Leyva M, Blum G, Weiskopf K, Bachmann MH, Ellman JA, Bogyo M. A nonpeptidic cathepsin S activity-based probe for noninvasive optical imaging of tumor-associated macrophages. ACTA ACUST UNITED AC 2012; 19:619-28. [PMID: 22633413 DOI: 10.1016/j.chembiol.2012.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 12/19/2022]
Abstract
Macrophage infiltration into tumors has been correlated with poor clinical outcome in multiple cancer types. Therefore, tools to image tumor-associated macrophages could be valuable for diagnosis and prognosis of cancer. Herein, we describe the synthesis and characterization of a cathepsin S-directed, quenched activity-based probe (qABP), BMV083. This probe makes use of an optimized nonpeptidic scaffold leading to enhanced in vivo properties relative to previously reported peptide-based probes. In a syngeneic breast cancer model, BMV083 provides high tumor-specific fluorescence that can be visualized using noninvasive optical imaging methods. Furthermore, analysis of probe-labeled cells demonstrates that the probe primarily targets macrophages with an M2 phenotype. Thus, BMV083 is a potential valuable in vivo reporter for tumor-associated macrophages that could greatly facilitate the future studies of macrophage function in the process of tumorigenesis.
Collapse
Affiliation(s)
- Martijn Verdoes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Cruz-Monserrate Z, Abd-Elgaliel WR, Grote T, Deng D, Ji B, Arumugam T, Wang H, Tung CH, Logsdon CD. Detection of pancreatic cancer tumours and precursor lesions by cathepsin E activity in mouse models. Gut 2012; 61:1315-22. [PMID: 22068166 PMCID: PMC3966534 DOI: 10.1136/gutjnl-2011-300544] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA. Surgical resection is the only effective treatment; however, only 20% of patients are candidates for surgery. The ability to detect early PDAC would increase the availability of surgery and improve patient survival. This study assessed the feasibility of using the enzymatic activity of cathepsin E (Cath E), a protease highly and specifically expressed in PDAC, as a novel biomarker for the detection of pancreas-bearing pancreatic intraepithelial neoplasia (PanIN) lesions and PDAC. METHODS Pancreas from normal, chronic pancreatitis and PDAC patients was assessed for Cath E expression by quantitative real-time PCR and immunohistochemistry. Human PDAC xenografts and genetically engineered mouse models (GEMM) of PDAC were injected with a Cath E activity selective fluorescent probe and imaged using an optical imaging system. RESULTS The specificity of Cath E expression in PDAC patients and GEMM of pancreatic cancer was confirmed by quantitative real-time PCR and immunohistochemistry. The novel probe for Cath E activity specifically detected PDAC in both human xenografts and GEMM in vivo. The Cath E sensitive probe was also able to detect pancreas with PanIN lesions in GEMM before tumour formation. CONCLUSIONS The elevated Cath E expression in PanIN and pancreatic tumours allowed in-vivo detection of human PDAC xenografts and imaging of pancreas with PanIN and PDAC tumours in GEMM. Our results support the usefulness of Cath E activity as a potential molecular target for PDAC and early detection imaging.
Collapse
Affiliation(s)
| | - Wael R Abd-Elgaliel
- Department of Radiology, Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas, USA
| | - Tobias Grote
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Defeng Deng
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Baoan Ji
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Huamin Wang
- Pathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ching-Hsuan Tung
- Department of Radiology, Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, Texas, USA
| | - Craig D Logsdon
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, Texas, USA,GI Medical Oncology, University of Texas, MD, Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
59
|
Hellebust A, Richards-Kortum R. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 2012; 7:429-45. [PMID: 22385200 DOI: 10.2217/nnm.12.12] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis - light microscopic examination of biopsied tissue stained with nonspecific dyes - remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra- and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy.
Collapse
Affiliation(s)
- Anne Hellebust
- Rice University, Bioengineering Department, 6100 Main Street, Bioengineering, MS 142, Houston, TX 77005-1892, USA
| | | |
Collapse
|
60
|
Reinheckel T, Peters C, Krüger A, Turk B, Vasiljeva O. Differential Impact of Cysteine Cathepsins on Genetic Mouse Models of De novo Carcinogenesis: Cathepsin B as Emerging Therapeutic Target. Front Pharmacol 2012; 3:133. [PMID: 22798952 PMCID: PMC3394080 DOI: 10.3389/fphar.2012.00133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/24/2012] [Indexed: 12/12/2022] Open
Abstract
Lysosomal cysteine cathepsins belong to a family of 11 human proteolytic enzymes. Some of them correlate with progression in a variety of cancers and therefore are considered as potential therapeutic targets. Until recently, the contribution of individual cathepsins to tumorigenesis and tumor progression remained unknown. By crossing various types of mouse cancer models with mice where specific cathepsins have been ablated, we contributed to this gap of knowledge and will summarize the results in this report. The employed models are the Rip1-Tag2 model for pancreatic neuroendocrine tumors, the K14-HPV16 model for squamous skin and cervical cancers, and the MMTV-PyMT model for metastasizing breast cancer, the KPC model for pancreatic ductal adenocarcinoma, and the APC(min) mice developing early stages of intestinal neoplasia. All models harbor mutations in relevant tumor suppressors and/or cell-type specific expression of potent oncogenes, which initiate de novo carcinogenesis in the targeted tissues. In all these models deletion of cathepsin B led to suppression of the aggressiveness of the respective cancer phenotype. Cathepsin B is networking with other proteases as it was shown for cathepsin X/Z. In contrast, deletion of cathepsin L was beneficial in the RiP1-Tag2 model, but enhanced tumorigenesis in the APC(min), and the K14-HPV16 mice. A logical consequence of these results would be to further pursue selective inhibition of cathepsin B. Moreover, it became clear that cathepsins B and S derived from cells of the tumor microenvironment support cancer growth. Strikingly, delivery of broad spectrum cysteine cathepsin inhibitors in the tumor microenvironment disrupts the permissive ecosystem of the cancer and results in impaired growth or even in regression of the tumor. In addition, combination of cysteine cathepsin inhibition and standard chemotherapy improves the therapeutic response of the latter. Taken together, the next preclinical challenges for developing cathepsin inhibition as cancer therapy might be the improvement of inhibitor selectivity and targeted delivery to the tumor microenvironment and investigation of the biological context of the individual factors within the complex proteolytic network.
Collapse
Affiliation(s)
- Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany
| | | | | | | | | |
Collapse
|
61
|
Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 2012; 109:10462-7. [PMID: 22689992 DOI: 10.1073/pnas.1207230109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An imbalance of commensal bacteria and their gene products underlies mucosal and, in particular, gastrointestinal inflammation and a predisposition to cancer. Lactobacillus species have received considerable attention as examples of beneficial microbiota. We have reported previously that deletion of the phosphoglycerol transferase gene that is responsible for lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus (NCK2025) rendered this bacterium able to significantly protect mice against induced colitis when delivered orally. Here we report that oral treatment with LTA-deficient NCK2025 normalizes innate and adaptive pathogenic immune responses and causes regression of established colonic polyps. This study reveals the proinflammatory role of LTA and the ability of LTA-deficient L. acidophilus to regulate inflammation and protect against colonic polyposis in a unique mouse model.
Collapse
|
62
|
Khan MW, Zadeh M, Bere P, Gounaris E, Owen J, Klaenhammer T, Mohamadzadeh M. Modulating intestinal immune responses by lipoteichoic acid-deficient Lactobacillus acidophilus. Immunotherapy 2012; 4:151-61. [PMID: 22339459 DOI: 10.2217/imt.11.163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM To investigate the mechanism(s) by which the intestinal commensal microbe Lactobacillus acidophilus can affect host immunity, we studied the role of a component of the cell wall, lipoteichoic acid, in colitis. MATERIALS & METHODS Colitis was induced by the intraperitoneal injection of pathogenic CD4(+)CD25(-)CD45RB(hi) T cells into Rag1(-/-) mice. The parental strain, NCK56, or the lipoteichoic acid-deficient strain, NCK2025, was then administered orally. Fluorescent microscopy was employed to examine resulting cell populations and their cytokine production in the colon. RESULTS NCK2025 enhanced IL-10 production by dendritic cells and macrophages. Increased numbers of regulatory dendritic cells coincided with the induction of activated FoxP3(+) Tregs. CONCLUSION These results suggest that the oral administration of the genetically modified strain NCK2025 may be an effective immunotherapeutic approach that reprograms the immune response in colonic inflammatory conditions.
Collapse
Affiliation(s)
- Mohammad W Khan
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Tpl2 ablation promotes intestinal inflammation and tumorigenesis in Apcmin mice by inhibiting IL-10 secretion and regulatory T-cell generation. Proc Natl Acad Sci U S A 2012; 109:E1082-91. [PMID: 22451924 DOI: 10.1073/pnas.1115098109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To address the role of Tpl2, a MAP3K8 that regulates innate/adaptive immunity and inflammation, in intestinal tumorigenesis, we crossed a Tpl2 KO allele into the Apc(min/+) genetic background. Here, we show that Apc(min/+)/Tpl2(-/-) mice exhibit a fivefold increase in the number of intestinal adenomas. Bone marrow transplantation experiments revealed that the enhancement of polyposis was partially hematopoietic cell-driven. Consistent with this observation, Tpl2 ablation promoted intestinal inflammation. IL-10 levels and regulatory T-cell numbers were lower in the intestines of Tpl2(-/-) mice, independent of Apc and polyp status, suggesting that they were responsible for the initiation of the enhancement of tumorigenesis caused by the ablation of Tpl2. The low IL-10 levels correlated with defects in mTOR activation and Stat3 phosphorylation in Toll-like receptor-stimulated macrophages and with a defect in inducible regulatory T-cell generation and function. Both polyp numbers and inflammation increased progressively with time. The rate of increase of both, however, was more rapid in Apc(min/+)/Tpl2(-/-) mice, suggesting that the positive feedback initiated by inflammatory signals originating in developing polyps is more robust in these mice. This may be because these mice have a higher intestinal polyp burden as a result of the enhancement of tumor initiation.
Collapse
|
64
|
Induction of intestinal pro-inflammatory immune responses by lipoteichoic acid. JOURNAL OF INFLAMMATION-LONDON 2012; 9:7. [PMID: 22423982 PMCID: PMC3325164 DOI: 10.1186/1476-9255-9-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/16/2012] [Indexed: 02/02/2023]
Abstract
Background The cellular and molecular mechanisms of inflammatory bowel disease are not fully understood; however, data indicate that uncontrolled chronic inflammation induced by bacterial gene products, including lipoteichoic acid (LTA), may trigger colonic inflammation resulting in disease pathogenesis. LTA is a constituent glycolipid of Gram-positive bacteria that shares many inflammatory properties with lipopolysaccharide and plays a critical role in the pathogenesis of severe inflammatory responses via Toll-like receptor 2. Accordingly, we elucidate the role of LTA in immune stimulation and induced colitis in vivo. Methods To better understand the molecular mechanisms utilized by the intestinal microbiota and their gene products to induce or subvert inflammation, specifically the effect(s) of altered surface layer protein expression on the LTA-mediated pro-inflammatory response, the Lactobacillus acidophilus surface layer protein (Slp) genes encoding SlpB and SlpX were deleted resulting in a SlpB- and SlpX- mutant that continued to express SlpA (assigned as NCK2031). Results Our data show profound activation of dendritic cells by NCK2031, wild-type L. acidophilus (NCK56), and purified Staphylococcus aureus-LTA. In contrary to the LTA-deficient strain NCK2025, the LTA-expressing strains NCK2031 and NCK56, as well as S. aureus-LTA, induce pro-inflammatory innate and T cell immune responses in vivo. Additionally, neither NCK2031 nor S. aureus-LTA supplemented in drinking water protected mice from DSS-colitis, but instead, induced significant intestinal inflammation resulting in severe colitis and tissue destruction. Conclusions These findings suggest that directed alteration of two of the L. acidophilus NCFM-Slps did not ameliorate LTA-induced pro-inflammatory signals and subsequent colitis.
Collapse
|
65
|
Patel V, Papineni RVL, Gupta S, Stoyanova R, Ahmed MM. A realistic utilization of nanotechnology in molecular imaging and targeted radiotherapy of solid tumors. Radiat Res 2012; 177:483-95. [PMID: 22404738 DOI: 10.1667/rr2597.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Precise dose delivery to malignant tissue in radiotherapy is of paramount importance for treatment efficacy while minimizing morbidity of surrounding normal tissues. Current conventional imaging techniques, such as magnetic resonance imaging (MRI) and computerized tomography (CT), are used to define the three-dimensional shape and volume of the tumor for radiation therapy. In many cases, these radiographic imaging (RI) techniques are ambiguous or provide limited information with regard to tumor margins and histopathology. Molecular imaging (MI) modalities, such as positron emission tomography (PET) and single photon-emission computed-tomography (SPECT) that can characterize tumor tissue, are rapidly becoming routine in radiation therapy. However, their inherent low spatial resolution impedes tumor delineation for the purposes of radiation treatment planning. This review will focus on applications of nanotechnology to synergize imaging modalities in order to accurately highlight, as well as subsequently target, tumor cells. Furthermore, using such nano-agents for imaging, simultaneous coupling of novel therapeutics including radiosensitizers can be delivered specifically to the tumor to maximize tumor cell killing while sparing normal tissue.
Collapse
Affiliation(s)
- Vivek Patel
- Department of Radiation Oncology, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
66
|
Edgington LE, Verdoes M, Bogyo M. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 2011; 15:798-805. [PMID: 22098719 DOI: 10.1016/j.cbpa.2011.10.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/25/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases.
Collapse
Affiliation(s)
- Laura E Edgington
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
67
|
Santra S, Kaittanis C, Santiesteban OJ, Perez JM. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J Am Chem Soc 2011; 133:16680-8. [PMID: 21910482 PMCID: PMC3198802 DOI: 10.1021/ja207463b] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we describe the design and synthesis of a folate-doxorubicin conjugate with activatable fluorescence and activatable cytotoxicity. In this study we discovered that the cytotoxicity and fluorescence of doxorubicin are quenched (OFF) when covalently linked with folic acid. Most importantly, when the conjugate is designed with a disulfide bond linking the targeting folate unit and the cytotoxic doxorubicin, a targeted activatable prodrug is obtained that becomes activated (ON) within the cell by glutathione-mediated dissociation and nuclear translocation, showing enhanced fluorescence and cellular toxicity. In our novel design, folic acid acted as both a targeting ligand for the folate receptor as well as a quencher for doxorubicin's fluorescence.
Collapse
Affiliation(s)
- Santimukul Santra
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Charalambos Kaittanis
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Oscar J Santiesteban
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - J Manuel Perez
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
68
|
Abstract
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.
Collapse
|
69
|
Zhou Z, Wang Y, Bryant SH. Multi-conformation 3D QSAR study of benzenesulfonyl-pyrazol-ester compounds and their analogs as cathepsin B inhibitors. J Mol Graph Model 2011; 30:135-47. [PMID: 21798778 PMCID: PMC3167229 DOI: 10.1016/j.jmgm.2011.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/17/2011] [Accepted: 06/30/2011] [Indexed: 01/01/2023]
Abstract
Cathepsin B has been found being responsible for many human diseases. Inhibitors of cathepsin B, a ubiquitous lysosomal cysteine protease, have been developed as a promising treatment for human diseases resulting from malfunction and over-expression of this enzyme. Through a high throughput screening assay, a set of compounds were found able to inhibit the enzymatic activity of cathepsin B. The binding structures of these active compounds were modeled through docking simulation. Three-dimensional (3D) quantitative structure-activity relationship (QSAR) models were constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on the docked structures of the compounds. Strong correlations were obtained for both CoMFA and CoMSIA models with cross-validated correlation coefficients (q²) of 0.605 and 0.605 and the regression correlation coefficients (r²) of 0.999 and 0.997, respectively. The robustness of these models was further validated using leave-one-out (LOO) method and training-test set method. The activities of eight (8) randomly selected compounds were predicted using models built from training set of compounds with prediction errors of less than 1 unit for most compounds in CoMFA and CoMSIA models. Structural features for compounds with improved activity are suggested based on the analysis of the CoMFA and CoMSIA contour maps and the property map of the protein ligand binding site. These results may help to provide better understanding of the structure-activity relationship of cathepsin B inhibitors and to facilitate lead optimization and novel inhibitor design. The multi-conformation method to build 3D QSAR is very effective approach to obtain satisfactory models with high correlation with experimental results and high prediction power for unknown compounds.
Collapse
Affiliation(s)
- Zhigang Zhou
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD 20894, USA.
| | | | | |
Collapse
|
70
|
Soudja SM, Henri S, Mello M, Chasson L, Mas A, Wehbe M, Auphan-Anezin N, Leserman L, Van den Eynde B, Schmitt-Verhulst AM. Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells. PLoS One 2011; 6:e22639. [PMID: 21811640 PMCID: PMC3141075 DOI: 10.1371/journal.pone.0022639] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 07/02/2011] [Indexed: 11/19/2022] Open
Abstract
Migration of dendritic cells (DC) from the tumor environment to the T cell cortex in tumor-draining lymph nodes (TDLN) is essential for priming naïve T lymphocytes (TL) to tumor antigen (Ag). We used a mouse model of induced melanoma in which similar oncogenic events generate two phenotypically distinct melanomas to study the influence of tumor-associated inflammation on secondary lymphoid organ (SLO) organization. One tumor promotes inflammatory cytokines, leading to mobilization of immature myeloid cells (iMC) to the tumor and SLO; the other does not. We report that inflammatory tumors induced alterations of the stromal cell network of SLO, profoundly altering the distribution of TL and the capacity of skin-derived DC and TL to migrate or home to TDLN. These defects, which did not require tumor invasion, correlated with loss of fibroblastic reticular cells in T cell zones and in impaired production of CCL21. Infiltrating iMC accumulated in the TDLN medulla and the splenic red pulp. We propose that impaired function of the stromal cell network during chronic inflammation induced by some tumors renders spleens non-receptive to TL and TDLN non-receptive to TL and migratory DC, while the entry of iMC into these perturbed SLO is enhanced. This could constitute a mechanism by which inflammatory tumors escape immune control. If our results apply to inflammatory tumors in general, the demonstration that SLO are poorly receptive to CCR7-dependent migration of skin-derived DC and naïve TL may constitute an obstacle for proposed vaccination or adoptive TL therapies of their hosts.
Collapse
Affiliation(s)
- Saïdi M. Soudja
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Marielle Mello
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Amandine Mas
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Maria Wehbe
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Lee Leserman
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Anne-Marie Schmitt-Verhulst
- Centre d'Immunologie de Marseille-Luminy (CIML), Université de la Méditerranée, UMR6546, Marseille, France
- INSERM, UMR631, Marseille, France
- CNRS, UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
71
|
Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O'Flaherty S, Barrett T, Klaenhammer TR. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4623-30. [PMID: 21282652 PMCID: PMC3063598 DOI: 10.1073/pnas.1005066107] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Imbalance in the regulatory immune mechanisms that control intestinal cellular and bacterial homeostasis may lead to induction of the detrimental inflammatory signals characterized in humans as inflammatory bowel disease. Induction of proinflammatory cytokines (i.e., IL-12) induced by dendritic cells (DCs) expressing pattern recognition receptors may skew naive T cells to T helper 1 polarization, which is strongly implicated in mucosal autoimmunity. Recent studies show the ability of probiotic microbes to treat and prevent numerous intestinal disorders, including Clostridium difficile-induced colitis. To study the molecular mechanisms involved in the induction and repression of intestinal inflammation, the phosphoglycerol transferase gene that plays a key role in lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus NCFM (NCK56) was deleted. The data show that the L. acidophilus LTA-negative in LTA (NCK2025) not only down-regulated IL-12 and TNFα but also significantly enhanced IL-10 in DCs and controlled the regulation of costimulatory DC functions, resulting in their inability to induce CD4(+) T-cell activation. Moreover, treatment of mice with NCK2025 compared with NCK56 significantly mitigated dextran sulfate sodium and CD4(+)CD45RB(high)T cell-induced colitis and effectively ameliorated dextran sulfate sodium-established colitis through a mechanism that involves IL-10 and CD4(+)FoxP3(+) T regulatory cells to dampen exaggerated mucosal inflammation. Directed alteration of cell surface components of L. acidophilus NCFM establishes a potential strategy for the treatment of inflammatory intestinal disorders.
Collapse
Affiliation(s)
| | - Erika A. Pfeiler
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC; and
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| | - Jeffrey B. Brown
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Mojgan Zadeh
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Matthew Gramarossa
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Elizabeth Managlia
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Praveen Bere
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Bara Sarraj
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Mohammad W. Khan
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | | | - M. Javeed Ansari
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| | - Terrence Barrett
- Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Todd R. Klaenhammer
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC; and
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
72
|
Gabriel D, Zuluaga MF, Lange N. On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds. Photochem Photobiol Sci 2011; 10:689-703. [DOI: 10.1039/c0pp00341g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
73
|
Chan AT, Baba Y, Shima K, Nosho K, Chung DC, Hung KE, Mahmood U, Madden K, Poss K, Ranieri A, Shue D, Kucherlapati R, Fuchs CS, Ogino S. Cathepsin B expression and survival in colon cancer: implications for molecular detection of neoplasia. Cancer Epidemiol Biomarkers Prev 2010; 19:2777-85. [PMID: 20833970 PMCID: PMC2976771 DOI: 10.1158/1055-9965.epi-10-0529] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIMS Proteases play a critical role in tumorigenesis and are upregulated in colorectal cancer and neoplastic polyps. In animal models, cathepsin B (CTSB)-activatable imaging agents show high enzyme activity within intestinal tumors. METHODS We conducted a prospective cohort study of 558 men and women with colon cancer with tumors that were accessible for immunohistochemical assessment. We used Cox proportional hazards models, stratified by stage, to compute colon cancer-specific and overall mortality according to tumoral expression of CTSB. RESULTS Among 558 participants, 457 (82%) had tumors that expressed CTSB (CTSB positive) and 101 (18%) had tumors that did not express CTSB (CTSB negative). CTSB expression was not associated with disease stage (P = 0.19). After a median follow-up of 11.6 years, there were 254 total and 155 colon cancer-specific deaths. Compared with participants with CTSB-negative tumors, participants with CTSB-positive tumors experienced a multivariate hazard ratio for colon cancer-specific mortality of 1.99 (95% confidence interval, 1.19-3.34) and overall mortality of 1.71 (95% confidence interval, 1.16-2.50). CTSB expression was independently associated with KRAS (P = 0.01) and BRAF mutation (P = 0.04), but not microsatellite instability status, CpG island methylator phenotype status, PIK3CA mutation, LINE-1 methylation, TP53 expression, or PTGS2 (cyclooxygenase-2) expression. Among 123 individuals with adenomas, 91% expressed CTSB. CONCLUSIONS As assessed by immunohistochemistry, CTSB is expressed in the vast majority of colon cancers, independent of stage, and is significantly associated with higher risk of colon cancer-specific and overall mortality. IMPACT These results support the potential of CTSB a target for image detection of neoplastic lesions in humans.
Collapse
Affiliation(s)
- Andrew T. Chan
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Yoshifumi Baba
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kaori Shima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Katsuhiko Nosho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Daniel C. Chung
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kenneth E. Hung
- Department of Medicine, Tufts Medical Center, Boston, MA
- Harvard-Partners Center for Genetics and Genomics and Harvard Medical School, Boston, MA
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | - Audrey Ranieri
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Daniel Shue
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Raju Kucherlapati
- Harvard-Partners Center for Genetics and Genomics and Harvard Medical School, Boston, MA
| | - Charles S. Fuchs
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Shuji Ogino
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
74
|
Erreni M, Mantovani A, Allavena P. Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. CANCER MICROENVIRONMENT 2010; 4:141-54. [PMID: 21909876 DOI: 10.1007/s12307-010-0052-5] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 08/06/2010] [Indexed: 12/19/2022]
Abstract
Experimental and epidemiological studies indicate a strong link between chronic inflammation and tumor progression. Human colorectal cancer (CRC), a major cause of cancer-related death in Western countries, represents a paradigm for this link. Key features of cancer-related inflammation in CRC are the activation of transcription factors (e.g. NF-κB, STAT3), the expression of inflammatory cytokines and chemokines (e.g. TNFα, IL-6, CCL2, CXCL8) as well as a prominent leukocyte infiltrate. While considerable evidence indicates that the presence of lymphocytes of adaptive immunity may positively influence patient survival and clinical outcome in CRC, the role of tumor-associated macrophages (TAM) and of other lymphoid populations (e.g. Th17, Treg) is still unclear. In this review we will summarize the different and controversial effects that TAM play in CRC-related inflammation and progression of disease. The characterization of the most relevant inflammatory pathways in CRC is instrumental for the identification of new target molecules that could lead to improved diagnosis and treatment.
Collapse
Affiliation(s)
- Marco Erreni
- Department of Immunology and Inflammation, IRCCS Istituto Clinico Humanitas, Via Manzoni, 56, Rozzano, Milan, Italy
| | | | | |
Collapse
|
75
|
Mieog JSD, Hutteman M, van der Vorst JR, Kuppen PJK, Que I, Dijkstra J, Kaijzel EL, Prins F, Löwik CWGM, Smit VTHBM, van de Velde CJH, Vahrmeijer AL. Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Res Treat 2010; 128:679-89. [PMID: 20821347 DOI: 10.1007/s10549-010-1130-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/13/2010] [Indexed: 01/09/2023]
Abstract
Tumor involvement of resection margins is found in a large proportion of patients who undergo breast-conserving surgery. Near-infrared (NIR) fluorescence imaging is an experimental technique to visualize cancer cells during surgery. To determine the accuracy of real-time NIR fluorescence imaging in obtaining tumor-free resection margins, a protease-activatable NIR fluorescence probe and an intraoperative camera system were used in the EMR86 orthotopic syngeneic breast cancer rat model. Influence of concentration, timing and number of tumor cells were tested in the MCR86 rat breast cancer cell line. These variables were significantly associated with NIR fluorescence probe activation. Dosing and tumor size were also significantly associated with fluorescence intensity in the EMR86 rat model, whereas time of imaging was not. Real-time NIR fluorescence guidance of tumor resection resulted in a complete resection of 17 out of 17 tumors with minimal excision of normal healthy tissue (mean minimum and a mean maximum tumor-free margin of 0.2 ± 0.2 mm and 1.3 ± 0.6 mm, respectively). Moreover, the technique enabled identification of remnant tumor tissue in the surgical cavity. Histological analysis revealed that the NIR fluorescence signal was highest at the invasive tumor border and in the stromal compartment of the tumor. In conclusion, NIR fluorescence detection of breast tumor margins was successful in a rat model. This study suggests that clinical introduction of intraoperative NIR fluorescence imaging has the potential to increase the number of complete tumor resections in breast cancer patients undergoing breast-conserving surgery.
Collapse
Affiliation(s)
- J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, ZA, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Signore A, Mather SJ, Piaggio G, Malviya G, Dierckx RA. Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem Rev 2010; 110:3112-45. [PMID: 20415479 DOI: 10.1021/cr900351r] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A Signore
- Nuclear Medicine Unit, II Faculty of Medicine and Surgery, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
77
|
Seaman ME, Contino G, Bardeesy N, Kelly KA. Molecular imaging agents: impact on diagnosis and therapeutics in oncology. Expert Rev Mol Med 2010; 12:e20. [PMID: 20633310 PMCID: PMC3027202 DOI: 10.1017/s1462399410001511] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging has become a crucial tool in oncology throughout the course of disease detection and management, and is an integral part of clinical trials. Anatomical and functional imaging led the way, providing valuable information used in the diagnosis of disease, including data regarding the size and location of the tumour and on physiological processes such as blood flow and perfusion. As understanding of cancer pathogenesis has advanced through the identification of genetic, biochemical and cellular alterations in evolving tumours, emphasis has been put on developing methods to detect and serially monitor such alterations. This class of approaches is referred to as molecular imaging. Molecular imaging offers the potential for increasingly sensitive and specific visualisation and quantification of biological processes at the cellular and molecular level. These approaches have become established as essential tools for cancer research, early cancer detection and staging, and monitoring and predicting response to targeted therapies. Here, we discuss recent advances in the development of molecular imaging agents and their implementation in basic cancer research as well as in more rationalised approaches to cancer care.
Collapse
Affiliation(s)
- Marc E Seaman
- Department of Biomedical Engineering, University of Virginia, Box 800759 Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
78
|
Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol 2010; 65:500-16. [PMID: 20541650 PMCID: PMC3150531 DOI: 10.1016/j.crad.2010.03.011] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 03/25/2010] [Indexed: 02/07/2023]
Abstract
In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use positron-emission tomography (PET) or single photon-emission computed tomography (SPECT)-based techniques. In ongoing preclinical research, novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multi-modality molecular imaging. Contrast-enhanced molecular ultrasound (US) with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and US imaging with molecularly-targeted microbubbles are attractive strategies as they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and US techniques involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with US. Current preclinical findings and advances in instrumentation, such as endoscopes and microcatheters, suggest that these molecular imaging methods have numerous potential clinical applications and will be translated into clinical use in the near future.
Collapse
Affiliation(s)
- Marybeth A. Pysz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jürgen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
79
|
Zhou Z, Wang Y, Bryant SH. QSAR models for predicting cathepsin B inhibition by small molecules--continuous and binary QSAR models to classify cathepsin B inhibition activities of small molecules. J Mol Graph Model 2010; 28:714-27. [PMID: 20194042 PMCID: PMC2873115 DOI: 10.1016/j.jmgm.2010.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 11/17/2022]
Abstract
Cathepsin B is a potential target for the development of drugs to treat several important human diseases. A number of inhibitors targeting this protein have been developed in the past several years. Recently, a group of small molecules were identified to have inhibitory activity against cathepsin B through high throughput screening (HTS) tests. In this study, traditional continuous and binary QSAR models were built to classify the biological activities of previously identified compounds and to distinguish active compounds from inactive compounds for drug development based on the calculated molecular and physicochemical properties. Strong correlations were obtained for the continuous QSAR models with regression correlation coefficients (r(2)) and cross-validated correlation coefficients (q(2)) of 0.77 and 0.61 for all compounds, and 0.82 and 0.68 for the compound set excluding 3 outliers, respectively. The models were further validated through the leave-one-out (LOO) method and the training-test set method. The binary models demonstrated a strong level of predictability in distinguishing the active compounds from inactive compounds with accuracies of 0.89 and 0.94 for active and inactive compounds, respectively, in non-cross-validated models. Similar results were obtained for the cross-validated models. Collectively, these results demonstrate the models' ability to discriminate between active and inactive compounds, suggesting that the models may be used to pre-screen compounds to facilitate compound optimization and to design novel inhibitors for drug development.
Collapse
Affiliation(s)
- Zhigang Zhou
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yanli Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Stephen H. Bryant
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
80
|
Strategies for high-resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy. Transl Oncol 2010; 3:181-94. [PMID: 20563260 DOI: 10.1593/tlo.09310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/22/2009] [Accepted: 12/29/2009] [Indexed: 01/14/2023] Open
Abstract
Ovarian cancer remains the most frequently lethal of the gynecologic cancers owing to the late detection of this disease. Here, by using human specimens and three mouse models of ovarian cancer, we tested the feasibility of nonlinear imaging approaches, the multiphoton microscopy (MPM) and second harmonic generation (SHG) to serve as complementary tools for ovarian cancer diagnosis. We demonstrate that MPM/SHG of intrinsic tissue emissions allows visualization of unfixed, unsectioned, and unstained tissues at a resolution comparable to that of routinely processed histologic sections. In addition to permitting discrimination between normal and neoplastic tissues according to pathological criteria, the method facilitates morphometric assessment of specimens and detection of very early cellular changes in the ovarian surface epithelium. A red shift in cellular intrinsic fluorescence and collagen structural alterations have been identified as additional cancer-associated changes that are indiscernible by conventional pathologic techniques. Importantly, the feasibility of in vivo laparoscopic MPM/SHG is demonstrated by using a "stick" objective lens. Intravital detection of neoplastic lesions has been further facilitated by low-magnification identification of an indicator for cathepsin activity followed by MPM laparoscopic imaging. Taken together, these results demonstrate that MPM may be translatable to clinical settings as an endoscopic approach suitable for high-resolution optical biopsies as well as a pathology tool for rapid initial assessment of ovarian cancer samples.
Collapse
|
81
|
Gompels LL, Lim NH, Vincent T, Paleolog EM. In vivo optical imaging in arthritis--an enlightening future? Rheumatology (Oxford) 2010; 49:1436-46. [PMID: 20338885 DOI: 10.1093/rheumatology/keq012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vivo molecular optical imaging has significant potential to delineate and measure, at the macroscopic level, in vivo biological processes that are occurring at the cellular and molecular level. Optical imaging has already been developed for in vitro and ex vivo applications in molecular and cellular biology (e.g. fluorescence confocal microscopy), but is still at an early stage of development as a whole-animal in vivo imaging technique. Both sensitivity and spatial resolution remain incompletely defined. Rapid advances in hardware technology and highly innovative reporter probes and dyes will be expected to deliver significant insight into perturbations of molecular pathways that occur in disease, ultimately with the potential of translating into future molecular imaging techniques for patients with arthritis. This review will focus on currently available technologies for live in vivo animal optical imaging, including fluorescence reflectance imaging, potential novel tomographic techniques, bioluminescence reporter technology and potential novel labelling techniques, highlighting in particular the potential application of in vivo fluorescence imaging in arthritis.
Collapse
Affiliation(s)
- Luke L Gompels
- Kennedy Institute of Rheumatology, Imperial College London, Faculty of Medicine, 65 Aspenlea Road, London W6 8LH, UK.
| | | | | | | |
Collapse
|
82
|
Peddareddigari VG, Wang D, DuBois RN. The tumor microenvironment in colorectal carcinogenesis. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2010; 3:149-66. [PMID: 21209781 PMCID: PMC2990487 DOI: 10.1007/s12307-010-0038-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/03/2010] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related mortality in the United States. Therapeutic developments in the past decade have extended life expectancy in patients with metastatic disease. However, metastatic colorectal cancers remain incurable. Numerous agents that were demonstrated to have significant antitumor activity in experimental models translated into disappointing results in extending patient survival. This has resulted in more attention being focused on the contribution of tumor microenvironment to the progression of a number of solid tumors including colorectal cancer. A more complete understanding of interactions between tumor epithelial cells and their stromal elements will enhance therapeutic options and improve clinical outcome. Here we will review the role of various stromal components in colorectal carcinogenesis and discuss the potential of targeting these components for the development of future therapeutic agents.
Collapse
Affiliation(s)
- Vijay G. Peddareddigari
- Department of Cancer Biology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Dingzhi Wang
- Department of Cancer Biology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Raymond N. DuBois
- Department of Cancer Biology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030 USA
- Gastrointestinal Medical Oncology, The University of Texas, M. D. Anderson Cancer Center, Unit 118, 1515 Holcombe Boulevard, Houston, TX 77030-4009 USA
| |
Collapse
|
83
|
Brown JB, Lee G, Managlia E, Grimm GR, Dirisina R, Goretsky T, Cheresh P, Blatner NR, Khazaie K, Yang GY, Li L, Barrett TA. Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology 2010; 138:595-605, 605.e1-3. [PMID: 19879273 PMCID: PMC2819654 DOI: 10.1053/j.gastro.2009.10.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/21/2009] [Accepted: 10/20/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Mesalamine is a mainstay therapeutic agent in chronic ulcerative colitis (CUC) in which condition it reverses crypt architectural changes and reduces colitis-associated cancer (CAC). The present study addressed the possibility that mesalamine reduces beta-catenin-associated progenitor cell activation, Akt-phosphorylated beta-catenin(Ser552) (P-beta-catenin), and colitis-induced dysplasia (CID). METHODS Effects of mesalamine on P-beta-catenin staining and function were assessed by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) in biopsy specimens of CUC in mild or "refractory" severe mucosal inflammation. Effects of mesalamine on epithelial proliferation and activation of Akt and beta-catenin were assessed in interleukin (IL)-10(-/-) colitis and CID by immunohistochemistry and Western blotting. Dysplasia was assessed by counting the number and lengths of lesions per colon. RESULTS Data from IL-10(-/-) and human colitis samples show that mesalamine reduced Akt activation and P-beta-catenin levels in the middle and upper crypt. Reductions in P-beta-catenin in CUC biopsy specimens with severe inflammation suggested that mesalamine reduced P-beta-catenin levels in tissue refractory to mesalamine's anti-inflammatory effects. In IL-10(-/-) mice, mesalamine reduced CID concordant with inhibition of crypt Akt and beta-catenin signaling. CONCLUSIONS The results are consistent with the model that mesalamine contributes to chemoprevention in CAC by reducing beta-catenin signaling within intestinal progenitors.
Collapse
Affiliation(s)
- Jeffrey B. Brown
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Memorial Hospital, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Goo Lee
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Elizabeth Managlia
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Gery R. Grimm
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Ramanarao Dirisina
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Tatiana Goretsky
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Paul Cheresh
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Nichole R. Blatner
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Khashayarsha Khazaie
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, U.S.A
| | - Terrence A. Barrett
- Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, Chicago, U.S.A
| |
Collapse
|
84
|
Thurber GM, Figueiredo JL, Weissleder R. Multicolor fluorescent intravital live microscopy (FILM) for surgical tumor resection in a mouse xenograft model. PLoS One 2009; 4:e8053. [PMID: 19956597 PMCID: PMC2779447 DOI: 10.1371/journal.pone.0008053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background Complete surgical resection of neoplasia remains one of the most efficient tumor therapies. However, malignant cell clusters are often left behind during surgery due to the inability to visualize and differentiate them against host tissue. Here we establish the feasibility of multicolor fluorescent intravital live microscopy (FILM) where multiple cellular and/or unique tissue compartments are stained simultaneously and imaged in real time. Methodology/Principal Findings Theoretical simulations of imaging probe localization were carried out for three agents with specificity for cancer cells, stromal host response, or vascular perfusion. This transport analysis gave insight into the probe pharmacokinetics and tissue distribution, facilitating the experimental design and allowing predictions to be made about the localization of the probes in other animal models and in the clinic. The imaging probes were administered systemically at optimal time points based on the simulations, and the multicolor FILM images obtained in vivo were then compared to conventional pathological sections. Our data show the feasibility of real time in vivo pathology at cellular resolution and molecular specificity with excellent agreement between intravital and traditional in vitro immunohistochemistry. Conclusions/Significance Multicolor FILM is an accurate method for identifying malignant tissue and cells in vivo. The imaging probes distributed in a manner similar to predictions based on transport principles, and these models can be used to design future probes and experiments. FILM can provide critical real time feedback and should be a useful tool for more effective and complete cancer resection.
Collapse
Affiliation(s)
- Greg M. Thurber
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose L. Figueiredo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
85
|
Lohela M, Werb Z. Intravital imaging of stromal cell dynamics in tumors. Curr Opin Genet Dev 2009; 20:72-8. [PMID: 19942428 DOI: 10.1016/j.gde.2009.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 12/01/2022]
Abstract
Tumor stroma, consisting of the extracellular matrix and multiple cell types such as immune cells, fibroblasts and vascular cells, contributes to the malignancy of solid tumors by a variety of mechanisms. Intravital imaging by different microscopy techniques, especially by confocal and multi-photon microscopy, has proven to be a powerful method for analyzing the cell-cell and cell-matrix interactions in the dynamic tumor microenvironments. Intravital imaging has fostered the acquisition of data on parameters such as motility of different cell types in distinct tumor regions or manipulated with defined challenges, kinetics of tumor cell killing by T cells or macrophage-assisted tumor cell extravasation, functionality of the vasculature, protease activity and metabolic state. Achieving the direct observation of intact tumors offered by intravital imaging provides unique insights into tumor biology that will continue to deepen our understanding of the processes leading to malignancy and of the ways they can be targeted.
Collapse
Affiliation(s)
- Marja Lohela
- Department of Anatomy, University of California, HSW1323, 513 Parnassus Avenue, San Francisco, CA 94143-0452, United States
| | | |
Collapse
|
86
|
Zhou Z, Wang Y, Bryant SH. Computational analysis of the cathepsin B inhibitors activities through LR-MMPBSA binding affinity calculation based on docked complex. J Comput Chem 2009; 30:2165-75. [PMID: 19242965 PMCID: PMC2735608 DOI: 10.1002/jcc.21214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cathepsin B, a ubiquitous lysosomal cysteine protease, is involved in many biological processes related to several human diseases. Inhibitors targeting the enzyme have been investigated as possible diseases treatments. A set of 37 compounds were recently found active in a high throughput screening assay to inhibit the catalytic activity of Cathepsin B, with chemical structures and biological test results available to the public in the PubChem BioAssay Database (AID 820). In this study, we compare these experimental activities to the results of theoretical predictions from binding affinity calculation with a LR-MM-PNSA approach based on docked complexes. Strong correlations (r(2) = 0.919 and q(2) = 0.887 for the best) are observed between the theoretical predictions and experimental biological activity. The models are cross-validated by four independent predictive experiments with randomly split compounds into training and test sets. Our results also show that the results based on protein dimer show better correlations with experimental activity when compared to results based on monomer in the in silico calculations.
Collapse
Affiliation(s)
- Zhigang Zhou
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, Maryland 20894, USA
| | | | | |
Collapse
|