51
|
Díaz-Ríos C, Hernández M, Abad D, Álvarez-Montes L, Varsaki A, Iturbe D, Calvo J, Ocampo-Sosa AA. New Sequence Type ST3449 in Multidrug-Resistant Pseudomonas aeruginosa Isolates from a Cystic Fibrosis Patient. Antibiotics (Basel) 2021; 10:antibiotics10050491. [PMID: 33922748 PMCID: PMC8146123 DOI: 10.3390/antibiotics10050491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most critical bacterial pathogens associated with chronic infections in cystic fibrosis patients. Here we show the phenotypic and genotypic characterization of five consecutive multidrug-resistant isolates of P. aeruginosa collected during a month from a CF patient with end-stage lung disease and fatal outcome. The isolates exhibited distinct colony morphologies and pigmentation and differences in their capacity to produce biofilm and virulence potential evaluated in larvae of Galleria mellonella. Whole genome-sequencing showed that isolates belonged to a novel sequence type ST3449 and serotype O6. Analysis of their resistome demonstrated the presence of genes blaOXA-396, blaPAO, aph(3')-IIb, catB, crpP and fosA and new mutations in chromosomal genes conferring resistance to different antipseudomonal antibiotics. Genes exoS, exoT, exoY, toxA, lasI, rhlI and tse1 were among the 220 virulence genes detected. The different phenotypic and genotypic features found reveal the adaptation of clone ST3449 to the CF lung environment by a number of mutations affecting genes related with biofilm formation, quorum sensing and antimicrobial resistance. Most of these mutations are commonly found in CF isolates, which may give us important clues for future development of new drug targets to combat P. aeruginosa chronic infections.
Collapse
Affiliation(s)
- Catalina Díaz-Ríos
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (C.D.-R.); (L.Á.-M.)
| | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain; (M.H.); (D.A.)
| | - David Abad
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain; (M.H.); (D.A.)
| | - Laura Álvarez-Montes
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (C.D.-R.); (L.Á.-M.)
| | - Athanasia Varsaki
- Centro de Investigación y Formación Agraria (CIFA), 39600 Muriedas, Spain;
| | - David Iturbe
- Servicio de Neumología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Jorge Calvo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Alain A. Ocampo-Sosa
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain; (C.D.-R.); (L.Á.-M.)
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
- Correspondence:
| |
Collapse
|
52
|
Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I, Tucker NP, Kenna DTD, Turton JF, Jeukens J, Freschi L, Wee BA, Loman NJ, Holden S, Manzoor S, Hawkey P, Southern KW, Walshaw MJ, Levesque RC, Fothergill JL, Winstanley C. Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 2021; 7:mgen000511. [PMID: 33720817 PMCID: PMC8190615 DOI: 10.1099/mgen.0.000511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of Pseudomonas aeruginosa that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider P. aeruginosa population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes gltR and fleR. Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.
Collapse
Affiliation(s)
- Matthew P. Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Present address: Nuffield Department of Health, University of Oxford, UK
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David Williams
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Irena Kukavica-Ibrulj
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Nicholas P. Tucker
- Strathclyde Institute of Pharmacy & Biomedical Sciences. University of Strathclyde, Glasgow, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, London, UK
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
- Present address: Harvard Medical School, Boston, MA, USA
| | - Bryan A. Wee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Present address: Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas J. Loman
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
| | - Stephen Holden
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- Present address: MSD Research Laboratories, Two Pancras Square, London, UK
| | - Susan Manzoor
- University Hospitals Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, UK
| | - Peter Hawkey
- Institute for Microbiology & Infection, University of Birmingham, Birmingham, UK
- Present address: University of Birmingham Microbiome Treatment Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Roger C. Levesque
- Institute for Integrative and Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Joanne L. Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
53
|
Berger C, Rückert C, Blom J, Rabaey K, Kalinowski J, Rosenbaum MA. Estimation of pathogenic potential of an environmental Pseudomonas aeruginosa isolate using comparative genomics. Sci Rep 2021; 11:1370. [PMID: 33446769 PMCID: PMC7809047 DOI: 10.1038/s41598-020-80592-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
The isolation and sequencing of new strains of Pseudomonas aeruginosa created an extensive dataset of closed genomes. Many of the publicly available genomes are only used in their original publication while additional in silico information, based on comparison to previously published genomes, is not being explored. In this study, we defined and investigated the genome of the environmental isolate P. aeruginosa KRP1 and compared it to more than 100 publicly available closed P. aeruginosa genomes. By using different genomic island prediction programs, we could identify a total of 17 genomic islands and 8 genomic islets, marking the majority of the accessory genome that covers ~ 12% of the total genome. Based on intra-strain comparisons, we are able to predict the pathogenic potential of this environmental isolate. It shares a substantial amount of genomic information with the highly virulent PSE9 and LESB58 strains. For both of these, the increased virulence has been directly linked to their accessory genome before. Hence, the integrated use of previously published data can help to minimize expensive and time consuming wetlab work to determine the pathogenetic potential.
Collapse
Affiliation(s)
- Carola Berger
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Rückert
- Center for Biotechnology - CeBiTec, University of Bielefeld, Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Gießen, Giessen, Germany
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, University of Bielefeld, Bielefeld, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
54
|
Efficiency of a Tetracycline-Adjuvant Combination Against Multidrug Resistant Pseudomonas aeruginosa Tunisian Clinical Isolates. Antibiotics (Basel) 2020; 9:antibiotics9120919. [PMID: 33348867 PMCID: PMC7766271 DOI: 10.3390/antibiotics9120919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
The growing number of multidrug resistant strains in Tunisia has become a serious health concern contributing to high rate of mortality and morbidity. Since current antibiotics are rapidly becoming ineffective, novel strategies to combat resistance are needed. Recently, we demonstrated that combination of a tetracycline antibiotic with various polyaminoisoprenyl adjuvants can sustain the life span and enhance the activity of these drugs against Pseudomonas aeruginosa reference strain (PA01). In the context of our continuing studies, the effective approach of antibiotic-adjuvant was investigated against a large panel of P. aeruginosa Tunisian clinical strains collected from the Military Hospital of Tunis. In this paper, we demonstrated that the combination of a farnesyl spermine compound 3 used at concentrations ranging from 2.5 to 10 µM, in the presence of doxycycline or minocycline leads to a significant decrease of P. aeruginosa antibiotic resistance.
Collapse
|
55
|
Pont S, Fraikin N, Caspar Y, Van Melderen L, Attrée I, Cretin F. Bacterial behavior in human blood reveals complement evaders with some persister-like features. PLoS Pathog 2020; 16:e1008893. [PMID: 33326490 PMCID: PMC7773416 DOI: 10.1371/journal.ppat.1008893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/30/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial bloodstream infections (BSI) are a major health concern and can cause up to 40% mortality. Pseudomonas aeruginosa BSI is often of nosocomial origin and is associated with a particularly poor prognosis. The mechanism of bacterial persistence in blood is still largely unknown. Here, we analyzed the behavior of a cohort of clinical and laboratory Pseudomonas aeruginosa strains in human blood. In this specific environment, complement was the main defensive mechanism, acting either by direct bacterial lysis or by opsonophagocytosis, which required recognition by immune cells. We found highly variable survival rates for different strains in blood, whatever their origin, serotype, or the nature of their secreted toxins (ExoS, ExoU or ExlA) and despite their detection by immune cells. We identified and characterized a complement-tolerant subpopulation of bacterial cells that we named “evaders”. Evaders shared some features with bacterial persisters, which tolerate antibiotic treatment. Notably, in bi-phasic killing curves, the evaders represented 0.1–0.001% of the initial bacterial load and displayed transient tolerance. However, the evaders are not dormant and require active metabolism to persist in blood. We detected the evaders for five other major human pathogens: Acinetobacter baumannii, Burkholderia multivorans, enteroaggregative Escherichia coli, Klebsiella pneumoniae, and Yersinia enterocolitica. Thus, the evaders could allow the pathogen to persist within the bloodstream, and may be the cause of fatal bacteremia or dissemination, in particular in the absence of effective antibiotic treatments. Blood infections by antibiotic resistant bacteria, notably Pseudomonas aeruginosa, are major concerns in hospital settings. The complex interplay between P. aeruginosa and the innate immune system in the context of human blood is still poorly understood. By studying the behavior of various P. aeruginosa strains in human whole blood and plasma, we showed that bacterial strains display different rate of tolerance to the complement system. Despite the complement microbicide activity, most bacteria withstand elimination through phenotypic heterogeneity creating a tiny (<0.1%) subpopulation of transiently tolerant evaders able to persist in plasma. This phenotypic heterogeneity thus prevents total elimination of the pathogen from the circulation, and represents a new strategy to disseminate within the organism.
Collapse
Affiliation(s)
- Stéphane Pont
- Université Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses team, CNRS ERL5261, CEA IRIG-BCI, INSERM UMR1036, Grenoble, France
| | - Nathan Fraikin
- Université Libre de Bruxelles, Department of Molecular Biology, Cellular & Molecular Microbiology, Gosselies, Belgium
| | - Yvan Caspar
- Centre Hospitalier Universitaire Grenoble Alpes, Laboratoire de bactériologie-hygiène hospitalière, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Laurence Van Melderen
- Université Libre de Bruxelles, Department of Molecular Biology, Cellular & Molecular Microbiology, Gosselies, Belgium
| | - Ina Attrée
- Université Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses team, CNRS ERL5261, CEA IRIG-BCI, INSERM UMR1036, Grenoble, France
- * E-mail: (FC); (IA)
| | - François Cretin
- Université Grenoble Alpes, Bacterial Pathogenesis and Cellular Responses team, CNRS ERL5261, CEA IRIG-BCI, INSERM UMR1036, Grenoble, France
- * E-mail: (FC); (IA)
| |
Collapse
|
56
|
Kandasamy K, Thirumalmuthu K, Prajna NV, Lalitha P, Mohankumar V, Devarajan B. Comparative genomics of ocular Pseudomonas aeruginosa strains from keratitis patients with different clinical outcomes. Genomics 2020; 112:4769-4776. [DOI: 10.1016/j.ygeno.2020.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
|
57
|
Bouillot S, Pont S, Gallet B, Moriscot C, Deruelle V, Attrée I, Huber P. Inflammasome activation by Pseudomonas aeruginosa's ExlA pore-forming toxin is detrimental for the host. Cell Microbiol 2020; 22:e13251. [PMID: 32779854 DOI: 10.1111/cmi.13251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
During acute Pseudomonas aeruginosa infection, the inflammatory response is essential for bacterial clearance. Neutrophil recruitment can be initiated following the assembly of an inflammasome within sentinel macrophages, leading to activation of caspase-1, which in turn triggers macrophage pyroptosis and IL-1β/IL-18 maturation. Inflammasome formation can be induced by a number of bacterial determinants, including Type III secretion systems (T3SSs) or pore-forming toxins, or, alternatively, by lipopolysaccharide (LPS) via caspase-11 activation. Surprisingly, previous studies indicated that a T3SS-induced inflammasome increased pathogenicity in mouse models of P. aeruginosa infection. Here, we investigated the immune reaction of mice infected with a T3SS-negative P. aeruginosa strain (IHMA879472). Virulence of this strain relies on ExlA, a secreted pore-forming toxin. IHMA879472 promoted massive neutrophil infiltration in infected lungs, owing to efficient priming of toll-like receptors, and thus enhanced the expression of inflammatory proteins including pro-IL-1β and TNF-α. However, mature-IL-1β and IL-18 were undetectable in wild-type mice, suggesting that ExlA failed to effectively activate caspase-1. Nevertheless, caspase-1/11 deficiency improved survival following infection with IHMA879472, as previously described for T3SS+ bacteria. We conclude that the detrimental effect associated with the ExlA-induced inflammasome is probably not due to hyperinflammation, rather it stems from another inflammasome-dependent process.
Collapse
Affiliation(s)
- Stéphanie Bouillot
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Stéphane Pont
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Benoit Gallet
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Christine Moriscot
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Vincent Deruelle
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Ina Attrée
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| | - Philippe Huber
- Unité de Biologie Cellulaire et Infection, CEA, INSERM, CNRS, Université Grenoble-Alpes, Grenoble, France
| |
Collapse
|
58
|
Khan M, Stapleton F, Summers S, Rice SA, Willcox MDP. Antibiotic Resistance Characteristics of Pseudomonas aeruginosa Isolated from Keratitis in Australia and India. Antibiotics (Basel) 2020; 9:antibiotics9090600. [PMID: 32937932 PMCID: PMC7559795 DOI: 10.3390/antibiotics9090600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated genomic differences in Australian and Indian Pseudomonas aeruginosa isolates from keratitis (infection of the cornea). Overall, the Indian isolates were resistant to more antibiotics, with some of those isolates being multi-drug resistant. Acquired genes were related to resistance to fluoroquinolones, aminoglycosides, beta-lactams, macrolides, sulphonamides, and tetracycline and were more frequent in Indian (96%) than in Australian (35%) isolates (p = 0.02). Indian isolates had large numbers of gene variations (median 50,006, IQR = 26,967-50,600) compared to Australian isolates (median 26,317, IQR = 25,681-33,780). There were a larger number of mutations in the mutL and uvrD genes associated with the mismatch repair (MMR) system in Indian isolates, which may result in strains losing their efficacy for DNA repair. The number of gene variations were greater in isolates carrying MMR system genes or exoU. In the phylogenetic division, the number of core genes were similar in both groups, but Indian isolates had larger numbers of pan genes (median 6518, IQR = 6040-6935). Clones related to three different sequence types-ST308, ST316, and ST491-were found among Indian isolates. Only one clone, ST233, containing two strains was present in Australian isolates. The most striking differences between Australian and Indian isolates were carriage of exoU (that encodes a cytolytic phospholipase) in Indian isolates and exoS (that encodes for GTPase activator activity) in Australian isolates, large number of acquired resistance genes, greater changes to MMR genes, and a larger pan genome as well as increased overall genetic variation in the Indian isolates.
Collapse
Affiliation(s)
- Mahjabeen Khan
- School of Optometry and Vision Science, UNSW, Sydney, NSW 2052, Australia; (M.K.); (F.S.)
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW, Sydney, NSW 2052, Australia; (M.K.); (F.S.)
| | - Stephen Summers
- The Singapore Centre for Environment Life Sciences Engineering (SCELSE), The School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; (S.S.); (S.A.R.)
| | - Scott A. Rice
- The Singapore Centre for Environment Life Sciences Engineering (SCELSE), The School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; (S.S.); (S.A.R.)
- The ithree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, UNSW, Sydney, NSW 2052, Australia; (M.K.); (F.S.)
- Correspondence: ; Tel.: +61-2-9385-4164
| |
Collapse
|
59
|
Singh M, Sykes EME, Li Y, Kumar A. MexXY RND pump of Pseudomonas aeruginosa PA7 effluxes bi-anionic β-lactams carbenicillin and sulbenicillin when it partners with the outer membrane factor OprA but not with OprM. MICROBIOLOGY-SGM 2020; 166:1095-1106. [PMID: 32909933 DOI: 10.1099/mic.0.000971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance in Pseudomonas aeruginosa is a serious concern in healthcare systems. Among the determinants of antibiotic resistance in P. aeruginosa, efflux pumps belonging to the resistance-nodulation-division (RND) family confer resistance to a broad range of antibacterial compounds. The MexXY efflux system is widely overexpressed in P. aeruginosa isolates from cystic fibrosis (CF) patients. MexXY can form functional complexes with two different outer membrane factors (OMFs), OprA and OprM. In this study, using state-of-the-art genetic tools, the substrate specificities of MexXY-OprA and MexXY-OprM complexes were determined. Our results show, for the first time, that the substrate profile of the MexXY system from P. aeruginosa PA7 can vary depending on which OM factor (OprM or OprA) it complexes with. While both MexXY-OprA and MexXY-OprM complexes are capable of effluxing aminoglycosides, the bi-anionic β-lactam molecules carbenicillin and sulbenicillin were found to only be the substrate of MexXY-OprA. Our study therefore shows that by partnering with different OMF proteins MexY can expand its substrate profile.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
60
|
do Nascimento APB, Medeiros Filho F, Pauer H, Antunes LCM, Sousa H, Senger H, Albano RM, Trindade Dos Santos M, Carvalho-Assef APD, da Silva FAB. Characterization of a SPM-1 metallo-beta-lactamase-producing Pseudomonas aeruginosa by comparative genomics and phenotypic analysis. Sci Rep 2020; 10:13192. [PMID: 32764694 PMCID: PMC7413544 DOI: 10.1038/s41598-020-69944-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common pathogens related to healthcare-associated infections. The Brazilian isolate, named CCBH4851, is a multidrug-resistant clone belonging to the sequence type 277. The antimicrobial resistance mechanisms of the CCBH4851 strain are associated with the presence of the bla\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_\text {SPM-1}$$\end{document}SPM-1 gene, encoding a metallo-beta-lactamase, in combination with other exogenously acquired genes. Whole-genome sequencing studies focusing on emerging pathogens are essential to identify key features of their physiology that may lead to the identification of new targets for therapy. Using both Illumina and PacBio sequencing data, we obtained a single contig representing the CCBH4851 genome with annotated features that were consistent with data reported for the species. However, comparative analysis with other Pseudomonas aeruginosa strains revealed genomic differences regarding virulence factors and regulatory proteins. In addition, we performed phenotypic assays that revealed CCBH4851 is impaired in bacterial motilities and biofilm formation. On the other hand, CCBH4851 genome contained acquired genomic islands that carry transcriptional factors, virulence and antimicrobial resistance-related genes. Presence of single nucleotide polymorphisms in the core genome, mainly those located in resistance-associated genes, suggests that these mutations may also influence the multidrug-resistant behavior of CCBH4851. Overall, characterization of Pseudomonas aeruginosa CCBH4851 complete genome revealed the presence of features that strongly relates to the virulence and antibiotic resistance profile of this important infectious agent.
Collapse
Affiliation(s)
| | | | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil
| | - Luis Caetano Martha Antunes
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-361, Brazil.,Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, 21041-210, Brazil
| | - Hério Sousa
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Hermes Senger
- Departamento de Computação, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | | | | | | |
Collapse
|
61
|
Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: concern about exolysin ExlA detection. Sci Rep 2020; 10:11667. [PMID: 32669597 PMCID: PMC7363818 DOI: 10.1038/s41598-020-68575-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas is a ubiquitous genus that also causes human, animal and plant diseases. Most studies have focused on clinical P. aeruginosa strains from humans, but they are scarce on animal strains. This study was aimed to determine the occurrence of Pseudomonas spp. among faecal samples of healthy animals, and to analyse their antimicrobial resistance, and pathogenicity. Among 704 animal faecal samples analysed, 133 Pseudomonas spp. isolates (23 species) were recovered from 46 samples (6.5%), and classified in 75 different PFGE patterns. Low antimicrobial resistance levels were found, being the highest to aztreonam (50.3%). Five sequence-types (ST1648, ST1711, ST2096, ST2194, ST2252), two serotypes (O:3, O:6), and three virulotypes (analysing 15 virulence and quorum-sensing genes) were observed among the 9 P. aeruginosa strains. Type-3-Secretion System genes were absent in the six O:3-serotype strains that additionally showed high cytotoxicity and produced higher biofilm biomass, phenazine pigments and motility than PAO1 control strain. In these six strains, the exlAB locus, and other virulence genotypes (e.g. RGP69 pathogenicity island) exclusive of PA7 outliers were detected by whole genome sequencing. This is the first description of the presence of the ExlA exolysin in P. aeruginosa from healthy animals, highlighting their pathological importance.
Collapse
|
62
|
The Basis for Natural Multiresistance to Phage in Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9060339. [PMID: 32570896 PMCID: PMC7344871 DOI: 10.3390/antibiotics9060339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for long-term infections and is particularly resistant to treatments when hiding inside the extracellular matrix or biofilms. Phage therapy might represent an alternative to antibiotic treatment, but up to 10% of clinical strains appear to resist multiple phages. We investigated the characteristics of P. aeruginosa clinical strains naturally resistant to phages and compared them to highly susceptible strains. The phage-resistant strains were defective in lipopolysaccharide (LPS) biosynthesis, were nonmotile and displayed an important degree of autolysis, releasing phages and pyocins. Complete genome sequencing of three resistant strains showed the existence of a large accessory genome made of multiple insertion elements, genomic islands, pyocins and prophages, including two phages performing lateral transduction. Mutations were found in genes responsible for the synthesis of LPS and/or type IV pilus, the major receptors for most phages. CRISPR-Cas systems appeared to be absent or inactive in phage-resistant strains, confirming that they do not play a role in the resistance to lytic phages but control the insertion of exogenous sequences. We show that, despite their apparent weakness, the multiphage-resistant strains described in this study displayed selective advantages through the possession of various functions, including weapons to eliminate other strains of the same or closely related species.
Collapse
|
63
|
Panayidou S, Georgiades K, Christofi T, Tamana S, Promponas VJ, Apidianakis Y. Pseudomonas aeruginosa core metabolism exerts a widespread growth-independent control on virulence. Sci Rep 2020; 10:9505. [PMID: 32528034 PMCID: PMC7289854 DOI: 10.1038/s41598-020-66194-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023] Open
Abstract
To assess the role of core metabolism genes in bacterial virulence - independently of their effect on growth - we correlated the genome, the transcriptome and the pathogenicity in flies and mice of 30 fully sequenced Pseudomonas strains. Gene presence correlates robustly with pathogenicity differences among all Pseudomonas species, but not among the P. aeruginosa strains. However, gene expression differences are evident between highly and lowly pathogenic P. aeruginosa strains in multiple virulence factors and a few metabolism genes. Moreover, 16.5%, a noticeable fraction of the core metabolism genes of P. aeruginosa strain PA14 (compared to 8.5% of the non-metabolic genes tested), appear necessary for full virulence when mutated. Most of these virulence-defective core metabolism mutants are compromised in at least one key virulence mechanism independently of auxotrophy. A pathway level analysis of PA14 core metabolism, uncovers beta-oxidation and the biosynthesis of amino-acids, succinate, citramalate, and chorismate to be important for full virulence. Strikingly, the relative expression among P. aeruginosa strains of genes belonging in these metabolic pathways is indicative of their pathogenicity. Thus, P. aeruginosa strain-to-strain virulence variation, remains largely obscure at the genome level, but can be dissected at the pathway level via functional transcriptomics of core metabolism.
Collapse
Affiliation(s)
- Stavria Panayidou
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Kaliopi Georgiades
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.,Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Theodoulakis Christofi
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Stella Tamana
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| | - Yiorgos Apidianakis
- Infection and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
64
|
de Sales RO, Migliorini LB, Puga R, Kocsis B, Severino P. A Core Genome Multilocus Sequence Typing Scheme for Pseudomonas aeruginosa. Front Microbiol 2020; 11:1049. [PMID: 32528447 PMCID: PMC7264379 DOI: 10.3389/fmicb.2020.01049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous microorganism and an important opportunistic pathogen responsible for a broad spectrum of infections mainly in immunosuppressed and critically ill patients. Molecular investigations traditionally rely on pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). In this work we propose a core genome multilocus sequence typing (cgMLST) scheme for P. aeruginosa, a methodology that combines traditional MLST principles with whole genome sequencing data. All publicly available complete P. aeruginosa genomes, representing the diversity of this species, were used to establish a cgMLST scheme targeting 2,653 genes. The scheme was then tested using genomes available at contig, chromosome and scaffold levels. The proposed cgMLST scheme for P. aeruginosa typed over 99% (2,314/2,325) of the genomes available for this study considering at least 95% of the cgMLST target genes present. The absence of a certain number gene targets at the threshold considered for both the creation and validation steps due to low genome sequence quality is possibly the main reason for this result. The cgMLST scheme was compared with previously published whole genome single nucleotide polymorphism analysis for the characterization of the population structure of the epidemic clone ST235 and results were highly similar. In order to evaluate the typing resolution of the proposed scheme, collections of isolates belonging to two important STs associated with cystic fibrosis, ST146 and ST274, were typed using this scheme, and ST235 isolates associated with an outbreak were evaluated. Besides confirming the relatedness of all the isolates, earlier determined by MLST, the higher resolution of cgMLST denotes that it may be suitable for surveillance programs, overcoming possible shortcomings of classical MLST. The proposed scheme is publicly available at: https://github.com/BioinformaticsHIAEMolecularMicrobiology/cgMLST-Pseudomonas-aeruginosa.
Collapse
Affiliation(s)
- Romário Oliveira de Sales
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | - Letícia Busato Migliorini
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | - Renato Puga
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Patricia Severino
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| |
Collapse
|
65
|
Dench J, Hinz A, Aris‐Brosou S, Kassen R. Identifying the drivers of computationally detected correlated evolution among sites under antibiotic selection. Evol Appl 2020; 13:781-793. [PMID: 32211067 PMCID: PMC7086105 DOI: 10.1111/eva.12900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022] Open
Abstract
The ultimate causes of correlated evolution among sites in a genome remain difficult to tease apart. To address this problem directly, we performed a high-throughput search for correlated evolution among sites associated with resistance to a fluoroquinolone antibiotic using whole-genome data from clinical strains of Pseudomonas aeruginosa, before validating our computational predictions experimentally. We show that for at least two sites, this correlation is underlain by epistasis. Our analysis also revealed eight additional pairs of synonymous substitutions displaying correlated evolution underlain by physical linkage, rather than selection associated with antibiotic resistance. Our results provide direct evidence that both epistasis and physical linkage among sites can drive the correlated evolution identified by high-throughput computational tools. In other words, the observation of correlated evolution is not by itself sufficient evidence to guarantee that the sites in question are epistatic; such a claim requires additional evidence, ideally coming from direct estimates of epistasis, based on experimental evidence.
Collapse
Affiliation(s)
- Jonathan Dench
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Aaron Hinz
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Stéphane Aris‐Brosou
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Department of Mathematics and StatisticsUniversity of OttawaOttawaOntarioCanada
| | - Rees Kassen
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
66
|
Trouillon J, Sentausa E, Ragno M, Robert-Genthon M, Lory S, Attrée I, Elsen S. Species-specific recruitment of transcription factors dictates toxin expression. Nucleic Acids Res 2020; 48:2388-2400. [PMID: 31925438 PMCID: PMC7049718 DOI: 10.1093/nar/gkz1232] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022] Open
Abstract
Tight and coordinate regulation of virulence determinants is essential for bacterial biology and involves dynamic shaping of transcriptional regulatory networks during evolution. The horizontally transferred two-partner secretion system ExlB-ExlA is instrumental in the virulence of different Pseudomonas species, ranging from soil- and plant-dwelling biocontrol agents to the major human pathogen Pseudomonas aeruginosa. Here, we identify a Cro/CI-like repressor, named ErfA, which together with Vfr, a CRP-like activator, controls exlBA expression in P. aeruginosa. The characterization of ErfA regulon across P. aeruginosa subfamilies revealed a second conserved target, the ergAB operon, with functions unrelated to virulence. To gain insights into this functional dichotomy, we defined the pan-regulon of ErfA in several Pseudomonas species and found ergAB as the sole conserved target of ErfA. The analysis of 446 exlBA promoter sequences from all exlBA+ genomes revealed a wide variety of regulatory sequences, as ErfA- and Vfr-binding sites were found to have evolved specifically in P. aeruginosa and nearly each species carries different regulatory sequences for this operon. We propose that the emergence of different regulatory cis-elements in the promoters of horizontally transferred genes is an example of plasticity of regulatory networks evolving to provide an adapted response in each individual niche.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS ERL5261, CEA-IRIG-BCI, INSERM UMR1036, Grenoble 38000, France
| | - Erwin Sentausa
- Université Grenoble Alpes, CNRS ERL5261, CEA-IRIG-BCI, INSERM UMR1036, Grenoble 38000, France
| | - Michel Ragno
- Université Grenoble Alpes, CNRS ERL5261, CEA-IRIG-BCI, INSERM UMR1036, Grenoble 38000, France
| | - Mylène Robert-Genthon
- Université Grenoble Alpes, CNRS ERL5261, CEA-IRIG-BCI, INSERM UMR1036, Grenoble 38000, France
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ina Attrée
- Université Grenoble Alpes, CNRS ERL5261, CEA-IRIG-BCI, INSERM UMR1036, Grenoble 38000, France
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS ERL5261, CEA-IRIG-BCI, INSERM UMR1036, Grenoble 38000, France
| |
Collapse
|
67
|
Sawa T, Momiyama K, Mihara T, Kainuma A, Kinoshita M, Moriyama K. Molecular epidemiology of clinically high-risk Pseudomonas aeruginosa strains: Practical overview. Microbiol Immunol 2020; 64:331-344. [PMID: 31965613 DOI: 10.1111/1348-0421.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
In recent years, numerous outbreaks of multidrug-resistant Pseudomonas aeruginosa have been reported across the world. Once an outbreak occurs, besides routinely testing isolates for susceptibility to antimicrobials, it is required to check their virulence genotypes and clonality profiles. Replacing pulsed-field gel electrophoresis DNA fingerprinting are faster, easier-to-use, and less expensive polymerase chain reaction (PCR)-based methods for characterizing hospital isolates. P. aeruginosa possesses a mosaic genome structure and a highly conserved core genome displaying low sequence diversity and a highly variable accessory genome that communicates with other Pseudomonas species via horizontal gene transfer. Multiple-locus variable-number tandem-repeat analysis and multilocus sequence typing methods allow for phylogenetic analysis of isolates by PCR amplification of target genes with the support of Internet-based services. The target genes located in the core genome regions usually contain low-frequency mutations, allowing the resulting phylogenetic trees to infer evolutionary processes. The multiplex PCR-based open reading frame typing (POT) method, integron PCR, and exoenzyme genotyping can determine a genotype by PCR amplifying a specific insertion gene in the accessory genome region using a single or a multiple primer set. Thus, analyzing P. aeruginosa isolates for their clonality, virulence factors, and resistance characteristics is achievable by combining the clonality evaluation of the core genome based on multiple-locus targeting methods with other methods that can identify specific virulence and antimicrobial genes. Software packages such as eBURST, R, and Dendroscope, which are powerful tools for phylogenetic analyses, enable researchers and clinicians to visualize clonality associations in clinical isolates.
Collapse
Affiliation(s)
- Teiji Sawa
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Momiyama
- School of Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshihito Mihara
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kainuma
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
68
|
Yan J, Estanbouli H, Liao C, Kim W, Monk JM, Rahman R, Kamboj M, Palsson BO, Qiu W, Xavier JB. Systems-level analysis of NalD mutation, a recurrent driver of rapid drug resistance in acute Pseudomonas aeruginosa infection. PLoS Comput Biol 2019; 15:e1007562. [PMID: 31860667 PMCID: PMC6944390 DOI: 10.1371/journal.pcbi.1007562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/06/2020] [Accepted: 11/23/2019] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the antibiotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux. Here we combine computational analysis of clinical isolates, transcriptomics, metabolic modeling and experimental validation to find a strong association between NalD mutations and resistance to aztreonam-as well as resistance to other antibiotics-across P. aeruginosa isolated from different patients. A detailed analysis of one patient's timeline shows how this mutation can emerge in vivo and drive rapid evolution of resistance while the patient received cancer treatment, a bone marrow transplantation, and antibiotics up to the point of causing the patient's death. Transcriptomics analysis confirmed the primary mechanism of NalD action-a loss-of-function mutation that caused constitutive overexpression of the MexAB-OprM efflux system-which lead to aztreonam resistance but, surprisingly, had no fitness cost in the absence of the antibiotic. We constrained a genome-scale metabolic model using the transcriptomics data to investigate changes beyond the primary mechanism of resistance, including adaptations in major metabolic pathways and membrane transport concurrent with aztreonam resistance, which may explain the lack of a fitness cost. We propose that metabolic adaptations may allow resistance mutations to endure in the absence of antibiotics and could be targeted by future therapies against antibiotic resistant pathogens.
Collapse
Affiliation(s)
- Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Henri Estanbouli
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Wook Kim
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan M. Monk
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Rayees Rahman
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, New York, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Weigang Qiu
- Department of Biological Sciences, Hunter College & Graduate Center, CUNY, New York, New York, United States of America
| | - Joao B. Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
69
|
Kotani K, Matsumura M, Morita Y, Tomida J, Kutsuna R, Nishino K, Yasuike S, Kawamura Y. 13-(2-Methylbenzyl) Berberine Is a More Potent Inhibitor of MexXY-Dependent Aminoglycoside Resistance than Berberine. Antibiotics (Basel) 2019; 8:antibiotics8040212. [PMID: 31698691 PMCID: PMC6963850 DOI: 10.3390/antibiotics8040212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022] Open
Abstract
We previously showed that berberine attenuates MexXY efflux-dependent aminoglycoside resistance in Pseudomonas aeruginosa. Here, we aimed to synthesize berberine derivatives with higher MexXY inhibitory activities. We synthesized 11 berberine derivatives, of which 13-(2-methylbenzyl) berberine (13-o-MBB) but not its regiomers showed the most promising MexXY inhibitory activity. 13-o-MBB reduced the minimum inhibitory concentrations (MICs) of various aminoglycosides 4- to 128 fold for a highly multidrug resistant P. aeruginosa strain. Moreover, 13-o-MBB significantly reduced the MICs of gentamicin and amikacin in Achromobacter xylosoxidans and Burkholderia cepacia. The fractional inhibitory concentration indices indicated that 13-o-MBB acted synergistically with aminoglycosides in only MexXY-positive P. aeruginosa strains. Time-kill curves showed that 13-o-MBB or higher concentrations of berberine increased the bactericidal activity of gentamicin by inhibiting MexXY in P. aeruginosa. Our findings indicate that 13-o-MBB inhibits MexXY-dependent aminoglycoside drug resistance more strongly than berberine and that 13-o-MBB is a useful inhibitor of aminoglycoside drug resistance due to MexXY.
Collapse
Affiliation(s)
- Kenta Kotani
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Mio Matsumura
- Department of Organic and Medicinal Chemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (M.M.); (S.Y.)
| | - Yuji Morita
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo 560-0043, Japan;
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Ryo Kutsuna
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Osaka 560-0043, Japan;
| | - Shuji Yasuike
- Department of Organic and Medicinal Chemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (M.M.); (S.Y.)
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
- Correspondence:
| |
Collapse
|
70
|
Freschi L, Bertelli C, Jeukens J, Moore MP, Kukavica-Ibrulj I, Emond-Rheault JG, Hamel J, Fothergill JL, Tucker NP, McClean S, Klockgether J, de Soyza A, Brinkman FSL, Levesque RC, Winstanley C. Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiol Lett 2019; 365:5035990. [PMID: 29897457 DOI: 10.1093/femsle/fny120] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen, especially in the context of infections of cystic fibrosis (CF). In order to facilitate coordinated study of this pathogen, an international reference panel of P. aeruginosa isolates was assembled. Here we report the genome sequencing and analysis of 33 of these isolates and 7 reference genomes to further characterise this panel. Core genome single nucleotide variant phylogeny demonstrated that the panel strains are widely distributed amongst the P. aeruginosa population. Common loss-of-function mutations reported as adaptive during CF (such as in mucA and mexA) were identified amongst isolates from chronic respiratory infections. From the 40 strains analysed, 37 unique resistomes were predicted, based on the Resistance Gene Identifier method using the Comprehensive Antibiotic Resistance Database. Notably, hierarchical clustering and phylogenetic reconstructions based on the presence/absence of genomic islands (GIs), prophages and other regions of genome plasticity (RGPs) supported the subdivision of P. aeruginosa into two main groups. This is the largest, most diverse analysis of GIs and associated RGPs to date, and the results suggest that, at least at the largest clade grouping level (group 1 vs group 2), each group may be drawing upon distinct mobile gene pools.
Collapse
Affiliation(s)
- Luca Freschi
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Claire Bertelli
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.,Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Julie Jeukens
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Irena Kukavica-Ibrulj
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | | | - Jérémie Hamel
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Joanne L Fothergill
- Institute of Microbiology, University Hospital Center and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Tallaght, Dublin D24 FKT9, Ireland
| | - Jens Klockgether
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, D-30625, Hannover, Germany
| | - Anthony de Soyza
- Institute for Cellular Medicine, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Roger C Levesque
- Institute for Integrative and Systems Biology (IBIS), University Laval, Québec City, QC G1V 0A6, Canada
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
71
|
Tabor DE, Oganesyan V, Keller AE, Yu L, McLaughlin RE, Song E, Warrener P, Rosenthal K, Esser M, Qi Y, Ruzin A, Stover CK, DiGiandomenico A. Pseudomonas aeruginosa PcrV and Psl, the Molecular Targets of Bispecific Antibody MEDI3902, Are Conserved Among Diverse Global Clinical Isolates. J Infect Dis 2019; 218:1983-1994. [PMID: 30016475 DOI: 10.1093/infdis/jiy438] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023] Open
Abstract
Background Bispecific antibody MEDI3902, targeting the Pseudomonas aeruginosa type 3 secretion system (PcrV) and Psl exopolysaccharide, is currently in phase 2b development for prevention of nosocomial pneumonia in patients undergoing mechanical ventilation. We surveyed a diverse collection of isolates to study MEDI3902 epitope conservation and protective activity. Methods P. aeruginosa clinical isolates (n = 913) were collected from diverse patients and geographic locations during 2003-2014. We conducted whole-genome sequencing; performed PcrV and Psl expression analyses via immunoblotting and enzyme-linked immunosorbent assay, respectively; performed crystallography to determine the MEDI3902 PcrV epitope, using anti-PcrV Fab and PcrV components (resolved at 2.8 Å); and evaluated MEDI3902 protective activity against select isolates in vitro and in vivo. Results Intact psl operon and pcrV genes were present in 94% and 99% of isolates, respectively, and 99.9% of isolates contained at least one of the genetic elements. Anti-Psl binding was confirmed in tested isolates harboring a complete Psl operon or lacking nonessential psl genes. We identified 46 PcrV variant sequences, and MEDI3902-PcrV contact residues were preserved. MEDI3902 maintained potent in vivo activity against various strains, including strains expressing only a single target. Conclusions Psl and PcrV are highly prevalent in global clinical isolates, suggesting MEDI3902 can mediate broad coverage against P. aeruginosa.
Collapse
Affiliation(s)
- D E Tabor
- Translational Medicine, Gaithersburg, Maryland
| | - V Oganesyan
- Antibody Development and Protein Engineering, Gaithersburg, Maryland
| | - A E Keller
- Microbial Sciences, Gaithersburg, Maryland
| | - L Yu
- Biostatistics, MedImmune, Gaithersburg, Maryland
| | - R E McLaughlin
- Global Medicines Development, AstraZeneca, Waltham, Massachusetts
| | - E Song
- Translational Medicine, Gaithersburg, Maryland
| | - P Warrener
- Microbial Sciences, Gaithersburg, Maryland
| | - K Rosenthal
- Antibody Development and Protein Engineering, Gaithersburg, Maryland
| | - M Esser
- Translational Medicine, Gaithersburg, Maryland
| | - Y Qi
- Translational Medicine, Gaithersburg, Maryland
| | - A Ruzin
- Translational Medicine, Gaithersburg, Maryland
| | - C K Stover
- Microbial Sciences, Gaithersburg, Maryland
| | | |
Collapse
|
72
|
Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. The Population Structure of Pseudomonas aeruginosa Is Characterized by Genetic Isolation of exoU+ and exoS+ Lineages. Genome Biol Evol 2019; 11:1780-1796. [PMID: 31173069 PMCID: PMC6690169 DOI: 10.1093/gbe/evz119] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
The diversification of microbial populations may be driven by many factors including adaptation to distinct ecological niches and barriers to recombination. We examined the population structure of the bacterial pathogen Pseudomonas aeruginosa by analyzing whole-genome sequences of 739 isolates from diverse sources. We confirmed that the population structure of P. aeruginosa consists of two major groups (referred to as Groups A and B) and at least two minor groups (Groups C1 and C2). Evidence for frequent intragroup but limited intergroup recombination in the core genome was observed, consistent with sexual isolation of the groups. Likewise, accessory genome analysis demonstrated more gene flow within Groups A and B than between these groups, and a few accessory genomic elements were nearly specific to one or the other group. In particular, the exoS gene was highly overrepresented in Group A compared with Group B isolates (99.4% vs. 1.1%) and the exoU gene was highly overrepresented in Group B compared with Group A isolates (95.2% vs. 1.8%). The exoS and exoU genes encode effector proteins secreted by the P. aeruginosa type III secretion system. Together these results suggest that the major P. aeruginosa groups defined in part by the exoS and exoU genes are divergent from each other, and that these groups are genetically isolated and may be ecologically distinct. Although both groups were globally distributed and caused human infections, certain groups predominated in some clinical contexts.
Collapse
Affiliation(s)
- Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
| | - Ekpeno Nnah
- Lurie Children’s Hospital, Chicago, Illinois
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Rachel J Whitaker
- Department of Microbiology and the Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign
| | - Alan R Hauser
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine
| |
Collapse
|
73
|
Weiser R, Green AE, Bull MJ, Cunningham-Oakes E, Jolley KA, Maiden MCJ, Hall AJ, Winstanley C, Weightman AJ, Donoghue D, Amezquita A, Connor TR, Mahenthiralingam E. Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microb Genom 2019; 5:e000276. [PMID: 31170060 PMCID: PMC6700666 DOI: 10.1099/mgen.0.000276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a highly versatile, antibiotic-resistant Gram-negative bacterium known for causing opportunistic infections and contamination of industrial products. Despite extensive genomic analysis of clinical P. aeruginosa strains, no genomes exist for preservative-tolerant industrial strains. A unique collection of 69 industrial isolates was assembled and compared to clinical and environmental strains; 16 genetically distinct industrial strains were subjected to array tube genotyping, multilocus sequence typing and whole-genome sequencing. The industrial strains possessed high preservative tolerance and were dispersed widely across P. aeruginosa as a species, but recurrence of strains from the same lineage within specific industrial products and locations was identified. The industrial P. aeruginosa genomes (mean=7.0 Mb) were significantly larger than those of previously sequenced environmental (mean=6.5 Mb; n=19) and clinical (mean=6.6 Mb; n=66) strains. Complete sequencing of the P. aeruginosa industrial strain RW109, which encoded the largest genome (7.75 Mb), revealed a multireplicon structure including a megaplasmid (555 265 bp) and large plasmid (151 612 bp). The RW109 megaplasmid represented an emerging plasmid family conserved in seven industrial and two clinical P. aeruginosa strains, and associated with extremely stress-resilient phenotypes, including antimicrobial resistance and solvent tolerance. Here, by defining the detailed phylogenomics of P. aeruginosa industrial strains, we show that they uniquely possess multireplicon, megaplasmid-bearing genomes, and significantly greater genomic content worthy of further study.
Collapse
Affiliation(s)
- Rebecca Weiser
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Angharad E. Green
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
- University of Liverpool, Institute of Infection and Global Health, Liverpool, UK
| | - Matthew J. Bull
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Edward Cunningham-Oakes
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Keith A. Jolley
- Department of Zoology, The Tinbergen Building, University of Oxford, Oxford, UK
| | - Martin C. J. Maiden
- Department of Zoology, The Tinbergen Building, University of Oxford, Oxford, UK
| | - Amanda J. Hall
- University of Liverpool, Institute of Infection and Global Health, Liverpool, UK
| | - Craig Winstanley
- University of Liverpool, Institute of Infection and Global Health, Liverpool, UK
| | - Andrew J. Weightman
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Denise Donoghue
- Unilever Research and Development, Port Sunlight, Wirral, UK
| | - Alejandro Amezquita
- Unilever Research and Development, Safety and Environmental Assurance Centre, Colworth House, Sharnbrook, Bedford, UK
| | - Thomas R. Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
74
|
García-Ulloa M, Ponce-Soto GY, González-Valdez A, González-Pedrajo B, Díaz-Guerrero M, Souza V, Soberón-Chávez G. Two Pseudomonas aeruginosa clonal groups belonging to the PA14 clade are indigenous to the Churince system in Cuatro Ciénegas Coahuila, México. Environ Microbiol 2019; 21:2964-2976. [PMID: 31112340 DOI: 10.1111/1462-2920.14692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is a widely distributed environmental bacterium but is also an opportunistic pathogen that represents an important health hazard due to its high intrinsic antibiotic resistance and its production of virulence factors. The genetic structure of P. aeruginosa populations using whole genome sequences shows the existence of three clades, one of which (PA7 clade) has a higher genetic diversity. These three clades include clinical and environmental isolates that are very diverse in terms of geographical origins and isolation date. Here, we report the characterization of two distinct clonal P. aeruginosa groups that form a part of the PA14 clade (clade 2) sampled from the Churince system in Cuatro Ciénegas Basin (CCB). One of the clonal groups that we report here was isolated in 2011 (group 2A) and was displaced by the other clonal group (2B) in 2015. Both Churince groups are unable to produce pyoverdine but can produce other virulence-associated traits. The existence of these unique P. aeruginosa clonal groups in the Churince system is of ecological and evolutionary significance since the microbiota of this site is generally very distinct from other lineages, and this is the first time that a population of P. aeruginosa has been found in CCB.
Collapse
Affiliation(s)
- Manuel García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| |
Collapse
|
75
|
Orellana-Saez M, Pacheco N, Costa JI, Mendez KN, Miossec MJ, Meneses C, Castro-Nallar E, Marcoleta AE, Poblete-Castro I. In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential. Front Microbiol 2019; 10:1154. [PMID: 31178851 PMCID: PMC6543543 DOI: 10.3389/fmicb.2019.01154] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
We obtained the complete genome sequence of the psychrotolerant extremophile Pseudomonas sp. MPC6, a natural Polyhydroxyalkanoates (PHAs) producing bacterium able to rapidly grow at low temperatures. Genomic and phenotypic analyses allowed us to situate this isolate inside the Pseudomonas fluorescens phylogroup of pseudomonads as well as to reveal its metabolic versatility and plasticity. The isolate possesses the gene machinery for metabolizing a variety of toxic aromatic compounds such as toluene, phenol, chloroaromatics, and TNT. In addition, it can use both C6- and C5-carbon sugars like xylose and arabinose as carbon substrates, an uncommon feature for bacteria of this genus. Furthermore, Pseudomonas sp. MPC6 exhibits a high-copy number of genes encoding for enzymes involved in oxidative and cold-stress response that allows it to cope with high concentrations of heavy metals (As, Cd, Cu) and low temperatures, a finding that was further validated experimentally. We then assessed the growth performance of MPC6 on glycerol using a temperature range from 0 to 45°C, the latter temperature corresponding to the limit at which this Antarctic isolate was no longer able to propagate. On the other hand, the MPC6 genome comprised considerably less virulence and drug resistance factors as compared to pathogenic Pseudomonas strains, thus supporting its safety. Unexpectedly, we found five PHA synthases within the genome of MPC6, one of which clustered separately from the other four. This PHA synthase shared only 40% sequence identity at the amino acid level against the only PHA polymerase described for Pseudomonas (63-1 strain) able to produce copolymers of short- and medium-chain length PHAs. Batch cultures for PHA synthesis in Pseudomonas sp. MPC6 using sugars, decanoate, ethylene glycol, and organic acids as carbon substrates result in biopolymers with different monomer compositions. This indicates that the PHA synthases play a critical role in defining not only the final chemical structure of the biosynthesized PHA, but also the employed biosynthetic pathways. Based on the results obtained, we conclude that Pseudomonas sp. MPC6 can be exploited as a bioremediator and biopolymer factory, as well as a model strain to unveil molecular mechanisms behind adaptation to cold and extreme environments.
Collapse
Affiliation(s)
- Matias Orellana-Saez
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Nicolas Pacheco
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - José I Costa
- Integrative Microbiology Group, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Matthieu J Miossec
- Computational Genomics Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Marcoleta
- Integrative Microbiology Group, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
76
|
Sentausa E, Basso P, Berry A, Adrait A, Bellement G, Couté Y, Lory S, Elsen S, Attrée I. Insertion sequences drive the emergence of a highly adapted human pathogen. Microb Genom 2019; 6. [PMID: 30946644 PMCID: PMC7643977 DOI: 10.1099/mgen.0.000265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is a highly adaptive opportunistic pathogen that can have serious health consequences in patients with lung disorders. Taxonomic outliers of P. aeruginosa of environmental origin have recently emerged as infectious for humans. Here, we present the first genome-wide analysis of an isolate that caused fatal haemorrhagic pneumonia. In two clones, CLJ1 and CLJ3, sequentially recovered from a patient with chronic pulmonary disease, insertion of a mobile genetic element into the P. aeruginosa chromosome affected major virulence-associated phenotypes and led to increased resistance to the antibiotics used to combat the infection. Comparative genome, proteome and transcriptome analyses revealed that this ISL3-family insertion sequence disrupted the genes for flagellar components, type IV pili, O-specific antigens, translesion polymerase and enzymes producing hydrogen cyanide. Seven-fold more insertions were detected in the later isolate, CLJ3, than in CLJ1, some of which modified strain susceptibility to antibiotics by disrupting the genes for the outer-membrane porin OprD and the regulator of β-lactamase expression AmpD. In the Galleria mellonella larvae model, the two strains displayed different levels of virulence, with CLJ1 being highly pathogenic. This study revealed insertion sequences to be major players in enhancing the pathogenic potential of a P. aeruginosa taxonomic outlier by modulating both its virulence and its resistance to antimicrobials, and explains how this bacterium adapts from the environment to a human host.
Collapse
Affiliation(s)
- Erwin Sentausa
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,Present address: Evotec ID (Lyon) SAS, Marcy l'Étoile, France
| | - Pauline Basso
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,Present address: Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Alice Berry
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
| | - Annie Adrait
- Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Gwendoline Bellement
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France.,Present address: Biozentrum, University of Basel, Basel, Switzerland
| | - Yohann Couté
- Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
| |
Collapse
|
77
|
Cunrath O, Meinel DM, Maturana P, Fanous J, Buyck JM, Saint Auguste P, Seth-Smith HMB, Körner J, Dehio C, Trebosc V, Kemmer C, Neher R, Egli A, Bumann D. Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine 2019; 41:479-487. [PMID: 30852163 PMCID: PMC6443642 DOI: 10.1016/j.ebiom.2019.02.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Efflux pumps mediate antimicrobial resistance in several WHO critical priority bacterial pathogens. However, most available data come from laboratory strains. The quantitative relevance of efflux in more relevant clinical isolates remains largely unknown. METHODS We developed a versatile method for genetic engineering in multi-drug resistant (MDR) bacteria, and used this method to delete tolC and specific antibiotic-resistance genes in 18 representative MDR clinical E. coli isolates. We determined efflux activity and minimal inhibitory concentrations for a diverse set of clinically relevant antibiotics in these mutants. We also deleted oprM in MDR P. aeruginosa strains and determined the impact on antibiotic susceptibility. FINDINGS tolC deletion abolished detectable efflux activity in 15 out of 18 tested E. coli strains, and modulated antibiotic susceptibility in many strains. However, all mutant strains retained MDR status, primarily because of other, antibiotic-specific resistance genes. Deletion of oprM altered antibiotic susceptibility in a fraction of clinical P. aeruginosa isolates. INTERPRETATION Efflux modulates antibiotic resistance in clinical MDR isolates of E. coli and P. aeruginosa. However, when other antimicrobial-resistance mechanisms are present, inhibition of MDR efflux pumps alone is often not sufficient to restore full susceptibility even for antibiotics with a dramatic impact of efflux in laboratory strains. We propose that development of novel antibiotics should include target validation in clinical MDR isolates. FUND: Innovative Medicines Initiative of European Union and EFPIA, Schweizerischer Nationalfonds, Swiss National Research Program 72, EU Marie Skłodowska-Curie program. The funders played no role in design, data collection, data analysis, interpretation, writing of the report, and in the decision to submit the paper for publication.
Collapse
Affiliation(s)
| | - Dominik M Meinel
- Clinical Microbiology, University Hospital Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | - Helena M B Seth-Smith
- Clinical Microbiology, University Hospital Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Jonas Körner
- Biozentrum, University Hospital Basel, Switzerland
| | | | - Vincent Trebosc
- BioVersys AG, Hochbergerstrasse 60C, Technology Park, 4057 Basel, Switzerland
| | - Christian Kemmer
- BioVersys AG, Hochbergerstrasse 60C, Technology Park, 4057 Basel, Switzerland
| | | | - Adrian Egli
- Clinical Microbiology, University Hospital Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University Hospital Basel, Switzerland.
| |
Collapse
|
78
|
Sood U, Hira P, Kumar R, Bajaj A, Rao DLN, Lal R, Shakarad M. Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa. Front Microbiol 2019; 10:53. [PMID: 30787911 PMCID: PMC6372532 DOI: 10.3389/fmicb.2019.00053] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic information for outlier strains of Pseudomonas aeruginosa is exiguous when compared with classical strains. We sequenced and constructed the complete genome of an environmental strain CR1 of P. aeruginosa and performed the comparative genomic analysis. It clustered with the outlier group, hence we scaled up the analyses to understand the differences in environmental and clinical outlier strains. We identified eight new regions of genomic plasticity and a plasmid pCR1 with a VirB/D4 complex followed by trimeric auto-transporter that can induce virulence phenotype in the genome of strain CR1. Virulence genotype analysis revealed that strain CR1 lacked hemolytic phospholipase C and D, three genes for LPS biosynthesis and had reduced antibiotic resistance genes when compared with clinical strains. Genes belonging to proteases, bacterial exporters and DNA stabilization were found to be under strong positive selection, thus facilitating pathogenicity and survival of the outliers. The outliers had the complete operon for the production of vibrioferrin, a siderophore present in plant growth promoting bacteria. The competence to acquire multidrug resistance and new virulence factors makes these strains a potential threat. However, we identified major regulatory hubs that can be used as drug targets against both the classical and outlier groups.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
| | - Princy Hira
- Department of Zoology, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD, United States
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, New Delhi, India
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | | | - Rup Lal
- Department of Zoology, University of Delhi, New Delhi, India
- PhiXGen Private Limited, Gurugram, India
| | | |
Collapse
|
79
|
Purcaro G, Nasir M, Franchina FA, Rees CA, Aliyeva M, Daphtary N, Wargo MJ, Lundblad LKA, Hill JE. Breath metabolome of mice infected with Pseudomonas aeruginosa. Metabolomics 2019; 15:10. [PMID: 30830447 PMCID: PMC6537093 DOI: 10.1007/s11306-018-1461-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The measurement of specific volatile organic compounds in breath has been proposed as a potential diagnostic for a variety of diseases. The most well-studied bacterial lung infection in the breath field is that caused by Pseudomonas aeruginosa. OBJECTIVES To determine a discriminatory core of molecules in the "breath-print" of mice during a lung infection with four strains of P. aeruginosa (PAO1, PA14, PAK, PA7). Furthermore, we attempted to extrapolate a strain-specific "breath-print" signature to investigate the possibility of recapitulating the genetic phylogenetic groups (Stewart et al. Pathog Dis 71(1), 20-25, 2014. https://doi.org/10.1111/2049-632X.12107 ). METHODS Breath was collected into a Tedlar bag and shortly after drawn into a thermal desorption tube. The latter was then analyzed into a comprehensive multidimensional gas chromatography coupled with a time-of-flight mass spectrometer. Random forest algorithm was used for selecting the most discriminatory features and creating a prediction model. RESULTS Three hundred and one molecules were significantly different between animals infected with P. aeruginosa, and those given a sham infection (PBS) or inoculated with UV-killed P. aeruginosa. Of those, nine metabolites could be used to discriminate between the three groups with an accuracy of 81%. Hierarchical clustering showed that the signature from breath was due to a specific response to live bacteria instead of a generic infection response. Furthermore, we identified ten additional volatile metabolites that could differentiate mice infected with different strains of P. aeruginosa. A phylogram generated from the ten metabolites showed that PAO1 and PA7 were the most distinct group, while PAK and PA14 were interspersed between the former two groups. CONCLUSIONS To the best of our knowledge, this is the first study to report on a 'core' murine breath print, as well as, strain level differences between the compounds in breath. We provide identifications (by running commercially available analytical standards) to five breath compounds that are predictive of P. aeruginosa infection.
Collapse
Affiliation(s)
- Giorgia Purcaro
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Mavra Nasir
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Flavio A Franchina
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
- Department of Chemistry, University of Liège, Liège (Sart-Tilman), 4000, Belgium
| | - Christiaan A Rees
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Minara Aliyeva
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Nirav Daphtary
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Matthew J Wargo
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Lennart K A Lundblad
- THORASYS Thoracic Medical Equipment Inc., 6560 de l'Esplanade, Suite 103, Montreal, QC, H2V 4L5, Canada
- Meakins-Christie Laboratories, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA.
| |
Collapse
|
80
|
Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I, Dupont MJ, Charette SJ, Boyle B, Levesque RC. The Pseudomonas aeruginosa Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biol Evol 2019; 11:109-120. [PMID: 30496396 PMCID: PMC6328365 DOI: 10.1093/gbe/evy259] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
The huge increase in the availability of bacterial genomes led us to a point in which we can investigate and query pan-genomes, for example, the full set of genes of a given bacterial species or clade. Here, we used a data set of 1,311 high-quality genomes from the human pathogen Pseudomonas aeruginosa, 619 of which were newly sequenced, to show that a pan-genomic approach can greatly refine the population structure of bacterial species, provide new insights to define species boundaries, and generate hypotheses on the evolution of pathogenicity. The 665-gene P. aeruginosa core genome presented here, which constitutes only 1% of the entire pan-genome, is the first to be in the same order of magnitude as the minimal bacterial genome and represents a conservative estimate of the actual core genome. Moreover, the phylogeny based on this core genome provides strong evidence for a five-group population structure that includes two previously undescribed groups of isolates. Comparative genomics focusing on antimicrobial resistance and virulence genes showed that variation among isolates was partly linked to this population structure. Finally, we hypothesized that horizontal gene transfer had an important role in this respect, and found a total of 3,010 putative complete and fragmented plasmids, 5% and 12% of which contained resistance or virulence genes, respectively. This work provides data and strategies to study the evolutionary trajectories of resistance and virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Luca Freschi
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Antony T Vincent
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec City, Quebec, Canada.,Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Québec City, Quebec, Canada
| | - Julie Jeukens
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Jean-Guillaume Emond-Rheault
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Irena Kukavica-Ibrulj
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Marie-Josée Dupont
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Steve J Charette
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec City, Quebec, Canada.,Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Québec City, Quebec, Canada
| | - Brian Boyle
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
81
|
Competitive Fitness of Essential Gene Knockdowns Reveals a Broad-Spectrum Antibacterial Inhibitor of the Cell Division Protein FtsZ. Antimicrob Agents Chemother 2018; 62:AAC.01231-18. [PMID: 30297366 PMCID: PMC6256756 DOI: 10.1128/aac.01231-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/01/2018] [Indexed: 12/26/2022] Open
Abstract
To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.
Collapse
|
82
|
Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci Rep 2018; 8:15668. [PMID: 30353070 PMCID: PMC6199293 DOI: 10.1038/s41598-018-34020-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
The large and complex genome of Pseudomonas aeruginosa, which consists of significant portions (up to 20%) of transferable genetic elements contributes to the rapid development of antibiotic resistance. The whole genome sequences of 22 strains isolated from eye and cystic fibrosis patients in Australia and India between 1992 and 2007 were used to compare genomic divergence and phylogenetic relationships as well as genes for antibiotic resistance and virulence factors. Analysis of the pangenome indicated a large variation in the size of accessory genome amongst 22 stains and the size of the accessory genome correlated with number of genomic islands, insertion sequences and prophages. The strains were diverse in terms of sequence type and dissimilar to that of global epidemic P. aeruginosa clones. Of the eye isolates, 62% clustered together within a single lineage. Indian eye isolates possessed genes associated with resistance to aminoglycoside, beta-lactams, sulphonamide, quaternary ammonium compounds, tetracycline, trimethoprims and chloramphenicols. These genes were, however, absent in Australian isolates regardless of source. Overall, our results provide valuable information for understanding the genomic diversity of P. aeruginosa isolated from two different infection types and countries.
Collapse
|
83
|
Brüggemann H, Migliorini LB, Sales ROD, Koga PCM, Souza AVD, Jensen A, Poehlein A, Brzuszkiewicz E, Doi AM, Pasternak J, Martino MDV, Severino P. Comparative Genomics of Nonoutbreak Pseudomonas aeruginosa Strains Underlines Genome Plasticity and Geographic Relatedness of the Global Clone ST235. Genome Biol Evol 2018; 10:1852-1857. [PMID: 29982603 PMCID: PMC6063271 DOI: 10.1093/gbe/evy139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen in hospitals, responsible for various infections that are difficult to treat due to intrinsic and acquired antibiotic resistance. Here, 20 epidemiologically unrelated strains isolated from patients in a general hospital over a time period of two decades were analyzed using whole genome sequencing. The genomes were compared in order to assess the presence of a predominant clone or sequence type (ST). No clonal structure was identified, but core genome-based single nucleotide polymorphism (SNP) analysis distinguished two major, previously identified phylogenetic groups. Interestingly, most of the older strains isolated between 1994 and 1998 harbored exoU, encoding a cytotoxic phospholipase. In contrast, most strains isolated between 2011 and 2016 were exoU-negative and phylogenetically very distinct from the older strains, suggesting a population shift of nosocomial P. aeruginosa over time. Three out of 20 strains were ST235 strains, a global high-risk clonal lineage; these carried several additional resistance determinants including aac(6’)Ib-cr encoding an aminoglycoside N-acetyltransferase that confers resistance to fluoroquinolones. Core genome comparison with ST235 strains from other parts of the world showed that the three strains clustered together with other Brazilian/Argentinean isolates. Despite this regional relatedness, the individuality of each of the three ST235 strains was revealed by core genome-based SNPs and the presence of genomic islands in the accessory genome. Similarly, strain-specific characteristics were detected for the remaining strains, indicative of individual evolutionary histories and elevated genome plasticity.
Collapse
Affiliation(s)
| | - Leticia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Romario Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Andrea Vieira de Souza
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Anders Jensen
- Department of Biomedicine, Aarhus University, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Germany
| | - Andre Mario Doi
- Laboratorio Clinico, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Jacyr Pasternak
- Laboratorio Clinico, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| |
Collapse
|
84
|
Kalesinskas L, Cudone E, Fofanov Y, Putonti C. S-plot2: Rapid Visual and Statistical Analysis of Genomic Sequences. Evol Bioinform Online 2018; 14:1176934318797354. [PMID: 30245567 PMCID: PMC6144591 DOI: 10.1177/1176934318797354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
With the daily release of data from whole genome sequencing projects, tools to facilitate comparative studies are hard-pressed to keep pace. Graphical software solutions can readily recognize synteny by measuring similarities between sequences. Nevertheless, regions of dissimilarity can prove to be equally informative; these regions may harbor genes acquired via lateral gene transfer (LGT), signify gene loss or gain, or include coding regions under strong selection. Previously, we developed the software S-plot. This tool employed an alignment-free approach for comparing bacterial genomes and generated a heatmap representing the genomes’ similarities and dissimilarities in nucleotide usage. In prior studies, this tool proved valuable in identifying genome rearrangements as well as exogenous sequences acquired via LGT in several bacterial species. Herein, we present the next generation of this tool, S-plot2. Similar to its predecessor, S-plot2 creates an interactive, 2-dimensional heatmap capturing the similarities and dissimilarities in nucleotide usage between genomic sequences (partial or complete). This new version, however, includes additional metrics for analysis, new reporting options, and integrated BLAST query functionality for the user to interrogate regions of interest. Furthermore, S-plot2 can evaluate larger sequences, including whole eukaryotic chromosomes. To illustrate some of the applications of the tool, 2 case studies are presented. The first examines strain-specific variation across the Pseudomonas aeruginosa genome and strain-specific LGT events. In the second case study, corresponding human, chimpanzee, and rhesus macaque autosomes were studied and lineage specific contributions to divergence were estimated. S-plot2 provides a means to both visually and quantitatively compare nucleotide sequences, from microbial genomes to eukaryotic chromosomes. The case studies presented illustrate just 2 potential applications of the tool, highlighting its capability to identify and investigate the variation in molecular divergence rates across sequences. S-plot2 is freely available through https://bitbucket.org/lkalesinskas/splot and is supported on the Linux and MS Windows operating systems.
Collapse
Affiliation(s)
- Laurynas Kalesinskas
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Evan Cudone
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
85
|
Ghequire MGK, Öztürk B. A Colicin M-Type Bacteriocin from Pseudomonas aeruginosa Targeting the HxuC Heme Receptor Requires a Novel Immunity Partner. Appl Environ Microbiol 2018; 84:e00716-18. [PMID: 29980560 PMCID: PMC6121995 DOI: 10.1128/aem.00716-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Pyocins are bacteriocins secreted by Pseudomonas aeruginosa, and they assist in the colonization of different niches. A major subset of these antibacterial proteins adopt a modular organization characteristic of polymorphic toxins. They include a receptor-binding domain, a segment enabling membrane passage, and a toxin module at the carboxy terminus, which eventually kills the target cells. To protect themselves from their own products, bacteriocin-producing strains express an immunity gene concomitantly with the bacteriocin. We show here that a pyocin equipped with a phylogenetically distinct ColM toxin domain, PaeM4, mediates antagonism against a large set of P. aeruginosa isolates. Immunity to PaeM4 is provided by the inner membrane protein PmiC, which is equipped with a transmembrane topology not previously described for the ColM family. Given that strains lacking a pmiC gene are killed by PaeM4, the presence of such an immunity partner likely is a key criterion for escaping cellular death mediated by PaeM4. The presence of a TonB box in PaeM4 and enhanced bacteriocin activity under iron-poor conditions strongly suggested the targeting of a TonB-dependent receptor. Evaluation of PaeM4 activities against TonB-dependent receptor knockout mutants in P. aeruginosa PAO1 revealed that the heme receptor HxuC (PA1302) serves as a PaeM4 target at the cellular surface. Because other ColM-type pyocins may target the ferrichrome receptor FiuA, our results illustrate the versatility in target recognition conferred by the polymorphic nature of ColM-type bacteriocins.IMPORTANCE The antimicrobial armamentarium of a bacterium is a major asset for colonizing competitive environments. Bacteriocins comprise a subset of these compounds. Pyocins are an example of such antibacterial proteins produced by Pseudomonas aeruginosa, killing other P. aeruginosa strains. A large group of these molecules show a modular protein architecture that includes a receptor-binding domain for initial target cell attachment and a killer domain. In this study, we have shown that a novel modular pyocin (PaeM4) that kills target bacteria via interference with peptidoglycan assembly takes advantage of the HxuC heme receptor. Cells can protect themselves from killing by the presence of a dedicated immunity partner, an integral inner membrane protein that adopts a transmembrane topology distinct from that of proteins currently known to provide immunity against such toxin activity. Understanding the receptors with which pyocins interact and how immunity to pyocins is achieved is a pivotal step toward the rational design of bacteriocin cocktails for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Başak Öztürk
- Leibniz Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
86
|
Rutherford V, Yom K, Ozer EA, Pura O, Hughes A, Murphy KR, Cudzilo L, Mitchel D, Hauser AR. Environmental reservoirs for exoS+ and exoU+ strains of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:485-492. [PMID: 29687624 PMCID: PMC6108916 DOI: 10.1111/1758-2229.12653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Pseudomonas aeruginosa uses its type III secretion system to inject the effector proteins ExoS and ExoU into eukaryotic cells, which subverts these cells to the bacterium's advantage and contributes to severe infections. We studied the environmental reservoirs of exoS+ and exoU+ strains of P. aeruginosa by collecting water, soil, moist substrates and plant samples from environments in the Chicago region and neighbouring states. Whole-genome sequencing was used to determine the phylogeny and type III secretion system genotypes of 120 environmental isolates. No correlation existed between geographic separation of isolates and their genetic relatedness, which confirmed previous findings of both high genetic diversity within a single site and the widespread distribution of P. aeruginosa clonal complexes. After excluding clonal isolates cultured from the same samples, 74 exoS+ isolates and 16 exoU+ isolates remained. Of the exoS+ isolates, 41 (55%) were from natural environmental sites and 33 (45%) were from man-made sites. Of the exoU+ isolates, only 3 (19%) were from natural environmental sites and 13 (81%) were from man-made sites (p < 0.05). These findings suggest that man-made water systems may be a reservoir from which patients acquire exoU+ P. aeruginosa strains.
Collapse
Affiliation(s)
- Victoria Rutherford
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kelly Yom
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Egon A. Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivia Pura
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ami Hughes
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Katherine R. Murphy
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Laura Cudzilo
- Department of Biology, St. John’s University, Collegeville, Minnesota
| | - David Mitchel
- Department of Biology, St. John’s University, Collegeville, Minnesota
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
87
|
cAMP and Vfr Control Exolysin Expression and Cytotoxicity of Pseudomonas aeruginosa Taxonomic Outliers. J Bacteriol 2018; 200:JB.00135-18. [PMID: 29632090 DOI: 10.1128/jb.00135-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
The two-partner secretion system ExlBA, expressed by strains of Pseudomonas aeruginosa belonging to the PA7 group, induces hemorrhage in lungs due to disruption of host cellular membranes. Here we demonstrate that the exlBA genes are controlled by a pathway consisting of cAMP and the virulence factor regulator (Vfr). Upon interaction with cAMP, Vfr binds directly to the exlBA promoter with high affinity (equilibrium binding constant [Keq] of ≈2.5 nM). The exlB and exlA expression was diminished in the Vfr-negative mutant and upregulated with increased intracellular cAMP levels. The Vfr binding sequence in the exlBA promoter was mutated in situ, resulting in reduced cytotoxicity of the mutant, showing that Vfr is required for the exlBA expression during intoxication of epithelial cells. Vfr also regulates function of type 4 pili previously shown to facilitate ExlA activity on epithelial cells, which indicates that the cAMP/Vfr pathway coordinates these two factors needed for full cytotoxicity. As in most P. aeruginosa strains, the adenylate cyclase CyaB is the main provider of cAMP for Vfr regulation during both in vitro growth and eukaryotic cell infection. We discovered that the absence of functional Vfr in the reference strain PA7 is caused by a frameshift in the gene and accounts for its reduced cytotoxicity, revealing the conservation of ExlBA control by the CyaB-cAMP/Vfr pathway in P. aeruginosa taxonomic outliers.IMPORTANCE The human opportunistic pathogen Pseudomonas aeruginosa provokes severe acute and chronic human infections associated with defined sets of virulence factors. The main virulence determinant of P. aeruginosa taxonomic outliers is exolysin, a membrane-disrupting pore-forming toxin belonging to the two-partner secretion system ExlBA. In this work, we demonstrate that the conserved CyaB-cAMP/Vfr pathway controls cytotoxicity of outlier clinical strains through direct transcriptional activation of the exlBA operon. Therefore, despite the fact that the type III secretion system and exolysin are mutually exclusive in classical and outlier strains, respectively, these two major virulence determinants share similarities in their mechanisms of regulation.
Collapse
|
88
|
Ozer EA. ClustAGE: a tool for clustering and distribution analysis of bacterial accessory genomic elements. BMC Bioinformatics 2018; 19:150. [PMID: 29678129 PMCID: PMC5910555 DOI: 10.1186/s12859-018-2154-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The non-conserved accessory genome of bacteria can be associated with important adaptive characteristics that can contribute to niche specificity or pathogenicity of strains. High degrees of structural and compositional diversity in genomic islands and other elements of the accessory genome can complicate characterization of accessory genome contents among populations of strains. Methods for easily and effectively defining the distributions of discrete elements of the accessory genome among bacterial strains in a population are needed to explore the relationships between the flexible genome and bacterial adaptive traits. RESULTS We have developed the open-source software package ClustAGE. This program, written in Perl, uses BLAST to cluster nucleotide accessory genomic elements from the genomes of multiple bacterial strains and to identify their distribution within the study population. The program output can be used in combination with strain phenotype data or other characteristics to detect associations. Optional graphical output is available for visualizing accessory genome gene content and distribution patterns. The capabilities of the software are demonstrated on a collection of 14 Pseudomonas aeruginosa genome sequences. CONCLUSIONS The ClustAGE software and utilities are effective for identifying characteristics and distributions of accessory genomic elements among groups of bacterial genomes. The ability to easily and effectively characterize the accessory genome of a sequence collection may provide a better understanding of the accessory genome's contribution to a species' adaptation and pathogenesis. The ClustAGE source code can be downloaded from https://clustage.sourceforge.io and a limited web-based implementation is available at http://vfsmspineagent.fsm.northwestern.edu/cgi-bin/clustage.cgi .
Collapse
Affiliation(s)
- Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
89
|
Vincent AT, Charette SJ, Barbeau J. Unexpected diversity in the mobilome of a Pseudomonas aeruginosa strain isolated from a dental unit waterline revealed by SMRT Sequencing. Genome 2018; 61:359-365. [PMID: 29546998 DOI: 10.1139/gen-2017-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is found in several habitats, both natural and human-made, and is particularly known for its recurrent presence as a pathogen in the lungs of patients suffering from cystic fibrosis, a genetic disease. Given its clinical importance, several major studies have investigated the genomic adaptation of P. aeruginosa in lungs and its transition as acute infections become chronic. However, our knowledge about the diversity and adaptation of the P. aeruginosa genome to non-clinical environments is still fragmentary, in part due to the lack of accurate reference genomes of strains from the numerous environments colonized by the bacterium. Here, we used PacBio long-read technology to sequence the genome of PPF-1, a strain of P. aeruginosa isolated from a dental unit waterline. Generating this closed genome was an opportunity to investigate genomic features that are difficult to accurately study in a draft genome (contigs state). It was possible to shed light on putative genomic islands, some shared with other reference genomes, new prophages, and the complete content of insertion sequences. In addition, four different group II introns were also found, including two characterized here and not listed in the specialized group II intron database.
Collapse
Affiliation(s)
- Antony T Vincent
- a Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, Canada.,b Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Quebec City, QC, Canada.,c Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC, Canada
| | - Steve J Charette
- a Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC, Canada.,b Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Quebec City, QC, Canada.,c Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC, Canada
| | - Jean Barbeau
- d Département de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
90
|
Papagiannitsis CC, Medvecky M, Chudejova K, Skalova A, Rotova V, Spanelova P, Jakubu V, Zemlickova H, Hrabak J. Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. Antimicrob Agents Chemother 2017; 61:e01811-17. [PMID: 28993328 PMCID: PMC5700319 DOI: 10.1128/aac.01811-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to perform molecular surveillance for assessing the spread of carbapenemase-producing Pseudomonas aeruginosa in Czech hospitals. One hundred thirty-six carbapenemase-producing isolates were recovered from 22 hospitals located throughout the country. Sequence type 357 (ST357) dominated (n = 120) among carbapenemase producers. One hundred seventeen isolates produced IMP-type (IMP-7 [n = 116] and IMP-1 [n = 1]) metallo-β-lactamases (MβLs), 15 produced the VIM-2 MβL, and the remaining isolates expressed the GES-5 enzyme. The blaIMP-like genes were located in three main integron types, with In-p110-like being the most prevalent (n = 115). The two other IMP-encoding integrons (In1392 and In1393) have not been described previously. blaVIM-2-carrying integrons included In59-like, In56, and a novel element (In1391). blaGES-5 was carried by In717. Sequencing data showed that In-p110-like was associated with a Tn4380-like transposon inserted in genomic island LESGI-3 in the P. aeruginosa chromosome. The other integrons were also integrated into the P. aeruginosa chromosome. These findings indicated the clonal spread of ST357 P. aeruginosa, carrying the IMP-7-encoding integron In-p110, in Czech hospitals. Additionally, the sporadic emergence of P. aeruginosa producing different carbapenemase types, associated with divergent or novel integrons, punctuated the ongoing evolution of these bacteria.
Collapse
Affiliation(s)
- Costas C Papagiannitsis
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | | | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Anna Skalova
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Veronika Rotova
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Petra Spanelova
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Vladislav Jakubu
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Helena Zemlickova
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
- Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
91
|
Draft Genome Sequence of Pseudomonas aeruginosa ATCC 9027, Originally Isolated from an Outer Ear Infection. GENOME ANNOUNCEMENTS 2017; 5:5/48/e01397-17. [PMID: 29192089 PMCID: PMC5722075 DOI: 10.1128/genomea.01397-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pseudomonas aeruginosa ATCC 9027 was isolated in 1943 from a case of otitis externa and is commonly employed as a quality control strain for sterility, assessment of antibiofilm agents, and in vitro study of wound infection. Here, we present the 6.34-Mb draft genome sequence and highlight some pertinent genes that are associated with virulence.
Collapse
|
92
|
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev 2017; 41:698-722. [PMID: 28981745 DOI: 10.1093/femsre/fux020] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. Like other members of the Pseudomonas genus, it is known for its metabolic versatility and its ability to colonize a wide range of ecological niches, such as rhizosphere, water environments and animal hosts, including humans where it can cause severe infections. Another particularity of P. aeruginosa is its high intrinsic resistance to antiseptics and antibiotics, which is partly due to its low outer membrane permeability. In contrast to Enterobacteria, pseudomonads do not possess general diffusion porins in their outer membrane, but rather express specific channel proteins for the uptake of different nutrients. The major outer membrane 'porin', OprF, has been extensively investigated, and displays structural, adhesion and signaling functions while its role in the diffusion of nutrients is still under discussion. Other porins include OprB and OprB2 for the diffusion of glucose, the two small outer membrane proteins OprG and OprH, and the two porins involved in phosphate/pyrophosphate uptake, OprP and OprO. The remaining nineteen porins belong to the so-called OprD (Occ) family, which is further split into two subfamilies termed OccD (8 members) and OccK (11 members). In the past years, a large amount of information concerning the structure, function and regulation of these porins has been published, justifying why an updated review is timely.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Josselin Bodilis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Laboratoire de Biotechnologie et Chimie Marines EA 3884, Université de Bretagne-Sud (UEB), 56321 Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| |
Collapse
|
93
|
Reboud E, Basso P, Maillard AP, Huber P, Attrée I. Exolysin Shapes the Virulence of Pseudomonas aeruginosa Clonal Outliers. Toxins (Basel) 2017; 9:toxins9110364. [PMID: 29120408 PMCID: PMC5705979 DOI: 10.3390/toxins9110364] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial toxins are important weapons of toxicogenic pathogens. Depending on their origin, structure and targets, they show diverse mechanisms of action and effects on eukaryotic cells. Exolysin is a secreted 170 kDa pore-forming toxin employed by clonal outliers of Pseudomonas aeruginosa providing to some strains a hyper-virulent behaviour. This group of strains lacks the major virulence factor used by classical strains, the Type III secretion system. Here, we review the structural features of the toxin, the mechanism of its secretion and the effects of the pore formation on eukaryotic cells.
Collapse
Affiliation(s)
- Emeline Reboud
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, 17 rue des Martyrs, CEA-Grenoble, 38054 Grenoble, France.
| | - Pauline Basso
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, 17 rue des Martyrs, CEA-Grenoble, 38054 Grenoble, France.
| | - Antoine P Maillard
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, 17 rue des Martyrs, CEA-Grenoble, 38054 Grenoble, France.
| | - Philippe Huber
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, 17 rue des Martyrs, CEA-Grenoble, 38054 Grenoble, France.
| | - Ina Attrée
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, 17 rue des Martyrs, CEA-Grenoble, 38054 Grenoble, France.
| |
Collapse
|
94
|
Reboud E, Bouillot S, Patot S, Béganton B, Attrée I, Huber P. Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation. PLoS Pathog 2017; 13:e1006579. [PMID: 28832671 PMCID: PMC5584975 DOI: 10.1371/journal.ppat.1006579] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/05/2017] [Accepted: 08/12/2017] [Indexed: 12/20/2022] Open
Abstract
Pore-forming toxins are potent virulence factors secreted by a large array of bacteria. Here, we deciphered the action of ExlA from Pseudomonas aeruginosa and ShlA from Serratia marcescens on host cell-cell junctions. ExlA and ShlA are two members of a unique family of pore-forming toxins secreted by a two-component secretion system. Bacteria secreting either toxin induced an ExlA- or ShlA-dependent rapid cleavage of E-cadherin and VE-cadherin in epithelial and endothelial cells, respectively. Cadherin proteolysis was executed by ADAM10, a host cell transmembrane metalloprotease. ADAM10 activation is controlled in the host cell by cytosolic Ca2+ concentration. We show that Ca2+ influx, induced by ExlA or ShlA pore formation in the plasma membrane, triggered ADAM10 activation, thereby leading to cadherin cleavage. Our data suggest that ADAM10 is not a cellular receptor for ExlA and ShlA, further confirming that ADAM10 activation occurred via Ca2+ signalling. In conclusion, ExlA- and ShlA-secreting bacteria subvert a regulation mechanism of ADAM10 to activate cadherin shedding, inducing intercellular junction rupture, cell rounding and loss of tissue barrier integrity. Pore-forming toxins are the most widespread toxins delivered by pathogenic bacteria and are required for full virulence. Pore-forming toxins perforate membranes of host cells for intracellular delivery of bacterial factors, for bacterial escape from phagosomes or in order to kill cells. Loss of membrane integrity, especially the plasma membrane, has broad implications on cell and tissue physiology. Here, we show that two members of a unique family of pore-forming toxins, secreted by Pseudomonas aeruginosa and Serratia marcescens, have the capacity to disrupt cell-cell junctions of epithelial and endothelial cells, hence breaching two major tissue barriers.
Collapse
Affiliation(s)
- Emeline Reboud
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Stéphanie Bouillot
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Sabine Patot
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR 5308, Lyon, France
| | - Benoît Béganton
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
| | - Philippe Huber
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble, France
- * E-mail:
| |
Collapse
|
95
|
Yan J, Deforet M, Boyle KE, Rahman R, Liang R, Okegbe C, Dietrich LEP, Qiu W, Xavier JB. Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network. PLoS Comput Biol 2017; 13:e1005677. [PMID: 28767643 PMCID: PMC5555705 DOI: 10.1371/journal.pcbi.1005677] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/14/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
Abstract
Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3'-5')-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world—the input stimuli—into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility—the output phenotypes. How does the ‘uninformed’ process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory experiments we propose a mathematical model where the c-di-GMP network is analogous to a machine learning classifier. The analogy immediately suggests a mechanism for learning through evolution: adaptation though incremental changes in c-di-GMP network proteins acquires knowledge from past experiences and enables bacteria to use it to direct future behaviors. Our model clarifies the elusive function of the ubiquitous c-di-GMP network, a key regulator of bacterial social traits associated with virulence. More broadly, the link between evolution and machine learning can help explain how natural selection across fluctuating environments produces networks that enable living organisms to make sophisticated decisions. How does evolution shape living organisms that seem so well adapted that they could be intelligently designed? Here, we address this question by analyzing a simple biochemical network that directs social behavior in bacteria; we find that it works analogously to a machine learning algorithm that learns from data. Inspired by new experiments, we derive a model which shows that natural selection—by favoring biochemical networks that maximize fitness across a series of fluctuating environments—can be mathematically equivalent to training a machine learning model to solve a classification problem. Beyond bacteria, the formal link between evolution and learning opens new avenues for biology: machine learning is a fast-moving field and its many theoretical breakthroughs can answer long-standing questions in evolution.
Collapse
Affiliation(s)
- Jinyuan Yan
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Maxime Deforet
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Kerry E. Boyle
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Rayees Rahman
- Department of Biological Sciences, Hunter College & Graduate Center, CUNY, New York, NY, United States of America
| | - Raymond Liang
- Department of Biological Sciences, Hunter College & Graduate Center, CUNY, New York, NY, United States of America
| | - Chinweike Okegbe
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Weigang Qiu
- Department of Biological Sciences, Hunter College & Graduate Center, CUNY, New York, NY, United States of America
| | - Joao B. Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
96
|
Basso P, Wallet P, Elsen S, Soleilhac E, Henry T, Faudry E, Attrée I. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death. Environ Microbiol 2017; 19:4045-4064. [PMID: 28654176 DOI: 10.1111/1462-2920.13841] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria secrete protein toxins that provoke apoptosis or necrosis of eukaryotic cells. Here, we developed a live-imaging method, based on incorporation of a DNA-intercalating dye into membrane-damaged host cells, to study the kinetics of primary bone marrow-derived macrophages (BMDMs) mortality induced by opportunistic pathogen Pseudomonas aeruginosa expressing either Type III Secretion System (T3SS) toxins or the pore-forming toxin, Exolysin (ExlA). We found that ExlA promotes the activation of Caspase-1 and maturation of interleukin-1β. BMDMs deficient for Caspase-1 and Caspase-11 were resistant to ExlA-induced death. Furthermore, by using KO BMDMs, we determined that the upstream NLRP3/ASC complex leads to the Caspase-1 activation. We also demonstrated that Pseudomonas putida and Pseudomonas protegens and the Drosophila pathogen Pseudomonas entomophila, which naturally express ExlA-like toxins, are cytotoxic toward macrophages and provoke the same type of pro-inflammatory death as does ExlA+ P. aeruginosa. These results demonstrate that ExlA-like toxins of two-partner secretion systems from diverse Pseudomonas species activate the NLRP3 inflammasome and provoke inflammatory pyroptotic death of macrophages.
Collapse
Affiliation(s)
- Pauline Basso
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Pierre Wallet
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Sylvie Elsen
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Emmanuelle Soleilhac
- CMBA Platform, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, CEA, INSERM; Genetics & Chemogenomics, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Eric Faudry
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Ina Attrée
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| |
Collapse
|
97
|
Jeukens J, Freschi L, Kukavica-Ibrulj I, Emond-Rheault JG, Tucker NP, Levesque RC. Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa. Ann N Y Acad Sci 2017; 1435:5-17. [PMID: 28574575 PMCID: PMC7379567 DOI: 10.1111/nyas.13358] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
Antibiotic resistance is a worldwide health issue spreading quickly among human and animal pathogens, as well as environmental bacteria. Misuse of antibiotics has an impact on the selection of resistant bacteria, thus contributing to an increase in the occurrence of resistant genotypes that emerge via spontaneous mutation or are acquired by horizontal gene transfer. There is a specific and urgent need not only to detect antimicrobial resistance but also to predict antibiotic resistance in silico. We now have the capability to sequence hundreds of bacterial genomes per week, including assembly and annotation. Novel and forthcoming bioinformatics tools can predict the resistome and the mobilome with a level of sophistication not previously possible. Coupled with bacterial strain collections and databases containing strain metadata, prediction of antibiotic resistance and the potential for virulence are moving rapidly toward a novel approach in molecular epidemiology. Here, we present a model system in antibiotic-resistance prediction, along with its promises and limitations. As it is commonly multidrug resistant, Pseudomonas aeruginosa causes infections that are often difficult to eradicate. We review novel approaches for genotype prediction of antibiotic resistance. We discuss the generation of microbial sequence data for real-time patient management and the prediction of antimicrobial resistance.
Collapse
Affiliation(s)
- Julie Jeukens
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Luca Freschi
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Irena Kukavica-Ibrulj
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | | | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
98
|
Imbert PR, Louche A, Luizet JB, Grandjean T, Bigot S, Wood TE, Gagné S, Blanco A, Wunderley L, Terradot L, Woodman P, Garvis S, Filloux A, Guery B, Salcedo SP. A Pseudomonas aeruginosa TIR effector mediates immune evasion by targeting UBAP1 and TLR adaptors. EMBO J 2017; 36:1869-1887. [PMID: 28483816 PMCID: PMC5494471 DOI: 10.15252/embj.201695343] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens often subvert the innate immune system to establish a successful infection. The direct inhibition of downstream components of innate immune pathways is particularly well documented but how bacteria interfere with receptor proximal events is far less well understood. Here, we describe a Toll/interleukin 1 receptor (TIR) domain‐containing protein (PumA) of the multi‐drug resistant Pseudomonas aeruginosa PA7 strain. We found that PumA is essential for virulence and inhibits NF‐κB, a property transferable to non‐PumA strain PA14, suggesting no additional factors are needed for PumA function. The TIR domain is able to interact with the Toll‐like receptor (TLR) adaptors TIRAP and MyD88, as well as the ubiquitin‐associated protein 1 (UBAP1), a component of the endosomal‐sorting complex required for transport I (ESCRT‐I). These interactions are not spatially exclusive as we show UBAP1 can associate with MyD88, enhancing its plasma membrane localization. Combined targeting of UBAP1 and TLR adaptors by PumA impedes both cytokine and TLR receptor signalling, highlighting a novel strategy for innate immune evasion.
Collapse
Affiliation(s)
- Paul Rc Imbert
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Arthur Louche
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Jean-Baptiste Luizet
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Teddy Grandjean
- EA 7366 Recherche Translationelle Relations Hôte-Pathogènes, Faculté de Médecine Pôle Recherche, Université Lille 2, Lille, France
| | - Sarah Bigot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Stéphanie Gagné
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Amandine Blanco
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Lydia Wunderley
- School of Biological Sciences, Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre, Manchester, UK†
| | - Laurent Terradot
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology Medicine and Health University of Manchester Manchester Academic Health Science Centre, Manchester, UK†
| | - Steve Garvis
- Laboratoire de Biologie et Modelisation, Ecole Normal Supérieur, UMR5239, Lyon, France
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Benoit Guery
- EA 7366 Recherche Translationelle Relations Hôte-Pathogènes, Faculté de Médecine Pôle Recherche, Université Lille 2, Lille, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, University of Lyon, Lyon, France
| |
Collapse
|
99
|
Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis. mBio 2017; 8:mBio.02250-16. [PMID: 28119472 PMCID: PMC5263249 DOI: 10.1128/mbio.02250-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. IMPORTANCE The course and outcome of acute, toxigenic infections by Pseudomonas aeruginosa clinical isolates rely on the deployment of one of two virulence strategies: delivery of effectors by the well-known type III secretion system or the cytolytic activity of the recently identified two-partner secreted toxin, exolysin. Here, we characterize several features of the mammalian cell intoxication process mediated by exolysin. We found that exolysin requires the outer membrane protein ExlB for export into extracellular medium. Using in vitro recombinant protein and ex vivo assays, we demonstrated a pore-forming activity of exolysin. A cellular cytotoxicity screen of a transposon mutant library, made in an exolysin-producing clinical strain, identified type IV pili as bacterial appendages required for exolysin toxic function. This work deciphers molecular mechanisms underlying the activity of novel virulence factors used by P. aeruginosa clinical strains lacking the type III secretion system, including a requirement for the toxin-producing bacteria to be attached to the targeted cell to induce cytolysis, and defines new targets for developing antivirulence strategies.
Collapse
|
100
|
Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing. Biosci Rep 2016; 36:BSR20160282. [PMID: 27765811 PMCID: PMC5293553 DOI: 10.1042/bsr20160282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
As a third-generation sequencing (TGS) method, single-molecule real-time (SMRT) technology provides long read length, and it is well suited for resequencing projects and de novo assembly. In the present study, Pseudomonas aeruginosa PA1 was characterized and resequenced using SMRT technology. PA1 was also subjected to genomic, comparative and pan-genomic analyses. The multidrug resistant strain PA1 possesses a 6,498,072 bp genome and a sequence type of ST-782. The genome of PA1 was also visualized, and the results revealed the details of general genome annotations, virulence factors, regulatory proteins (RPs), secretion system proteins, type II toxin–antitoxin (T–A) pairs and genomic islands. Whole genome comparison analysis suggested that PA1 exhibits similarity to other P. aeruginosa strains but differs in terms of horizontal gene transfer (HGT) regions, such as prophages and genomic islands. Phylogenetic analyses based on 16S rRNA sequences demonstrated that PA1 is closely related to PAO1, and P. aeruginosa strains can be divided into two main groups. The pan-genome of P. aeruginosa consists of a core genome of approximately 4,000 genes and an accessory genome of at least 6,600 genes. The present study presented a detailed, visualized and comparative analysis of the PA1 genome, to enhance our understanding of this notorious pathogen.
Collapse
|