51
|
Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 2013; 65:1148-61. [PMID: 23908379 DOI: 10.1124/pr.113.007823] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
52
|
Quintana FJ. The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology 2013. [PMID: 23190340 DOI: 10.1111/imm.12046] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Environmental factors have significant effects on the development of autoimmune diseases. The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) is controlled by endogenous and environmental small molecules. Hence, AHR provides a molecular pathway by which endogenous and environmental signals can influence the immune response and the development of autoimmune diseases. AHR also provides a target for therapeutic intervention in immune-mediated disorders. In this review, we discuss the role of AHR in the regulation of T-cell differentiation and autoimmunity.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
53
|
Chinchilla B, Gomez-Casado E, Encinas P, Falco A, Estepa A, Coll J. In VitroNeutralization of Viral Hemorrhagic Septicemia Virus by Plasma from Immunized Zebrafish. Zebrafish 2013; 10:43-51. [DOI: 10.1089/zeb.2012.0805] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Blanca Chinchilla
- Dpto. Biotecnología, Instituto Nacional Investigaciones Agrarias, Madrid, Spain
| | | | - Paloma Encinas
- Dpto. Biotecnología, Instituto Nacional Investigaciones Agrarias, Madrid, Spain
| | - Alberto Falco
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Julio Coll
- Dpto. Biotecnología, Instituto Nacional Investigaciones Agrarias, Madrid, Spain
| |
Collapse
|
54
|
Chaouat G. Inflammation, NK cells and implantation: friend and foe (the good, the bad and the ugly?): replacing placental viviparity in an evolutionary perspective. J Reprod Immunol 2013; 97:2-13. [PMID: 23347505 DOI: 10.1016/j.jri.2012.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/25/2012] [Accepted: 10/01/2012] [Indexed: 01/14/2023]
Abstract
This review summarises an invited talk presented at the 2012 ESRI/ASRI meeting in Hamburg, concerning current views of inflammation in pregnancy, which is timely given that the effects of a local injury in the uterus acts to favour implantation. Recalling that inflammation can be good (it is useful and necessary for implantation), bad (in implantation failure, RSA) and ugly (at the extreme, endometriosis is associated with pain and infertility) leads to consideration of its status in pregnancy. Its role in implantation and the fact that pregnancy maintains some aspects of inflammation throughout, leads to revision of not only concepts of immunosuppression and the Th1/Th2 paradigm, but also the feto-maternal relationship as seen since Medawar's hypotheses were advanced. This is examined from an evolutionary perspective, which should lead to further review of our perception of uterine NK cells, and the emergence of Treg cells to control some aspects of adaptive immunity, which appeared long after placentation.
Collapse
Affiliation(s)
- Gérard Chaouat
- U 976 INSERM, Pavillon Equerre Bazin, Hôpital Saint Louis, Paris, France.
| |
Collapse
|
55
|
Feng DF, Wu WX, He NN, Chen DY, Feng XZ. Analysis of chorion changes in developmental toxicity induced by polymer microspheres in Zebrafish embryos. RSC Adv 2013. [DOI: 10.1039/c3ra41503a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
56
|
Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:91-102. [PMID: 22227346 DOI: 10.1016/j.dci.2011.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The thymus is a central hematopoietic organ which produces mature T lymphocytes with diverse antigen specificity. During development, the thymus primordium is derived from the third pharyngeal endodermal pouch, and then differentiates into cortical and medullary thymic epithelial cells (TECs). TECs represent the primary functional cell type that forms the unique thymic epithelial microenvironment which is essential for intrathymic T-cell development, including positive selection, negative selection and emigration out of the thymus. Our understanding of thymopoiesis has been greatly advanced by using several important animal models. This review will describe progress on the molecular mechanisms involved in thymus and T cell development with particular focus on the signaling and transcription factors involved in this process in mouse and zebrafish.
Collapse
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
57
|
Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 2012; 150:29-38. [PMID: 22770213 DOI: 10.1016/j.cell.2012.05.031] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 12/13/2022]
Abstract
Regulatory T (Treg) cells, whose differentiation and function are controlled by X chromosome-encoded transcription factor Foxp3, are generated in the thymus (tTreg) and extrathymically (peripheral, pTreg), and their deficiency results in fatal autoimmunity. Here, we demonstrate that a Foxp3 enhancer, conserved noncoding sequence 1 (CNS1), essential for pTreg but dispensable for tTreg cell generation, is present only in placental mammals. CNS1 is largely composed of mammalian-wide interspersed repeats (MIR) that have undergone retrotransposition during early mammalian radiation. During pregnancy, pTreg cells specific to a model paternal alloantigen were generated in a CNS1-dependent manner and accumulated in the placenta. Furthermore, when mated with allogeneic, but not syngeneic, males, CNS1-deficient females showed increased fetal resorption accompanied by increased immune cell infiltration and defective remodeling of spiral arteries. Our results suggest that, during evolution, a CNS1-dependent mechanism of extrathymic differentiation of Treg cells emerged in placental animals to enforce maternal-fetal tolerance.
Collapse
Affiliation(s)
- Robert M Samstein
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
58
|
Yang M, Wei H, Zhao T, Wang X, Zhang A, Zhou H. Characterization of Foxp3 gene from grass carp (Ctenopharyngodon idellus): a rapamycin-inducible transcription factor in teleost immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:98-107. [PMID: 22613483 DOI: 10.1016/j.dci.2012.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 06/01/2023]
Abstract
In this study, we cloned grass carp foxp3 (gcfoxp3) gene including 5' flanking region and determined its expression profiles in vivo under immunosuppressive conditions. Sequence analysis revealed that the promoter of gcfoxp3 contains AP-1, AML-1/Runx1, NF-κb and GATA-3 binding sites, which positively or negatively regulate mammalian foxp3 expression. In addition, the intron II of gcfoxp3 contains some putative binding sites including AP-1, NFAT, Smad3, RAR, CREB/ATF and FOXO1, which are corresponding to their locations in the proximal intronic enhancers of human foxp3. In an in vivo model of grass carp, an immunosuppressive agent rapamycin was showed to stimulate gcfoxp3 mRNA expression in thymus, gill, head kidney and spleen after bacterial challenge. Moreover, rapamycin increased gcFoxp3 protein levels with an additive manner in the infected fish. These findings support the involvement of fish Foxp3 in immune response and highlight a possible signaling pathway that regulates teleost Foxp3 expression.
Collapse
Affiliation(s)
- Mu Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
59
|
Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2012; 109:11270-5. [PMID: 22745170 DOI: 10.1073/pnas.1120611109] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3(+) Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)(35)(-55) to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG(35-55) expanded the FoxP3(+) Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders.
Collapse
|
60
|
Andersen KG, Nissen JK, Betz AG. Comparative Genomics Reveals Key Gain-of-Function Events in Foxp3 during Regulatory T Cell Evolution. Front Immunol 2012; 3:113. [PMID: 22590469 PMCID: PMC3349156 DOI: 10.3389/fimmu.2012.00113] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/20/2012] [Indexed: 11/24/2022] Open
Abstract
The immune system has the ability to suppress undesirable responses, such as those against commensal bacteria, food, and paternal antigens in placenta pregnancy. The lineage-specific transcription factor Foxp3 orchestrates the development and function of regulatory T cells underlying this immunological tolerance. Despite the crucial role of Foxp3 in supporting immune homeostasis, little is known about its origin, evolution, and species conservation. We explore these questions using comparative genomics, structural modeling, and functional analyses. Our data reveal that key gain-of-function events occurred during the evolution of Foxp3 in higher vertebrates. We identify key conserved residues in its forkhead domain and show a detailed analysis of the N-terminal region of Foxp3, which is only conserved in mammals. These components are under purifying selection, and our mutational analyses demonstrate that they are essential for Foxp3 function. Our study points to critical functional adaptations in immune tolerance among higher vertebrates, and suggests that Foxp3-mediated transcriptional mechanisms emerged during mammalian evolution as a stepwise gain of functional domains that enabled Foxp3 to interact with a multitude of interaction partners.
Collapse
|
61
|
Withers DR, Gaspal FM, Bekiaris V, McConnell FM, Kim M, Anderson G, Lane PJL. OX40 and CD30 signals in CD4(+) T-cell effector and memory function: a distinct role for lymphoid tissue inducer cells in maintaining CD4(+) T-cell memory but not effector function. Immunol Rev 2012; 244:134-48. [PMID: 22017436 DOI: 10.1111/j.1600-065x.2011.01057.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CD4(+) effector and memory T cells play a pivotal role in the development of both normal and pathogenic immune responses. This review focuses on the molecular and cellular mechanisms that regulate their development, with particular focus on the tumor necrosis factor superfamily members OX40 (TNFRSF4) and CD30 (TNFRSF8). We discuss the evidence that in mice, these molecular signaling pathways act synergistically to regulate the development of both effector and memory CD4(+) T cells but that the cells that regulate memory versus effector function are distinct, effectively allowing the independent regulation of the memory and effector CD4(+) T-cell pools.
Collapse
Affiliation(s)
- David R Withers
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
62
|
Liu Y, Liu B, Feng D, Gao C, Wu M, He N, Yang X, Li L, Feng X. A progressive approach on zebrafish toward sensitive evaluation of nanoparticles' toxicity. Integr Biol (Camb) 2012; 4:285-91. [PMID: 22267261 DOI: 10.1039/c2ib00130f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zebrafish (Danio rerio) possess a great promise in evaluating the toxicity of nanoparticles (NPs). The commonly used method on zebrafish was to calculate mortality and 5 or 6 days postfertilization (dpf) toxicity scores. However, this method could only reveal a general toxic level. To further distinguish the toxicity of NPs in the same general level, a more systematic and sensitive approach needs to be put forward. In this work, we describe a progressive approach toward the evaluation of the toxicity of MSRMs NPs we synthesized. This approach contained traditional and newly created methods. The results from traditional methods such as calculating mortality, recording 6 dpf toxicity scores and malformation types of zebrafish revealed a general low toxic level of MSRMs. Then the newly created method was conducted. By using scoring spectra of early developmental stages such as 2 or 3 dpf, we compared the malformation speeds of zebrafish exposed to different concentrations of MSRMs during the time 1 to 6 dpf. The results allowed more sensitive assessments of the toxicity of MSRMs.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Secombes CJ, Wang T, Bird S. The interleukins of fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1336-1345. [PMID: 21605591 DOI: 10.1016/j.dci.2011.05.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/10/2011] [Accepted: 05/05/2011] [Indexed: 05/28/2023]
Abstract
Interleukins are a subgroup of cytokines, molecules involved in the intercellular regulation of the immune system. The term interleukin was first coined in 1979 to refer to molecules that signal between different leucocyte types, although not exclusively restricted to leucocyte communication. Whilst it is now known that interleukins are produced by a wide variety of cell types, nevertheless many are synthesised by CD4(+) T helper cells, macrophages/monocytes and endothelial cells. The nomenclature is relatively straightforward, with interleukin 1 the first discovered and interleukin 2 the second, etc. However, whilst 35 interleukins are currently described in mammals, several are in fact terms referring to subfamilies of more molecules, as with the IL-1 family where 11 members (IL-1F1-IL-1F11) are present, and the IL-17 family where 6 members (IL-17A-IL-17F) are present. So the total is much higher and splice variants and allelic variation increase this diversity further. This review will focus on what is known about interleukins in fish, and will refer to the major subfamilies rather than try to work through 35 descriptions in a row. It is clear that many direct homologues of molecules known in mammals are present in fish, but that not all are present and some novel interleukins exist that may have arisen from fish specific gene duplication events.
Collapse
Affiliation(s)
- C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK.
| | | | | |
Collapse
|
64
|
Laing KJ, Hansen JD. Fish T cells: recent advances through genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1282-1295. [PMID: 21414347 DOI: 10.1016/j.dci.2011.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
Collapse
Affiliation(s)
- Kerry J Laing
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer, Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
65
|
Wen Y, Fang W, Xiang LX, Pan RL, Shao JZ. Identification of Treg-like cells in Tetraodon: insight into the origin of regulatory T subsets during early vertebrate evolution. Cell Mol Life Sci 2011; 68:2615-26. [PMID: 21063894 PMCID: PMC11115099 DOI: 10.1007/s00018-010-0574-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 01/08/2023]
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) are critical for the maintenance of peripheral tolerance, and the suppression of autoimmune diseases and even tumors. Although Treg cells are well characterized in humans, little is known regarding their existence or occurrence in ancient vertebrates. In the present study, we report on the molecular and functional characterization of a Treg-like subset with the phenotype CD4-2(+)CD25-like(+)Foxp3-like(+) from a pufferfish (Tetraodon nigroviridis) model. Functional studies showed that depletion of this subset produced an enhanced mixed lymphocyte reaction (MLR) and nonspecific cytotoxic cell (NCC) activity in vitro, as well as inflammation of the intestine in vivo. The data presented here will not only enrich the knowledge of fish immunology but will also be beneficial for a better cross-species understanding of the evolutionary history of the Treg family and Treg-mediated regulatory networks in cellular immunity.
Collapse
Affiliation(s)
- Yi Wen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Animal Epidemic Etiology and Immunology Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wei Fang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Animal Epidemic Etiology and Immunology Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Animal Epidemic Etiology and Immunology Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ruo-Lang Pan
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Animal Epidemic Etiology and Immunology Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Animal Epidemic Etiology and Immunology Prevention of Ministry of Agriculture, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
66
|
Abstract
INTRODUCTION MS is a heterogeneous disorder that requires the development of better diagnostics to identify disease subtypes enabling appropriate therapeutic intervention at an early stage of the disease. Accumulating evidence indicates that members of the inhibitor of apoptosis (IAP) family play an important role in the pathogenesis of MS by reducing the apoptotic elimination of autoreactive immune cells. AREAS COVERED The authors describe improved animal modeling strategies to identify compounds that have immunomodulatory, neurorestorative and neuroprotective properties. In addition, the authors propose new approaches to better model cognitive dysfunction in MS, which will aid the development of novel therapeutics for this complex disorder. The paper provides the reader with an appreciation for the diagnostic and therapeutic potential of apoptosis-related proteins for MS. EXPERT OPINION Recent evidence suggests that increased resistance of autoreactive immune cells to apoptotic elimination is a contributing factor to both disease susceptibility and progression in MS. This occurs, at least in part, because of elevated levels of the IAP family of anti-apoptotic genes that display distinct expression profiles associated with different subtypes of MS. The authors believe that the detection and targeting of members of the IAP family can provide better drugs for MS. Particularly, the authors feel that the overexpression of IAPs in animal models can provide novel insights into MS for both its pathogenesis and the discovery of new lead compounds.
Collapse
Affiliation(s)
- Jordan Warford
- Dalhousie University , Department of Pharmacology , Halifax, NS B3H 1X5 , Canada
| | | |
Collapse
|
67
|
Zhang Z, Chi H, Niu C, Bøgwald J, Dalmo RA. Molecular cloning and characterization of Foxp3 in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2011; 30:902-909. [PMID: 21276855 DOI: 10.1016/j.fsi.2011.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
Foxp3 is a T cell-specific transcription factor and plays a key role in the development of Treg cells and in the immune regulatory process during inflammation. Here we report cloning and characterization of the full-length cDNA of Atlantic salmon Foxp3, which possesses a Forkhead domain, a zinc finger domain and a leucine-zipper domain as its counterpart in mammals. Foxp3 is highly expressed in thymus. Furthermore, regulated expression was observed in head kidney cells in response to β-glucan and mitogens (LPS and ConA), and in the head kidney, spleen and liver after intraperitoneal injection of live Aeromonas salmonicida. In addition, transfection of CHSE-214 cells with salmon Foxp3 fused with a C-termial RFP tag, resulted in the expression of the transgene in and close to the nuclei upon stimulation. Taken together, these results suggest the presence of a Foxp3 gene in Atlantic salmon that may be an important transcription factor in immune regulation, and further research may reveal the existence of Treg-like T cells in this species.
Collapse
Affiliation(s)
- Zuobing Zhang
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | | | | | | | | |
Collapse
|
68
|
Apetoh L, Quintana FJ, Pot C, Joller N, Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL, Kuchroo VK. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol 2010; 11:854-61. [PMID: 20676095 PMCID: PMC2940320 DOI: 10.1038/ni.1912] [Citation(s) in RCA: 572] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/01/2010] [Indexed: 02/07/2023]
Abstract
Type 1 regulatory T cells (Tr1 cells ) that produce interleukin 10 (IL-10) are instrumental in the prevention of tissue inflammation, autoimmunity and graft-versus-host disease. The transcription factor c-Maf is essential for the induction of IL-10 by Tr1 cells, but the molecular mechanisms that lead to the development of these cells remain unclear. Here we show that the ligand-activated transcription factor aryl hydrocarbon receptor (AhR), which was induced by IL-27, acted in synergy with c-Maf to promote the development of Tr1 cells. After T cell activation under Tr1-skewing conditions, the AhR bound to c-Maf and promoted transactivation of the Il10 and Il21 promoters, which resulted in the generation of Tr1 cells and the amelioration of experimental autoimmune encephalomyelitis. Manipulating AhR signaling could therefore be beneficial in the resolution of excessive inflammatory responses.
Collapse
Affiliation(s)
- Lionel Apetoh
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Francisco J. Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Caroline Pot
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Nicole Joller
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Sheng Xiao
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deepak Kumar
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston 02115, MA, USA
| | - Evan J. Burns
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, United States
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Vijay K. Kuchroo
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|