51
|
Soyka MB, Holzmann D, Basinski TM, Wawrzyniak M, Bannert C, Bürgler S, Akkoc T, Treis A, Rückert B, Akdis M, Akdis CA, Eiwegger T. The Induction of IL-33 in the Sinus Epithelium and Its Influence on T-Helper Cell Responses. PLoS One 2015; 10:e0123163. [PMID: 25932636 PMCID: PMC4416791 DOI: 10.1371/journal.pone.0123163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is characterized by epithelial activation and chronic T-cell infiltration in sinonasal mucosa and nasal polyps. IL-33 is a new cytokine of the IL-1 cytokine family that has a pro-inflammatory and Th2 type cytokine induction property. The role of IL-33 in the pathomechanisms of CRS and its interaction with other T cell subsets remain to be fully understood. METHODS The main trigger for IL-33 mRNA expression in primary human sinonasal epithelial cells was determined in multiple cytokine and T-cell stimulated cultures. The effects of IL-33 on naïve, Th0 and memory T-cells was studied by PCR, ELISA and flow cytometry. Biopsies from sinus tissue were analyzed by PCR and immunofluorescence for the presence of different cytokines and receptors with a special focus on IL-33. RESULTS IL-33 was mainly induced by IFN-γ in primary sinonasal epithelial cells, and induced a typical CRSwNP Th2 favoring cytokine profile upon co-culture with T-helper cell subsets. IL-33 and its receptor ST2 were highly expressed in the inflamed epithelial tissue of CRS patients. While IL-33 was significantly up-regulated in the epithelium for CRSsNP, its receptor was higher expressed in sinus tissue from CRSwNP. CONCLUSIONS The present study delineates the influence of IL-33 in upper airway epithelium and a potential role of IL-33 in chronic inflammation of CRSwNP by enhancing Th2 type cytokine production, which could both contribute to a further increase of an established Th2 profile in CRSwNP.
Collapse
Affiliation(s)
- Michael B. Soyka
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- University Hospital Zurich, Department of Otorhinolaryngology, Zurich, Switzerland
| | - David Holzmann
- University Hospital Zurich, Department of Otorhinolaryngology, Zurich, Switzerland
| | - Tomasz M. Basinski
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marcin Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Christina Bannert
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Simone Bürgler
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tunc Akkoc
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Pediatric Allergy and Immunology, Marmara University Medical Faculty, Istanbul, Turkey
| | - Angela Treis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Thomas Eiwegger
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
- * E-mail:
| |
Collapse
|
52
|
Ciccia F, Rizzo A, Guggino G, Cavazza A, Alessandro R, Maugeri R, Cannizzaro A, Boiardi L, Iacopino DG, Salvarani C, Triolo G. Difference in the expression of IL-9 and IL-17 correlates with different histological pattern of vascular wall injury in giant cell arteritis. Rheumatology (Oxford) 2015; 54:1596-604. [DOI: 10.1093/rheumatology/kev102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 12/24/2022] Open
|
53
|
Lott JM, Sumpter TL, Turnquist HR. New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J Leukoc Biol 2015; 97:1037-48. [DOI: 10.1189/jlb.3ri1214-595r] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
|
54
|
Jia L, Wu C. Differentiation, regulation and function of Th9 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 841:181-207. [PMID: 25261208 DOI: 10.1007/978-94-017-9487-9_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naïve CD4(+) T cells are activated and differentiate to distinct lineages of T helper (Th) cells, which are involved in physiological and pathological processes by obtaining the potential to produce different lineage-specific cytokines that mediate adaptive immunity. In the past decade, our knowledge of Th cells has been significantly expanded with the findings of new lineages. Interleukin (IL)-9 producing T cells are recently identified. In consideration of the ability to preferentially secret IL-9, these cells are termed Th9 cells. Given the multiple function of IL-9, Th9 cells participate in the lesion of many diseases, such as allergic inflammation, tumor, and parasitosis. In this chapter, we will focus on the cytokines, co-stimulatory factors, and transcriptional signaling pathways, which regulate Th9 cells development as well as stability, plasticity, and the multiple roles of Th9 cells in vivo.
Collapse
Affiliation(s)
- Lei Jia
- Key Laboratory of Tropical Disease Control Research of Ministry of Education, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-Sen University, 74th, Zhongshan 2nd Road, Guangzhou, 510080, China
| | | |
Collapse
|
55
|
Saluja R, Ketelaar ME, Hawro T, Church MK, Maurer M, Nawijn MC. The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Mol Immunol 2014; 63:80-5. [PMID: 25017307 DOI: 10.1016/j.molimm.2014.06.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022]
Abstract
Interleukin-33 (IL-33) is a recently discovered cytokine that belongs to the IL-1 superfamily and acts as an important regulator in several allergic disorders. It is considered to function as an alarmin, or danger cytokine, that is released upon structural cell damage. IL-33 activates several immune cells, including Th2 cells, mast cells and basophils, following its interaction with a cell surface heterodimer consisting of an IL-1 receptor-related protein ST2 (IL-1RL1) and IL-1 receptor accessory protein (IL-1RAcP). This activation leads to the production of a variety of Th2-like cytokines that mediate allergic-type immune responses. Thus, IL-33 appears to be a double-edged sword because, in addition to its important contribution to host defence, it exacerbates allergic responses, such as allergic rhinitis and asthma. A major purported mechanism of IL-33 in allergy is the activation of mast cells to produce a variety of pro-inflammatory cytokines and chemokines. In this review, we summarize the current knowledge regarding the genetics and physiology of IL-33 and IL-1RL1 and its association with different allergic diseases by focusing on its effects on mast cells and basophils.
Collapse
Affiliation(s)
- Rohit Saluja
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Maria E Ketelaar
- University of Groningen, Laboratory of Allergology and Pulmonary Diseases, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC research institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomasz Hawro
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin K Church
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martijn C Nawijn
- University of Groningen, Laboratory of Allergology and Pulmonary Diseases, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC research institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
56
|
Role of IL-33 and its receptor in T cell-mediated autoimmune diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:587376. [PMID: 25032216 PMCID: PMC4084552 DOI: 10.1155/2014/587376] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a new cytokine of interleukin-1 family, whose specific receptor is ST2. IL-33 exerts its functions via its target cells and plays different roles in diseases. ST2 deletion and exclusion of IL-33/ST2 axis are accompanied by enhanced susceptibility to dominantly T cell-mediated organ-specific autoimmune diseases. It has been reported that IL-33/ST2 pathway plays a key role in host defense and immune regulation in inflammatory and infectious diseases. This review focuses on new findings in the roles of IL-33 and ST2 in several kinds of T cell-mediated autoimmune diseases.
Collapse
|
57
|
TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 2014; 15:676-86. [PMID: 24908389 DOI: 10.1038/ni.2920] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/12/2014] [Indexed: 12/11/2022]
Abstract
The molecular checkpoints that drive inflammatory bowel diseases are incompletely understood. Here we found more T cells expressing the transcription factor PU.1 and interleukin 9 (IL-9) in patients with ulcerative colitis. In an animal model, citrine reporter mice had more IL-9-expressing mucosal T cells in experimental oxazolone-induced colitis. IL-9 deficiency suppressed acute and chronic colitis. Mice with PU.1 deficiency in T cells were protected from colitis, whereas treatment with antibody to IL-9 suppressed colitis. Functionally, IL-9 impaired intestinal barrier function and prevented mucosal wound healing in vivo. Thus, our findings suggest that the TH9 subset of helper T cells serves an important role in driving ulcerative colitis by regulating intestinal epithelial cells and that TH9 cells represent a likely target for the treatment of chronic intestinal inflammation.
Collapse
|
58
|
Murakami-Satsutani N, Ito T, Nakanishi T, Inagaki N, Tanaka A, Vien PTX, Kibata K, Inaba M, Nomura S. IL-33 promotes the induction and maintenance of Th2 immune responses by enhancing the function of OX40 ligand. Allergol Int 2014; 63:443-455. [PMID: 24851948 DOI: 10.2332/allergolint.13-oa-0672] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/13/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In Th2 immune responses, TSLP is a key player by induction of OX40-ligand (OX40L) on dendritic cells (DCs), which is the trigger to induce Th2 cell-mediated allergic cascade. Thus, TSLP-DC-OX40L axis might be the principal pathway in the inflammatory cascades in atopic dermatitis and asthma. IL-33, which is produced by epithelial cells, has been implicated in the Th2 immune responses and pathogenesis of the allergic disorders. However, the role of IL-33 in the Th2-polarizing TSLP-DC-OX40L axis still remains largely elusive. We focused on the ability of IL-33 to promote OX40L-mediated Th2 responses. METHODS Purified human naïve or memory CD4+ T cells were stimulated with recombinant OX40L or TSLP-treated DCs (TSLP-DCs) in the presence of IL-33, and the cytokine production by the primed T cells was examined. We also performed immunohistochemical analyses for the expression of IL-33 in specimens of lymph node and skin from the patients with atopic dermatitis. RESULTS IL-33 remarkably enhanced TSLP-DCs-driven or OX40L-driven Th2 responses from naïve T cells and the Th2 functional attributes of CRTH2+ CD4+ Th2 memory cells by the increased production of IL-5, IL-9, and IL-13. In addition, IL-33 was expressed in the nuclei of epithelial cells in not only skin lesion but also lymph nodes of the patient with atopic dermatitis, suggesting a specialized role in adaptive T cell-priming phase. CONCLUSIONS IL-33 works as a positive regulator of TSLP-DC-OX40L axis that initiates and maintains the Th2 cell-mediated inflammatory responses, and therefore, it would be a new therapeutic target for the treatment of allergic disorders.
Collapse
Affiliation(s)
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Takahisa Nakanishi
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Noriko Inagaki
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Akihiro Tanaka
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Phan Thi Xuan Vien
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Kayoko Kibata
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Muneo Inaba
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|
59
|
van Ree R, Hummelshøj L, Plantinga M, Poulsen LK, Swindle E. Allergic sensitization: host-immune factors. Clin Transl Allergy 2014; 4:12. [PMID: 24735802 PMCID: PMC3989850 DOI: 10.1186/2045-7022-4-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/09/2014] [Indexed: 12/24/2022] Open
Abstract
Allergic sensitization is the outcome of a complex interplay between the allergen and the host in a given environmental context. The first barrier encountered by an allergen on its way to sensitization is the mucosal epithelial layer. Allergic inflammatory diseases are accompanied by increased permeability of the epithelium, which is more susceptible to environmental triggers. Allergens and co-factors from the environment interact with innate immune receptors, such as Toll-like and protease-activated receptors on epithelial cells, stimulating them to produce cytokines that drive T-helper 2-like adaptive immunity in allergy-prone individuals. In this milieu, the next cells interacting with allergens are the dendritic cells lying just underneath the epithelium: plasmacytoid DCs, two types of conventional DCs (CD11b + and CD11b-), and monocyte-derived DCs. It is now becoming clear that CD11b+, cDCs, and moDCs are the inflammatory DCs that instruct naïve T cells to become Th2 cells. The simple paradigm of non-overlapping stable Th1 and Th2 subsets of T-helper cells is now rapidly being replaced by that of a more complex spectrum of different Th cells that together drive or control different aspects of allergic inflammation and display more plasticity in their cytokine profiles. At present, these include Th9, Th17, Th22, and Treg, in addition to Th1 and Th2. The spectrum of co-stimulatory signals coming from DCs determines which subset-characteristics will dominate. When IL-4 and/or IL-13 play a dominant role, B cells switch to IgE-production, a process that is more effective at young age. IgE-producing plasma cells have been shown to be long-lived, hiding in the bone-marrow or inflammatory tissues where they cannot easily be targeted by therapeutic intervention. Allergic sensitization is a complex interplay between the allergen in its environmental context and the tendency of the host’s innate and adaptive immune cells to be skewed towards allergic inflammation. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute.
Collapse
Affiliation(s)
- Ronald van Ree
- Departments of Experimental Immunology and Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room K0-130, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
60
|
Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol 2013; 35:61-8. [PMID: 24215739 DOI: 10.1016/j.it.2013.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 02/08/2023]
Abstract
Upon antigen-specific stimulation, naïve CD4⁺ T cells have the potential to differentiate into various T helper (Th) cell subsets. Earlier models of Th cell differentiation focused on IFN-γ-producing Th1 cells and IL-4-secreting Th2 cells. The discovery of additional CD4⁺ Th cell subsets has extended our understanding of Th cell differentiation beyond this dichotomy. Among these is the recently described Th9 cell subset, which preferentially produces interleukin (IL)-9. Here, we review the latest developments in Th9 cell development and differentiation, focusing on contributing environmental signals, and discuss potential physiological and pathophysiological functions of these cells. We describe the challenges inherent to unambiguously defining roles for Th9 cells using the available experimental animal models, and suggest new experimental models to address these concerns.
Collapse
Affiliation(s)
- Edgar Schmitt
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Building 708, 55131 Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Building 708, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, Building 708, 55131 Mainz, Germany.
| |
Collapse
|
61
|
Duan L, Chen J, Gong F, Shi G. The role of IL-33 in rheumatic diseases. Clin Dev Immunol 2013; 2013:924363. [PMID: 24151520 PMCID: PMC3787644 DOI: 10.1155/2013/924363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023]
Abstract
Interleukin-33 (IL-33), a novel member of IL-1 family, has been recently implicated in several inflammatory and autoimmune diseases. IL-33 can be produced by various types of tissues and cells and induce gene expression of Th2-associated cytokines via binding to the orphan receptor ST2. By promoting Th2 type immune response, IL-33 plays important roles in the allergy, whereas its function in autoimmune diseases attracts more attention. Recent studies reported the correlation of IL-33 with rheumatic diseases, and most of them found that the IL-33 expression levels were consistent with disease activity and development. Furthermore, evidence has indicated that IL-33-related treatment may ameliorate the pathogenic conditions and attenuate disease progression of those rheumatic diseases. Therefore, elucidation of the roles of IL-33 in rheumatic diseases would be beneficial to understand the pathogenesis and therapy of these diseases. In this paper, we will summarize the roles of IL-33 in the rheumatic diseases.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Hospital of Xiamen University, Xiamen 361003, China
| | - Jie Chen
- Basic Medical Department of Medical College, Xiamen University, Xiamen 361003, China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Hospital of Xiamen University, Xiamen 361003, China
| |
Collapse
|
62
|
Witten M, Malling HJ, Blom L, Poulsen BC, Poulsen LK. Is intralymphatic immunotherapy ready for clinical use in patients with grass pollen allergy? J Allergy Clin Immunol 2013; 132:1248-1252.e5. [PMID: 24035151 DOI: 10.1016/j.jaci.2013.07.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Marianne Witten
- Allergy Clinic, Copenhagen University Hospital, Gentofte, Denmark
| | | | | | | | | |
Collapse
|
63
|
Abstract
T(h)9 cells are a new subset of helper T cells, and the signature cytokine for T(h)9 cells is IL-9. Both T(h)9 cells and T(h)9 products are implicated in multiple disease settings. Thus, a clear understanding of how T(h)9 cells are induced and controlled is an important and clinically relevant issue. There are different molecular pathways identified thus far in the induction of T(h)9 cells, and activation of such diverse pathways requires integration of signals from TGF-β and IL-4 cytokine receptors as well as costimulatory molecules. These signals converge on the induction of multiple transcription factors that collectively drive the development of T(h)9 cells.
Collapse
Affiliation(s)
- Picheng Zhao
- Immunobiology and Transplant Research, Houston Methodist Hospital and Methodist Hospital Research Institute, Texas Medical Center, 6670 Bertner Avenue, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
64
|
Increased systemic and local interleukin 9 levels in patients with carotid and coronary atherosclerosis. PLoS One 2013; 8:e72769. [PMID: 24023645 PMCID: PMC3758349 DOI: 10.1371/journal.pone.0072769] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory disorder that involves a range of inflammatory mediators. Although interleukin (IL)-9 has been related to inflammation, there are at present no data on its role in atherosclerosis. Here we have examined IL-9 and IL-9 receptor (IL-9R) systemically and locally in patients with coronary and carotid atherosclerosis. METHODS Plasma IL-9 was quantified by enzyme immunoassay and multiplex technology. IL-9 and IL-9R mRNA were quantified by real-time RT-PCR, and their localization within the lesion was assessed by immunohistochemistry. RESULTS THE MAIN FINDINGS WERE: (i) Patients with carotid atherosclerosis had significantly raised IL-9 plasma levels compared with healthy controls (n = 28), with no differences between asymptomatic (n = 56) and symptomatic (n = 88) patients. (ii) On admission, patients with acute ST-elevation myocardial infarction (STEMI) (n = 42) had markedly raised IL-9 plasma levels which gradually declined during the first week post-MI. (iii) T cells and monocytes from patients with unstable angina (n = 17) had increased mRNA levels of IL-9 as compared with controls (n = 11). (iv) Carotid plaques (n = 68) showed increased mRNA levels of IL-9 and IL-9R compared to non-atherosclerotic vessels (n = 10). Co-localization to T cells (IL-9 and IL-9R) and macrophages (IL-9) were shown by immunohistochemistry. (v) IL-9 increased IL-17 release in peripheral blood mononuclear cells from patients with unstable angina (n = 5) and healthy controls (n = 5) with a particularly enhancing effect in cells from the patient group. CONCLUSION Our findings show increased IL-9 levels in different atherosclerotic disorders both systemically and within the lesion, suggesting a role for the IL-9/IL-9R axis in the atherosclerotic process, potentially involving IL-17 mediated mechanisms. However, the functional consequences of these findings should be further investigated.
Collapse
|
65
|
Interleukin-25 (IL-25) promotes efficient protective immunity against Trichinella spiralis infection by enhancing the antigen-specific IL-9 response. Infect Immun 2013; 81:3731-41. [PMID: 23897610 DOI: 10.1128/iai.00646-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mammalian hosts often develop distinct immune response against the diverse parasitic helminths that have evolved for immune evasion. Interleukin-25 (IL-25), an IL-17 cytokine family member, plays a key role in initiating the protective immunity against several parasitic helminths; however, the involvement and underlying mechanisms by which IL-25 mediates immune response against Trichinella spiralis infection have not been investigated. Here we showed that IL-25 functions in promoting protective immunity against T. spiralis infection. Mice treated with IL-25 exhibited a lower worm burden and fewer muscle larvae in the later stage of T. spiralis infection. In contrast, mice treated with neutralizing antibody against IL-25 failed to expel T. spiralis effectively. During T. spiralis infection, intestinal IL-25 expression was rapidly elevated before the onset of IL-4 and IL-9 induction. While antigen-specific Th2 and Th9 immune responses were both developed during T. spiralis infection, an antigen-specific Th9 response appeared to be transiently induced in the early stage of infection. Mice into which antigen-specific T cells deficient in IL-9 were transferred were less effective in worm clearance than those given wild-type T cells. The strength of the antigen-specific Th9 immune response against T. spiralis could be enhanced or attenuated after treatment with IL-25 or neutralizing antibody against IL-25, respectively, correlating positively with the levels of intestinal mastocytosis and the expression of IL-9-regulated genes, including mast cell- and Paneth cell-specific genes. Thus, our study demonstrates that intestinal IL-25 promotes protective immunity against T. spiralis infection by inducing antigen-specific Th9 immune response.
Collapse
|
66
|
Abstract
CD4(+) T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo.
Collapse
Affiliation(s)
- Mark H Kaplan
- Department of Pediatrics, Indiana University School of Medicine, HB Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.
| |
Collapse
|
67
|
Le H, Kim W, Kim J, Cho HR, Kwon B. Interleukin-33: a mediator of inflammation targeting hematopoietic stem and progenitor cells and their progenies. Front Immunol 2013; 4:104. [PMID: 23653627 PMCID: PMC3644799 DOI: 10.3389/fimmu.2013.00104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022] Open
Abstract
Inflammation is defined as a physiological response initiated by a variety of conditions that cause insult to the body, such as infection and tissue injury. Inflammation is triggered by specialized receptors in the innate immune system, which recognize microbial components known as pathogen-associated molecular patterns or endogenous signals produced by damaged cells (damage-associated molecular patterns). IL-33 is a cytokine that is released predominantly at the epithelial barrier when it is exposed to pathogens, allergens, or injury-inducing stimuli. IL-33 target cells are various, ranging from hematopoietic stem and progenitor cells (HSPCs) and essentially all types of their progeny to many non-hematopoietic cells. The pleiotropic actions of IL-33 suggest that IL-33 is involved in every phase of the inflammatory process. In this review, we discuss recent advances in the understanding of how IL-33 orchestrates inflammatory responses by regulating HSPCs and innate immune cells.
Collapse
Affiliation(s)
- Hongnga Le
- School of Biological Sciences, University of Ulsan Ulsan, Republic of Korea
| | | | | | | | | |
Collapse
|
68
|
ST2 regulates allergic airway inflammation and T-cell polarization in epicutaneously sensitized mice. J Invest Dermatol 2013; 133:2522-2529. [PMID: 23633023 DOI: 10.1038/jid.2013.195] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 12/14/2022]
Abstract
IL-33 is an inducer of proinflammatory and T-helper type 2 (Th2) cytokines, which have an important role in atopic dermatitis (AD) and allergic asthma. ST2 is a specific receptor for IL-33 and is expressed on Th2 cells, eosinophils and mast cells. A murine model of AD was used to characterize the role of ST2 in allergen-induced skin inflammation and allergic asthma. ST2-/- and wild-type (WT) mice were epicutaneously sensitized with ovalbumin (OVA) and staphylococcal enterotoxin B, and intranasally challenged with OVA. ST2-/- mice exhibited increased production of IFNγ and increased number of CD8(+) T cells in the sensitized skin and in the airways compared with WT mice. The number of eosinophils was decreased, and Th2 cytokines were downregulated in the airways of epicutaneously sensitized ST2-/- mice compared with WT controls. However, dermal eosinophil numbers were as in WT, and the levels of Th2 cytokines were even elevated in the sensitized skin of ST2-/- mice. ST2-/- mice had elevated numbers of neutrophils and macrophages and increased levels of proinflammatory cytokines in the sensitized skin. The role of ST2 differs between different target tissues: ST2 is dispensable for the development of Th2 response in the sensitized skin, whereas it is a main inducer of Th2 cytokines in asthmatic airways.
Collapse
|
69
|
Falkencrone S, Poulsen LK, Bindslev-Jensen C, Woetmann A, Odum N, Poulsen BC, Blom L, Jensen BM, Gibbs BF, Yasinska IM, Sumbayev VV, Skov PS. IgE-mediated basophil tumour necrosis factor alpha induces matrix metalloproteinase-9 from monocytes. Allergy 2013; 68:614-20. [PMID: 23573943 DOI: 10.1111/all.12143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND IgE-mediated activation of mast cells has been reported to induce the release of tumour necrosis alpha (TNF-α), which may display autocrine effects on these cells by inducing the generation of the tissue remodelling protease matrix metalloproteinase-9 (MMP-9). While mast cells and basophils have been shown to express complementary and partially overlapping roles, it is not clear whether a similar IgE/TNF-α/MMP-9 axis exists in the human basophil. The purpose of this study was thus to investigate whether IgE-mediated activation of human basophils induces TNF-α and MMP-9 release. METHODS Human peripheral blood mononuclear cells (PBMC), isolated basophils and monocytes were stimulated up to 21 h with anti-IgE. Mediator releases were assessed by ELISA, and surface expressions of mediators were detected by flow cytometry. Upregulation of cytokine production was detected by Western blot and polymerase chain reaction (PCR). RESULTS IgE-mediated activation of basophils induced the synthesis and release of both TNF-α and MMP-9 from PBMC. In contrast, IgE-mediated activation of purified basophils induced the release and cellular expression of TNF-α but not MMP-9. Isolated monocytes did not release MMP-9 upon anti-IgE stimulation, but MMP-9 release was induced by stimulating monocytes with supernatants from activated basophils, and this release was inhibited by anti-TNF-α neutralizing antibodies. CONCLUSION Our results strongly indicate that human basophils release TNF-α following IgE-dependent activation and that this cytokine subsequently stimulates MMP-9 release from monocytes. These findings support a direct involvement of basophils in inflammation as well as suggesting a role for the basophil in tissue remodelling.
Collapse
Affiliation(s)
- S. Falkencrone
- Department of Dermatology and Allergy Centre; Odense University Hospital; Odense; Denmark
| | - L. K. Poulsen
- Allergy Clinic; Copenhagen University Hospital; Gentofte; Denmark
| | - C. Bindslev-Jensen
- Department of Dermatology and Allergy Centre; Odense University Hospital; Odense; Denmark
| | - A. Woetmann
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen; Denmark
| | - N. Odum
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen; Denmark
| | | | - L. Blom
- Allergy Clinic; Copenhagen University Hospital; Gentofte; Denmark
| | - B. M. Jensen
- Allergy Clinic; Copenhagen University Hospital; Gentofte; Denmark
| | - B. F. Gibbs
- Medway School of Pharmacy; University of Kent; Chatham Maritime; UK
| | - I. M. Yasinska
- Medway School of Pharmacy; University of Kent; Chatham Maritime; UK
| | - V. V. Sumbayev
- Medway School of Pharmacy; University of Kent; Chatham Maritime; UK
| | | |
Collapse
|
70
|
Abstract
Basophils have recently been recognized as critical effector cells in allergic reactions and protective immunity against helminths. Precise characterization of basophil biology could help to develop specific therapies that interfere with differentiation, tissue recruitment, or induction of effector functions and thereby ameliorate allergic disorders. The development, homeostasis, and effector functions of basophils are tightly regulated by extrinsic signals and in particular by cytokines. IL-3, GM-CSF, and thymic stromal lymphopoietin activate the STAT5 pathway that promotes proliferation, activation, and cytokine secretion but also induces a negative feedback loop via Pim-1 and SOCS proteins. Basophils further express receptors for IL-18 and IL-33, which are associated with the signaling adaptor MyD88 and activate the NF-κB and MAP kinase pathways. This review focuses on positive and negative regulation of basophils by these cytokines.
Collapse
Affiliation(s)
- David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
71
|
Ohno T, Morita H, Arae K, Matsumoto K, Nakae S. Interleukin-33 in allergy. Allergy 2012; 67:1203-14. [PMID: 22913600 DOI: 10.1111/all.12004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2012] [Indexed: 12/15/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine family, which includes IL-1 and IL-18, and is considered to be important for host defense against nematodes by inducing Th2 cytokine production via the IL-33 receptor. IL-33 receptor is a heterodimer of IL-1 receptor-like 1 (IL-1RL1; also called ST2, T1, Der4, and fit-1) and IL-1 receptor accessory protein (IL-1RAcP). On the other hand, excessive and/or inappropriate production of IL-33 is considered to be involved in the development of various disorders, such as allergic and autoimmune diseases. Unlike IL-1β and IL-18, IL-33 does not seem to be secreted through the activation of inflammasomes in events such as apoptosis. However, IL-33 is localized in the nucleus of cells and is released during tissue injury associated with necrosis. This suggests that it acts as an alarmin, like IL-1α and high-mobility group box chromosomal protein-1 (HMGB-1). This review summarizes current knowledge regarding the roles of IL-33 in the functions of various cell types and the pathogenesis of allergy.
Collapse
Affiliation(s)
- Tatsukuni Ohno
- Department of Molecular Immunology; Graduate School of Medical and Dental Science; Tokyo Medical and Dental University; Tokyo; Japan
| | | | | | - Kenji Matsumoto
- Department of Allergy and Immunology; National Research Institute for Child Health & Development; Tokyo; Japan
| | | |
Collapse
|
72
|
Blom L, Poulsen LK. IL-1 family members IL-18 and IL-33 upregulate the inflammatory potential of differentiated human Th1 and Th2 cultures. THE JOURNAL OF IMMUNOLOGY 2012; 189:4331-7. [PMID: 23028054 DOI: 10.4049/jimmunol.1103685] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The IL-1 family members IL-1β, IL-18, and IL-33 are potent cytokines in relationship to amplifying the CD4(+) T cell cytokine production. To evaluate their impact on in vitro-differentiated human Th1 and Th2 cultures, such cultures were established from naive T cells, purified from healthy blood donors, and reactivated in the presence of IL-1β, IL-18, or IL-33. Interestingly, we observe modifying responses in Th1 and Th2 cultures induced by IL-18 or IL-33 but not by IL-1β, both contributing to amplify production of IL-5, IL-13, and IFN-γ. IL-18 or IL-33 stimulation of Th1 cultures resulted in increased IFN-γ and IL-13 production concurrent with reduced IL-10 gene transcription and secretion even though Th1 cultures, in contrast to IL-18Rα, had low ST2L expression. Furthermore, adding IL-18 to Th1 cultures promoted Tbet mRNA expression and production. Th2 cultures stimulated with IL-18 or IL-33 had an increased IL-5 secretion. Interestingly, E4BP4 gene expression and the percentage of E4BP4(+) cells of the recently shown IL-10 transcriptional regulator E4BP4 correlated with IL-10 gene expression and protein secretion in Th1 cultures. Taken together, we report that the IL-1 family "alarmins" IL-18 and IL-33 in addition to amplifying both Th1- and Th2-associated cytokines block production of the regulatory cytokine IL-10 in Th1 cultures.
Collapse
Affiliation(s)
- Lars Blom
- Laboratory of Medical Allergology, Allergy Clinic, Copenhagen University Hospital at Gentofte, 2900 Hellerup, Denmark.
| | | |
Collapse
|
73
|
van Beek AA, Knol EF, de Vos P, Smelt MJ, Savelkoul HFJ, van Neerven RJJ. Recent developments in basophil research: do basophils initiate and perpetuate type 2 T-helper cell responses? Int Arch Allergy Immunol 2012; 160:7-17. [PMID: 22948001 DOI: 10.1159/000341633] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Basophils account for only 0.1-1% of all peripheral blood leukocytes. They were considered to be a redundant cell type for a long time. However, several findings show a non-redundant role for basophils in type 2 T-helper cell (Th2) immune responses in helminth infections, allergy and autoimmunity. Both immunoglobulin-E-dependent and -independent pathways have been described to contribute to basophil activation. In addition, several recent studies reported that basophils can function as antigen-presenting cells and are important in the initiation of Th2 immune responses. However, there are also conflicting studies that do not corroborate the importance of basophils in Th2 immune responses. This review discusses the role of basophils in Th2 immune responses in view of these recent findings.
Collapse
Affiliation(s)
- A A van Beek
- Top Institute Food and Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
74
|
Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol 2012; 33:389-96. [PMID: 22609147 DOI: 10.1016/j.it.2012.04.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-33 is a member of the IL-1 cytokine family that has been shown to play an important role in the induction and effector phases of type 2 immune responses. Both innate and adaptive immunity are regulated by IL-33, and many studies have shown disease-associated functions for this cytokine. Recently, IL-33 has been implicated in the function of novel innate lymphocyte populations that regulate both protective responses in parasitic infections and allergic airway inflammation. Here, we discuss recent data highlighting the dual roles of IL-33 in protective and deleterious immune responses.
Collapse
Affiliation(s)
- Ananda S Mirchandani
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, UK
| | | | | |
Collapse
|
75
|
Bartemes KR, Kita H. Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol 2012; 143:222-35. [PMID: 22534317 DOI: 10.1016/j.clim.2012.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
Asthma is an inflammatory disorder of the airways, characterized by infiltration of mast cells, eosinophils, and Th2-type CD4+ T cells in the airway wall. Airway epithelium constitutes the first line of interaction with our atmospheric environment. The protective barrier function of the airway epithelium is likely impaired in asthma. Furthermore, recent studies suggest critical immunogenic and immunomodulatory functions of airway epithelium. In particular, a triad of cytokines, including IL-25, IL-33 and TSLP, is produced and released by airway epithelial cells in response to various environmental and microbial stimuli or by cellular damage. These cytokines induce and promote Th2-type airway inflammation and cause remodeling and pathological changes in the airway walls, suggesting their pivotal roles in the pathophysiology of asthma. Thus, the airway epithelium can no longer be regarded as a mere structural barrier, but must be considered an active player in the pathogenesis of asthma and other allergic disorders.
Collapse
Affiliation(s)
- Kathleen R Bartemes
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|