51
|
Abstract
PAX8 is a lineage-restricted transcription factor that is expressed in epithelial ovarian cancer (EOC) precursor tissues, and in the major EOC histotypes. Frequent overexpression of PAX8 in primary EOCs suggests this factor functions as an oncogene during tumorigenesis, however, the biological role of PAX8 in EOC development is poorly understood. We found that stable knockdown of PAX8 in EOC models significantly reduced cell proliferation and anchorage dependent growth in vitro, and attenuated tumorigenicity in vivo. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and transcriptional profiling were used to create genome-wide maps of PAX8 binding and putative target genes. PAX8 binding sites were significantly enriched in promoter regions (p < 0.05) and superenhancers (p < 0.05). MEME-ChIP analysis revealed that PAX8 binding sites overlapping superenhancers or enhancers, but not promoters, were enriched for JUND/B and ARNT/AHR motifs. Integrating PAX8 ChIP-seq and gene expression data identified PAX8 target genes through their associations within shared topological association domains. Across two EOC models we identified 62 direct regulatory targets based on PAX8 binding in promoters and 1,330 putative enhancer regulatory targets. SEPW1, which is involved in oxidation-reduction, was identified as a PAX8 target gene in both cell line models. While the PAX8 cistrome exhibits a high degree of cell-type specificity, analyses of PAX8 target genes and putative cofactors identified common molecular targets and partners as candidate therapeutic targets for EOC.
Collapse
|
52
|
Macartney-Coxson D, Benton MC, Blick R, Stubbs RS, Hagan RD, Langston MA. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin Epigenetics 2017; 9:48. [PMID: 28473875 PMCID: PMC5415776 DOI: 10.1186/s13148-017-0344-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/14/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms provide an interface between environmental factors and the genome and are known to play a role in complex diseases such as obesity. These mechanisms, including DNA methylation, influence the regulation of development, differentiation and the establishment of cellular identity. Here we employ two approaches to identify differential methylation between two white adipose tissue depots in obese individuals before and after gastric bypass and significant weight loss. We analyse genome-wide DNA methylation data using (a) traditional paired t tests to identify significantly differentially methylated loci (Bonferroni-adjusted P ≤ 1 × 10-7) and (b) novel combinatorial algorithms to identify loci that differentiate between tissue types. RESULTS Significant differential methylation was observed for 3239 and 7722 CpG sites, including 784 and 1129 extended regions, between adipose tissue types before and after significant weight loss, respectively. The vast majority of these extended differentially methylated regions (702) were consistent across both time points and enriched for genes with a role in transcriptional regulation and/or development (e.g. homeobox genes). Other differentially methylated loci were only observed at one time point and thus potentially highlight genes important to adipose tissue dysfunction observed in obesity. Strong correlations (r > 0.75, P ≤ 0.001) were observed between changes in DNA methylation (subcutaneous adipose vs omentum) and changes in clinical trait, in particular for CpG sites within PITX2 and fasting glucose and four CpG sites within ISL2 and HDL. A single CpG site (cg00838040, ATP2C2) gave strong tissue separation, with validation in independent subcutaneous (n = 681) and omental (n = 33) adipose samples. CONCLUSIONS This is the first study to report a genome-wide DNA methylome comparison of subcutaneous abdominal and omental adipose before and after weight loss. The combinatorial approach we utilised is a powerful tool for the identification of methylation loci that strongly differentiate between these tissues. This study provides a solid basis for future research focused on the development of adipose tissue and its potential dysfunction in obesity, as well as the role DNA methylation plays in these processes.
Collapse
Affiliation(s)
- Donia Macartney-Coxson
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022 New Zealand
| | - Miles C Benton
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022 New Zealand.,Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059 Australia
| | - Ray Blick
- Biomarkers Group, Institute of Environmental Science and Research (ESR), Wellington, 5022 New Zealand
| | | | - Ronald D Hagan
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN 37996-2250 USA
| | - Michael A Langston
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN 37996-2250 USA
| |
Collapse
|
53
|
Koistinen V, Härkönen K, Kärnä R, Arasu UT, Oikari S, Rilla K. EMT induced by EGF and wounding activates hyaluronan synthesis machinery and EV shedding in rat primary mesothelial cells. Matrix Biol 2016; 63:38-54. [PMID: 28043889 DOI: 10.1016/j.matbio.2016.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022]
Abstract
The mesothelium is a membrane that forms the lining of several body cavities. It is composed of simple squamous mesothelial cells that secrete a glycosaminoglycan-rich lubricating fluid between inner organs. One of the most abundant glycosaminoglycans of those fluids is hyaluronan, which is synthesized on a plasma membrane and especially on apical filopodia of cultured cells. Our recent study showed that similar hyaluronan-rich protrusions are found in mesothelial lining in vivo, which suggests that hyaluronan synthesis in plasma membrane protrusions is a general process. However, the mesothelial lining was negative for the hyaluronan receptor CD44 while in many previous studies cultured mesothelial cells have been shown to express CD44. To further explore these findings we induced epithelial to mesenchymal transition in primary rat mesothelial cells by EGF-treatment and scratch wounding. Surprisingly, the results showed that at a normal epithelial, confluent stage the mesothelial cells are negative for CD44, but EMT induced by EGF or wounding activates CD44 expression and the whole hyaluronan synthesis machinery. In addition to typical EMT-like morphological changes, the growth of apical filopodia and budding of extracellular vesicles (EVs) were induced. In summary, the results of this study show that the activation of hyaluronan synthesis machinery, especially the expression of CD44 is strongly associated with EMT induced by EGF and wounding in mesothelial cells. Moreover, EMT enhances the secretion of EVs that carry CD44 and hyaluronan, which may be important regulators in EV interactions with their targets and ECM remodeling. The results of the present study also suggest that CD44 is a potential marker for EVs, especially those secreted from cells during tissue repair and pathological processes.
Collapse
Affiliation(s)
- Ville Koistinen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland.
| | - Kai Härkönen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Riikka Kärnä
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Uma Thanigai Arasu
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Sanna Oikari
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
54
|
Kuriyama S, Tamiya Y, Tanaka M. Spatiotemporal expression of UPK3B and its promoter activity during embryogenesis and spermatogenesis. Histochem Cell Biol 2016; 147:17-26. [PMID: 27577269 DOI: 10.1007/s00418-016-1486-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 01/14/2023]
Abstract
Uroplakin (Upk) 3 is one of the main structural components of the urothelium tissue. Although expression of UPK3B is seen in a wider variety of the tissues and organs than UPK3A, tissue-specific expression has not yet been analyzed. Here, we analyzed the Cre recombinase activity driven by the Upk3b promoter in transgenic mice and the endogenous localization of UPK3B. We generated Tg(Upk3b-Cre)/R26tdTomato mice by crossing ROSA26tm14(CAG-tdTomato) (R26tdTomato) mice with Tg(Upk3b-Cre) mice and investigated the spatiotemporal distribution of tdTomato in embryonic and adult mice. In embryos, we detected Cre recombinase activity in neural crest cells and the heart, liver, kidneys, and lungs. In adult mice, Cre recombinase activity was detected in male and female genital organs; however, the activity was absent in the bladder. Histological analyses revealed that both tdTomato and UPK3B were present in testicular and epididymal sperm; however, tdTomato was not present in the ductus epididymis, where the endogenous expression of UPK3B was detected. In female siblings, both tdTomato and UPK3B expressions were detected in the follicles of the ovary, whereas no tdTomato expression was found in the mucosal epithelium of the fallopian tubes, where the endogenous UPK3B was expressed. These data suggest that UPK3B may play a pivotal role in the maturation of gametes and gamete-delivery organs.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.
| | - Yuutaro Tamiya
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan.,Department of Lifescience, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuenmachi, Akita City, Akita, 010-8502, Japan
| | - Masamitsu Tanaka
- Department of Molecular Biochemistry, Graduate School Medicine Akita University, Hondo 1-1-1, Akita City, Akita, 010-8543, Japan
| |
Collapse
|
55
|
Kawanishi K. Diverse properties of the mesothelial cells in health and disease. Pleura Peritoneum 2016; 1:79-89. [PMID: 30911611 DOI: 10.1515/pp-2016-0009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mesothelial cells (MCs) form the superficial anatomic layer of serosal membranes, including pleura, pericardium, peritoneum, and the tunica of the reproductive organs. MCs produce a protective, non-adhesive barrier against physical and biochemical damages. MCs express a wide range of phenotypic markers, including vimentin and cytokeratins. MCs play key roles in fluid transport and inflammation, as reflected by the modulation of biochemical markers such as transporters, adhesion molecules, cytokines, growth factors, reactive oxygen species and their scavengers. MCs synthesize extracellular matrix related molecules, and the surface of MC microvilli secretes a highly hydrophilic protective barrier, "glycocalyx", consisting mainly of glycosaminoglycans. MCs maintain a balance between procoagulant and fibrinolytic activation by producing a whole range of regulators, can synthetize fibrin and therefore form adhesions. Synthesis and recognition of hyaluronan and sialic acids might be a new insight to explain immunoactive and immunoregulatory properties of MCs. Epithelial to mesenchymal transition of MCs may involve serosal repair and remodeling. MCs might also play a role in the development and remodeling of visceral adipose tissue. Taken together, MCs play important roles in health and disease in serosal cavities of the body. The mesothelium is not just a membrane and should be considered as an organ.
Collapse
|
56
|
Dragon J, Thompson J, MacPherson M, Shukla A. Differential Susceptibility of Human Pleural and Peritoneal Mesothelial Cells to Asbestos Exposure. J Cell Biochem 2016; 116:1540-52. [PMID: 25757056 DOI: 10.1002/jcb.25095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/23/2015] [Indexed: 11/08/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive cancer of mesothelial cells of pleural and peritoneal cavities. In 85% of cases both pleural and peritoneal MM is caused by asbestos exposure. Although both are asbestos-induced cancers, the incidence of pleural MM is significantly higher (85%) than peritoneal MM (15%). It has been proposed that carcinogenesis is a result of asbestos-induced inflammation but it is not clear what contributes to the differences observed between incidences of these two cancers. We hypothesize that the observed differences in incidences of pleural and peritoneal MM are the result of differences in the direct response of these cell types to asbestos rather than to differences mediated by the in vivo microenvironment. To test this hypothesis we characterized cellular responses to asbestos in a controlled environment. We found significantly greater changes in genome-wide expression in response to asbestos exposure in pleural mesothelial cells as compared to peritoneal mesothelial cells. In particular, a greater response in many common genes (IL-8, ATF3, CXCL2, CXCL3, IL-6, GOS2) was seen in pleural mesothelial cells as compared to peritoneal mesothelial cells. Unique genes expressed in pleural mesothelial cells were mainly pro-inflammatory (G-CSF, IL-1β, IL-1α, GREM1) and have previously been shown to be involved in development of MM. Our results are consistent with the hypothesis that differences in incidences of pleural and peritoneal MM upon exposure to asbestos are the result of differences in mesothelial cell physiology that lead to differences in the inflammatory response, which leads to cancer.
Collapse
Affiliation(s)
- Julie Dragon
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, Vermont, 05405
| | - Joyce Thompson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont, 05405
| | - Maximilian MacPherson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont, 05405
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont, 05405
| |
Collapse
|
57
|
Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, Gnad F, Nguyen TT, Jaiswal BS, Chirieac LR, Sciaranghella D, Dao N, Gustafson CE, Munir KJ, Hackney JA, Chaudhuri A, Gupta R, Guillory J, Toy K, Ha C, Chen YJ, Stinson J, Chaudhuri S, Zhang N, Wu TD, Sugarbaker DJ, de Sauvage FJ, Richards WG, Seshagiri S. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 2016; 48:407-16. [PMID: 26928227 DOI: 10.1038/ng.3520] [Citation(s) in RCA: 625] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (∼2%; 4/216) and TRAF7 (∼2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.
Collapse
Affiliation(s)
- Raphael Bueno
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric W Stawiski
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA.,Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Leonard D Goldstein
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA.,Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Steffen Durinck
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA.,Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Assunta De Rienzo
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Florian Gnad
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Thong T Nguyen
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Bijay S Jaiswal
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniele Sciaranghella
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nhien Dao
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Corinne E Gustafson
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kiara J Munir
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jason A Hackney
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Amitabha Chaudhuri
- Bioinformatics Department, MedGenome Labs, Pvt., Ltd., Narayana Health City, Bangalore, India
| | - Ravi Gupta
- Bioinformatics Department, MedGenome Labs, Pvt., Ltd., Narayana Health City, Bangalore, India
| | - Joseph Guillory
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Karen Toy
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Connie Ha
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Ying-Jiun Chen
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Jeremy Stinson
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Subhra Chaudhuri
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Na Zhang
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - Thomas D Wu
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California, USA
| | - David J Sugarbaker
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Frederic J de Sauvage
- Molecular Oncology Department, Genentech, Inc., South San Francisco, California, USA
| | - William G Richards
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Somasekar Seshagiri
- Molecular Biology Department, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
58
|
Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo. Histochem Cell Biol 2016; 145:531-44. [DOI: 10.1007/s00418-016-1405-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
|
59
|
Upk3b is dispensable for development and integrity of urothelium and mesothelium. PLoS One 2014; 9:e112112. [PMID: 25389758 PMCID: PMC4229118 DOI: 10.1371/journal.pone.0112112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
The mesothelium, the lining of the coelomic cavities, and the urothelium, the inner lining of the urinary drainage system, are highly specialized epithelia that protect the underlying tissues from mechanical stress and seal them from the overlying fluid space. The development of these epithelia from simple precursors and the molecular characteristics of the mature tissues are poorly analyzed. Here, we show that uroplakin 3B (Upk3b), which encodes an integral membrane protein of the tetraspanin superfamily, is specifically expressed both in development as well as under homeostatic conditions in adult mice in the mesothelia of the body cavities, i.e., the epicardium and pericardium, the pleura and the peritoneum, and in the urothelium of the urinary tract. To analyze Upk3b function, we generated a creERT2 knock-in allele by homologous recombination in embryonic stem cells. We show that Upk3bcreERT2 represents a null allele despite the lack of creERT2 expression from the mutated locus. Morphological, histological and molecular analyses of Upk3b-deficient mice did not detect changes in differentiation or integrity of the urothelium and the mesothelia that cover internal organs. Upk3b is coexpressed with the closely related Upk3a gene in the urothelium but not in the mesothelium, leaving the possibility of a functional redundancy between the two genes in the urothelium only.
Collapse
|
60
|
Verardo R, Piazza S, Klaric E, Ciani Y, Bussadori G, Marzinotto S, Mariuzzi L, Cesselli D, Beltrami AP, Mano M, Itoh M, Kawaji H, Lassmann T, Carninci P, Hayashizaki Y, Forrest ARR, Beltrami CA, Schneider C. Specific Mesothelial Signature Marks the Heterogeneity of Mesenchymal Stem Cells From High-Grade Serous Ovarian Cancer. Stem Cells 2014; 32:2998-3011. [DOI: 10.1002/stem.1791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 04/17/2014] [Accepted: 05/10/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Roberto Verardo
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Silvano Piazza
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Enio Klaric
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Yari Ciani
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Giulio Bussadori
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Stefania Marzinotto
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Laura Mariuzzi
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Daniela Cesselli
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Antonio P. Beltrami
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Miguel Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Masayoshi Itoh
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Hideya Kawaji
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Timo Lassmann
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Piero Carninci
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | | | | | - Carlo A. Beltrami
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Claudio Schneider
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | | |
Collapse
|
61
|
Chau YY, Bandiera R, Serrels A, Martínez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, McHaffie S, Stimson RH, Walker BR, Chapuli RM, Schedl A, Hastie N. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 2014; 16:367-75. [PMID: 24609269 PMCID: PMC4060514 DOI: 10.1038/ncb2922] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 01/27/2014] [Indexed: 12/14/2022]
Abstract
Fuelled by the obesity epidemic, there is considerable interest in the developmental origins of white adipose tissue (WAT) and the stem and progenitor cells from which it arises. Whereas increased visceral fat mass is associated with metabolic dysfunction, increased subcutaneous WAT is protective. There are six visceral fat depots: perirenal, gonadal, epicardial, retroperitoneal, omental and mesenteric, and it is a subject of much debate whether these have a common developmental origin and whether this differs from that for subcutaneous WAT. Here we show that all six visceral WAT depots receive a significant contribution from cells expressing Wt1 late in gestation. Conversely, no subcutaneous WAT or brown adipose tissue arises from Wt1-expressing cells. Postnatally, a subset of visceral WAT continues to arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of cell populations enriched in WAT progenitors. We show that all visceral fat depots have a mesothelial layer like the visceral organs with which they are associated, and provide several lines of evidence that Wt1-expressing mesothelium can produce adipocytes. These results reveal a major ontogenetic difference between visceral and subcutaneous WAT, and pinpoint the lateral plate mesoderm as a major source of visceral WAT. They also support the notion that visceral WAT progenitors are heterogeneous, and suggest that mesothelium is a source of adipocytes.
Collapse
Affiliation(s)
- You-Ying Chau
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Roberto Bandiera
- IBV, INSERM U1091, Univeriste de Nice Sophia-Antipolis, Parc Valrose, Centre de Biochimie, 06100 Nice Cedex-2 FRANCE
| | - Alan Serrels
- Institute for Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh Cancer Research UK Centre, Western General Hospital Campus, Crewe Road South, Edinburgh, EH4 2XR
| | - Ofelia M Martínez-Estrada
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Wei Qing
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Martin Lee
- Institute for Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh Cancer Research UK Centre, Western General Hospital Campus, Crewe Road South, Edinburgh, EH4 2XR
| | - Joan Slight
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Anna Thornburn
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Rachel Berry
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Sophie McHaffie
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Roland H Stimson
- BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Brian R Walker
- BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Andreas Schedl
- IBV, INSERM U1091, Univeriste de Nice Sophia-Antipolis, Parc Valrose, Centre de Biochimie, 06100 Nice Cedex-2 FRANCE
| | - Nick Hastie
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
62
|
de Reyniès A, Jaurand MC, Renier A, Couchy G, Hysi I, Elarouci N, Galateau-Sallé F, Copin MC, Hofman P, Cazes A, Andujar P, Imbeaud S, Petel F, Pairon JC, Le Pimpec-Barthes F, Zucman-Rossi J, Jean D. Molecular classification of malignant pleural mesothelioma: identification of a poor prognosis subgroup linked to the epithelial-to-mesenchymal transition. Clin Cancer Res 2014; 20:1323-34. [PMID: 24443521 DOI: 10.1158/1078-0432.ccr-13-2429] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite research efforts to develop more effective diagnostic and therapeutic approaches, malignant pleural mesothelioma (MPM) prognosis remains poor. The assessment of tumor response to therapy can be improved by a deeper phenotypical classification of the tumor, with emphasis on its clinico-biological heterogeneity. The identification of molecular profiles is a powerful approach to better define MPM subclasses and targeted therapies. EXPERIMENTAL DESIGN Molecular subclasses were defined by transcriptomic microarray on 38 primary MPM cultures. A three-gene predictor, identified by quantitative reverse transcription PCR, was used to classify an independent series of 108 frozen tumor samples. Gene mutations were determined in BAP1, CDKN2A, CDKN2B, NF2, and TP53. Epithelial-to-mesenchymal transition (EMT) markers were studied at the mRNA and protein levels. RESULTS Unsupervised hierarchical clustering on transcriptomic data defined two robust MPM subgroups (C1 and C2), closely related to prognosis and partly to histologic subtypes. All sarcomatoid/desmoplastic MPM were included in the C2 subgroup. Epithelioid MPM were found in both subgroups, with a worse survival prognosis in the C2 subgroup. This classification and its association with histologic subtypes and survival were validated in our independent series using the three-gene predictor. Similar subgroups were found after classification of other MPM series from transcriptomic public datasets. C1 subgroup exhibited more frequent BAP1 alterations. Pathway analysis revealed that EMT was differentially regulated between MPM subgroups. C2 subgroup is characterized by a mesenchymal phenotype. CONCLUSIONS A robust classification of MPM that defines two subgroups of epithelioid MPM, characterized by different molecular profiles, gene alterations, and survival outcomes, was established.
Collapse
Affiliation(s)
- Aurélien de Reyniès
- Authors' Affiliations: Ligue Nationale Contre Le Cancer, Programme Cartes d'Identité des Tumeurs (CIT); INSERM, UMR-1162, Génomique fonctionnel des tumeurs solides, IUH; Université Paris Descartes; Université Paris Diderot; Université Paris 13; Labex Immuno-Oncology; Sorbonne Paris Cité; AP-HP, GHU Ouest, Hôpital Européen Georges Pompidou, Laboratoire d'Anatomie Pathologique; AP-HP, GHU Ouest, Hôpital Européen Georges Pompidou, Service de Chirurgie Thoracique, Paris; CHRU Lille, Service de Chirurgie Cardiaque; CHRU Lille, Université de Lille II, Institut de Pathologie, Centre de Biologie-Pathologie, 59037 Lille; CHU Caen, Service d'Anatomo-Pathologie; INSERM, U1086, Caen; CHU Nice, Laboratoire de Pathologie Clinique et Expérimentale (LPCE) et Biobanque Humaine, Hôpital Pasteur, Nice; Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et de Pathologie Professionnelle; and INSERM, U955, Equipe 4, Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Coles GL, Ackerman KG. Kif7 is required for the patterning and differentiation of the diaphragm in a model of syndromic congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2013; 110:E1898-905. [PMID: 23650387 PMCID: PMC3666741 DOI: 10.1073/pnas.1222797110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that results in a high degree of neonatal morbidity and mortality, but its pathological mechanisms are largely unknown. Therefore, we performed a forward genetic screen in mice to identify unique genes, models, and mechanisms of abnormal diaphragm development. We identified a mutant allele of kinesin family member 7 (Kif7), the disorganized diaphragm (dd). Embryos homozygous for the dd allele possess communicating diaphragmatic hernias, central tendon patterning defects, and increased cell proliferation with diaphragmatic tissue hyperplasia. Because the patterning of the central tendon is undescribed, we analyzed the expression of genes regulating tendonogenesis in dd/dd mutant embryos, and we determined that retinoic acid (RA) signaling was misregulautted. To further investigate the role of Kif7 and RA signaling in the development of the embryonic diaphragm, we established primary mesenchymal cultures of WT embryonic day 13.5 diaphragmatic cells. We determined that RA signaling is necessary for the expression of tendon markers as well as the expression of other CDH-associated genes. Knockdown of Kif7, and retinoic acid receptors alpha (Rara), beta (Rarb), and gamma (Rarg) indicated that RA signaling is dependent on these genes to promote tendonogenesis within the embryonic diaphragm. Taken together, our results provide evidence for a model in which inhibition of RA receptor signaling promotes CDH pathogenesis through a complex gene network.
Collapse
Affiliation(s)
| | - Kate G. Ackerman
- Department of Biomedical Genetics and
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
64
|
Mossman BT, Shukla A, Heintz NH, Verschraegen CF, Thomas A, Hassan R. New insights into understanding the mechanisms, pathogenesis, and management of malignant mesotheliomas. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1065-77. [PMID: 23395095 DOI: 10.1016/j.ajpath.2012.12.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/04/2012] [Accepted: 12/24/2012] [Indexed: 12/20/2022]
Abstract
Malignant mesothelioma (MM) is a relatively rare but devastating tumor that is increasing worldwide. Yet, because of difficulties in early diagnosis and resistance to conventional therapies, MM remains a challenge for pathologists and clinicians to treat. In recent years, much has been revealed regarding the mechanisms of interactions of pathogenic fibers with mesothelial cells, crucial signaling pathways, and genetic and epigenetic events that may occur during the pathogenesis of these unusual, pleiomorphic tumors. These observations support a scenario whereby mesothelial cells undergo a series of chronic injury, inflammation, and proliferation in the long latency period of MM development that may be perpetuated by durable fibers, the tumor microenvironment, and inflammatory stimuli. One culprit in sustained inflammation is the activated inflammasome, a component of macrophages or mesothelial cells that leads to production of chemotactic, growth-promoting, and angiogenic cytokines. This information has been vital to designing novel therapeutic approaches for patients with MM that focus on immunotherapy, targeting growth factor receptors and pathways, overcoming resistance to apoptosis, and modifying epigenetic changes.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405-0068, USA.
| | | | | | | | | | | |
Collapse
|