51
|
Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, Banasiak Ł, Placek W, Maksymowicz W, Wojtkiewicz J. Therapeutic Potential of Stem Cells in Follicle Regeneration. Stem Cells Int 2018; 2018:1049641. [PMID: 30154860 PMCID: PMC6098866 DOI: 10.1155/2018/1049641] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/24/2018] [Accepted: 07/22/2018] [Indexed: 02/08/2023] Open
Abstract
Alopecia is caused by a variety of factors which affect the hair cycle and decrease stem cell activity and hair follicle regeneration capability. This process causes lower self-acceptance, which may result in depression and anxiety. However, an early onset of androgenic alopecia is associated with an increased incidence of the metabolic syndrome and an increased risk of the cardiac ischaemic disease. The ubiquity of alopecia provides an encouragement to seek new, more effective therapies aimed at hair follicle regeneration and neoregeneration. We know that stem cells can be used to regenerate hair in several therapeutic strategies: reversing the pathological mechanisms which contribute to hair loss, regeneration of complete hair follicles from their parts, and neogenesis of hair follicles from a stem cell culture with isolated cells or tissue engineering. Hair transplant has become a conventional treatment technique in androgenic alopecia (micrografts). Although an autologous transplant is regarded as the gold standard, its usability is limited, because of both a limited amount of material and a reduced viability of cells obtained in this way. The new therapeutic options are adipose-derived stem cells and stem cells from Wharton's jelly. They seem an ideal cell population for use in regenerative medicine because of the absence of immunogenic properties and their ease of obtainment, multipotential character, ease of differentiating into various cell lines, and considerable potential for angiogenesis. In this article, we presented advantages and limitations of using these types of cells in alopecia treatment.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Anna Kruszewska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Banasiak
- Department of Plastic, Reconstructive and Aesthetic Surgery, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Foundation for Nerve Cell Regeneration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
52
|
Murugavel S, Bugyei-Twum A, Matkar PN, Al-Mubarak H, Chen HH, Adam M, Jain S, Narang T, Abdin RM, Qadura M, Connelly KA, Leong-Poi H, Singh KK. Valproic Acid Induces Endothelial-to-Mesenchymal Transition-Like Phenotypic Switching. Front Pharmacol 2018; 9:737. [PMID: 30050438 PMCID: PMC6050396 DOI: 10.3389/fphar.2018.00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is a widely used anticonvulsant drug that is currently undergoing clinical evaluation for anticancer therapy due to its anti-angiogenic potential. Endothelial cells (ECs) can transition into mesenchymal cells and this form of EC plasticity is called endothelial-to-mesenchymal transition (EndMT), which is widely implicated in several pathologies including cancer and organ fibrosis. However, the effect of VPA on EC plasticity and EndMT remains completely unknown. We report herein that VPA-treatment significantly inhibits tube formation, migration, nitric oxide production, proliferation and migration in ECs. A microscopic evaluation revealed, and qPCR, immunofluorescence and immunoblotting data confirmed EndMT-like phenotypic switching as well as an increased expression of pro-fibrotic genes in VPA-treated ECs. Furthermore, our data confirmed important and regulatory role played by TGFβ-signaling in VPA-induced EndMT. Our qPCR array data performed for 84 endothelial genes further supported our findings and demonstrated 28 significantly and differentially regulated genes mainly implicated in angiogenesis, endothelial function, EndMT and fibrosis. We, for the first time report that VPA-treatment associated EndMT contributes to the VPA-associated loss of endothelial function. Our data also suggest that VPA based therapeutics may exacerbate endothelial dysfunction and EndMT-related phenotype in patients undergoing anticonvulsant or anticancer therapy, warranting further investigation.
Collapse
Affiliation(s)
| | - Antoinette Bugyei-Twum
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Pratiek N Matkar
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Husain Al-Mubarak
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Hao H Chen
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mohamed Adam
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shubha Jain
- Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Tanya Narang
- Faculty of Science, York University, Toronto, ON, Canada
| | - Rawand M Abdin
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mohammad Qadura
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Krishna K Singh
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Vascular Surgery, Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
53
|
Gupta AC, Chawla S, Hegde A, Singh D, Bandyopadhyay B, Lakshmanan CC, Kalsi G, Ghosh S. Establishment of an in vitro organoid model of dermal papilla of human hair follicle. J Cell Physiol 2018; 233:9015-9030. [DOI: 10.1002/jcp.26853] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Abhishak C. Gupta
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Shikha Chawla
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Ashok Hegde
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Divya Singh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | | | | | - Gurpreet Kalsi
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Sourabh Ghosh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| |
Collapse
|
54
|
Ceruti JM, Leirós GJ, Balañá ME. Androgens and androgen receptor action in skin and hair follicles. Mol Cell Endocrinol 2018; 465:122-133. [PMID: 28912032 DOI: 10.1016/j.mce.2017.09.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 02/03/2023]
Abstract
Beyond sexual functions, androgens exert their action in skin physiology and pathophysiology. Skin cells are able to synthesize most active androgens from gonadal or adrenal precursors and the enzymes involved in skin steroidogenesis are implicated both in normal or pathological processes. Even when the role of androgens and androgen receptor (AR) in skin pathologies has been studied for decades, their molecular mechanisms in skin disorders remain largely unknown. Here, we analyze recent studies of androgens and AR roles in several skin-related disorders, focusing in the current understanding of their molecular mechanisms in androgenetic alopecia (AGA). We review the molecular pathophysiology of type 2 5α-reductase, AR coactivators, the paracrine factors deregulated in dermal papillae (such as TGF-β, IGF 1, WNTs and DKK-1) and the crosstalk between AR and Wnt signaling in order to shed some light on new promising treatments.
Collapse
Affiliation(s)
- Julieta María Ceruti
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, 2468 (C1440FFX) Ciudad de Buenos Aires, Argentina
| | - Gustavo José Leirós
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, 2468 (C1440FFX) Ciudad de Buenos Aires, Argentina
| | - María Eugenia Balañá
- Instituto de Ciencia y Tecnología Dr. César Milstein, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, 2468 (C1440FFX) Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
55
|
Androgen modulation of Wnt/β-catenin signaling in androgenetic alopecia. Arch Dermatol Res 2018; 310:391-399. [DOI: 10.1007/s00403-018-1826-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/15/2018] [Accepted: 03/07/2018] [Indexed: 11/26/2022]
|
56
|
Tamura Y, Takata K, Eguchi A, Kataoka Y. In vivo monitoring of hair cycle stages via bioluminescence imaging of hair follicle NG2 cells. Sci Rep 2018; 8:393. [PMID: 29321681 PMCID: PMC5762894 DOI: 10.1038/s41598-017-18763-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
Hair growth occurs periodically in a cycle that consists of three different phases: growth, regression, and resting. The length of each phase is regulated by both intrinsic and extrinsic factors throughout life, and influenced by physiological and pathological conditions. Elongation of the resting phase and shortening of the growth phase occur during physiological ageing and in baldness, respectively. In vivo discrimination of each phase of the hair cycle can be used to research for regeneration of hair follicles as well as to evaluate the efficacy of hair regrowth treatments in the same individual. Here we show that NG2+ epithelial cells in the hair follicles encompass bulge stem cells, and that the number of hair follicle NG2 cells underwent dramatic changes during the hair cycle. Transgenic rats with expression of firefly luciferase gene in NG2 cells were generated to monitor the hair cycle in vivo. Hair follicle NG2 cells were clearly visualized via bioluminescence imaging to study each phase of the hair cycle in the rats, from infancy to old age.
Collapse
Affiliation(s)
- Yasuhisa Tamura
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Kumi Takata
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Asami Eguchi
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yosky Kataoka
- Cellular Function Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN CLST-JEOL Collaboration Center, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
57
|
Diaz-Perez JA, Joyce JC, Cibull TL, Victor TA. Development of Pityriasis Amiantacea after Valproic Acid Therapy. Int J Trichology 2018; 10:237-239. [PMID: 30607045 PMCID: PMC6290282 DOI: 10.4103/ijt.ijt_53_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here, we present the case of a 16-year-old male who developed pityriasis amiantacea (PA) after the use of valproic acid. We propose that the keratinocyte proliferative activity of valproic acid mediated through the inhibition of glycogen synthase kinase-3β, and subsequent activation of the Wnt/β-catenin pathway could play a role in the development of PA. We additionally review the most relevant characteristics of this disease.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology, Northshore University Health System, University of Chicago, Chicago, IL, USA.,Department of Pathology, Jackson Health System, University of Miami, Miami, FL, USA
| | - Joel C Joyce
- Division of Dermatology, Northshore University Health System, University of Chicago, Chicago, IL, USA
| | - Thomas L Cibull
- Department of Pathology, Northshore University Health System, University of Chicago, Chicago, IL, USA
| | - Thomas A Victor
- Department of Pathology, Northshore University Health System, University of Chicago, Chicago, IL, USA
| |
Collapse
|
58
|
Kakunje A, Prabhu A, Sindhu Priya ES, Karkal R, Kumar P, Gupta N, Rahyanath PK. Valproate: It's Effects on Hair. Int J Trichology 2018; 10:150-153. [PMID: 30386073 PMCID: PMC6192236 DOI: 10.4103/ijt.ijt_10_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Valproate is a drug used in the treatment of various seizure disorders, bipolar disorder, migraine prophylaxis, and off label in many indications by various specialists. The common adverse drug reactions reported on valproate administration are tremor, weight gain, gastrointestinal disturbances, liver dysfunction, metabolic acidosis, thrombocytopenia, and hair loss. An internet search with keywords “valproate” and “hair” was done on Google Search and PubMed for articles related to the topic. Recognition of cosmetically significant side effects on hair is necessary and neglect of which might result in poor compliance. Valproate-induced hair loss is diffused, nonscarring, and dose related. Other hair-related adverse events are curling of hair, graying, dirty appearance, and changes in texture. In contrast to oral ingestions causing hair loss, experiments with topical valproic acid have shown some initial evidence on hair regeneration. This makes valproate's effects on hair interesting and understanding it's effects on hair is very much essential in clinical practice.
Collapse
Affiliation(s)
- Anil Kakunje
- Department of Psychiatry, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | - E S Sindhu Priya
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| | - Ravichandra Karkal
- Department of Psychiatry, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| | - Parmod Kumar
- Consultant Psychiatrist, Parmod Clinic, Chandigarh, India
| | - Nitin Gupta
- Department of Psychiatry, Government Medical College, Chandigarh, India
| | - P K Rahyanath
- Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India
| |
Collapse
|
59
|
Darwin E, Hirt PA, Fertig R, Doliner B, Delcanto G, Jimenez JJ. Alopecia Areata: Review of Epidemiology, Clinical Features, Pathogenesis, and New Treatment Options. Int J Trichology 2018; 10:51-60. [PMID: 29769777 PMCID: PMC5939003 DOI: 10.4103/ijt.ijt_99_17] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alopecia areata (AA) is a complex autoimmune condition that causes nonscarring hair loss. It typically presents with sharply demarcated round patches of hair loss and may present at any age. In this article, we review the epidemiology, clinical features, pathogenesis, and new treatment options of AA, with a focus on the immunologic mechanism underlying the treatment. While traditional treatment options such as corticosteroids are moderately effective, a better understanding of the disease pathogenesis may lead to the development of new treatments that are more directed and effective against AA. Sources were gathered from PubMed, Embase, and the Cochrane database using the keywords: alopecia, alopecia areata, hair loss, trichoscopy, treatments, pathogenesis, and epidemiology.
Collapse
Affiliation(s)
- Evan Darwin
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Penelope A Hirt
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Raymond Fertig
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Brett Doliner
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Gina Delcanto
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| | - Joaquin J Jimenez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|
60
|
Hair Germ Model In Vitro via Human Postnatal Keratinocyte-Dermal Papilla Interactions: Impact of Hyaluronic Acid. Stem Cells Int 2017; 2017:9271869. [PMID: 29129979 PMCID: PMC5654293 DOI: 10.1155/2017/9271869] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/19/2017] [Indexed: 02/01/2023] Open
Abstract
Hair follicle (HF) reconstruction in vitro is a promising field in alopecia treatment and human HF development research. Here, we combined postnatal human dermal papilla (DP) cells and skin epidermal keratinocytes (KCs) in a hanging drop culture to develop an artificial HF germ. The method is based on DP cell hair-inducing properties and KC self-organization. We evaluated two protocols of aggregate assembling. Mixed HF germ-like structures demonstrated the initiation of epithelial-mesenchymal interaction, including WNT pathway activation and expression of follicular markers. We analyzed the influence of possible DP cell niche components including soluble factors and extracellular matrix (ECM) molecules in the process of the organoid assembling and growth. Our results demonstrated that soluble factors had little impact on HF germ generation and Ki67+ cell score inside the organoids although BMP6 and VD3 maintained effectively the DP identity in the monolayer culture. Aggrecan, biglycan, fibronectin, and hyaluronic acid (HA) significantly stimulated cell proliferation in DP cell monolayer culture without any effect on DP cell identity. Most of ECM compounds prevented the formation of cell aggregates while HA promoted the formation of larger organoids. In conclusion, our model could be suitable to study cell-cell and cell-niche interactions during HF reconstruction in vitro.
Collapse
|
61
|
Valproic acid and alopecia: A two-edged sword. Asian J Psychiatr 2017; 29:39-40. [PMID: 29061425 DOI: 10.1016/j.ajp.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/21/2022]
|
62
|
Kalabusheva EP, Chermnykh ES, Terskikh VV, Vorotelyak EA. Preservation of a specialized phenotype of dermal papilla cells of a human hair follicle under cultivation conditions. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
63
|
Targeting of CXXC5 by a Competing Peptide Stimulates Hair Regrowth and Wound-Induced Hair Neogenesis. J Invest Dermatol 2017; 137:2260-2269. [PMID: 28595998 DOI: 10.1016/j.jid.2017.04.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/02/2017] [Accepted: 04/18/2017] [Indexed: 02/02/2023]
Abstract
The Wnt/β-catenin pathway has been implicated in hair follicle development and hair regeneration in adults. We discovered that CXXC-type zinc finger protein 5 (CXXC5) is a negative regulator of the Wnt/β-catenin pathway involved in hair regrowth and wound-induced hair follicle neogenesis via an interaction with Dishevelled. CXXC5 was upregulated in miniaturized hair follicles and arrector pili muscles in human balding scalps. The inhibitory effects of CXXC5 on alkaline phosphatase activity and cell proliferation were demonstrated using human hair follicle dermal papilla cells. Moreover, CXXC5-/- mice displayed accelerated hair regrowth, and treatment with valproic acid, a glycogen synthase kinase 3β inhibitor that activates the Wnt/β-catenin pathway, further induced hair regrowth in the CXXC5-/- mice. Disrupting the CXXC5-Dishevelled interaction with a competitor peptide activated the Wnt/β-catenin pathway and accelerated hair regrowth and wound-induced hair follicle neogenesis. Overall, these findings suggest that the CXXC5-Dishevelled interaction is a potential target for the treatment of hair loss.
Collapse
|
64
|
|
65
|
Abstract
Androgenetic alopecia (AGA) is characterized by a non-scarring progressive miniaturization of the hair follicle in predisposed men and women with a pattern distribution. Although AGA is a very prevalent condition, approved therapeutic options are limited. This article discusses the current treatment alternatives including their efficacy, safety profile, and quality of evidence. Finasteride and minoxidil for male androgenetic alopecia and minoxidil for female androgenetic alopecia still are the therapeutic options with the highest level evidence. The role of antiandrogens for female patients, the importance of adjuvant therapies, as well as new drugs and procedures are also addressed.
Collapse
Affiliation(s)
- Yanna Kelly
- Department of Dermatology, Universidade de São Paulo, São Paulo, SP, Brazil. .,Department of Dermatology, Hospital do Servidor Publico Municipal de São Paulo, São Paulo, SP, Brazil. .,, 1364, Oscar Freire Street, São Paulo, SP, 05409-010, Brazil.
| | - Aline Blanco
- Department of Dermatology, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Antonella Tosti
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
66
|
Watanabe S, Kuwabara Y, Suehiro S, Yamashita D, Tanaka M, Tanaka A, Ohue S, Araki H. Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma. Eur J Clin Pharmacol 2016; 73:357-363. [PMID: 27889835 DOI: 10.1007/s00228-016-2167-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is also used to manage seizures in glioblastoma patients. HDAC inhibitors can protect normal cells and tissues from the deleterious effects of radiotherapy, and VPA is reported to improve the survival of glioblastoma patients receiving chemoradiation therapy. VPA also promotes hair growth, and thus has the potential to reduce the radiotherapy side effect of hair loss while improving the survival of patients with glioblastoma. The purpose of this study was to determine whether VPA use during radiotherapy for high-grade glioma is associated with decreased side effects of radiotherapy and an improvement in overall survival (OS) and progression-free survival (PFS). METHODS Medical records of 112 patients with high-grade glioma were retrospectively reviewed. We grouped patients by VPA use or non-use during radiotherapy, and evaluated hair loss, OS, and PFS. RESULTS The radiation dose and fractionation at the onset of hair loss were 4 Gy and two fractions higher, respectively, in the VPA group compared with the VPA non-use group (P < 0.01). Median OS was 42.2 and 20.3 months in the VPA use and non-use groups, respectively (P < 0.01; hazard ratio [HR], 0.36; 95% confidence interval [CI], 0.18-0.74). Median PFS was 22.7 and 11.0 months in the VPA use and non-use groups, respectively (P = 0.099; HR, 0.62; 95% CI, 0.36-1.09). CONCLUSIONS VPA use during radiotherapy for glioma is associated with delayed hair loss and improvement in survival. Hair loss prevention benefits patients suffering from the deleterious effects of radiation.
Collapse
Affiliation(s)
- Shinichi Watanabe
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yui Kuwabara
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mamoru Tanaka
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akihiro Tanaka
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefecture Central Hospital, 83 Kasuga-cho, Matsuyama, Ehime, 790-0024, Japan
| | - Hiroaki Araki
- Division of Pharmacy, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
67
|
Sari ARP, Rufaut NW, Jones LN, Sinclair RD. Characterization of Ovine Dermal Papilla Cell Aggregation. Int J Trichology 2016; 8:121-9. [PMID: 27625564 PMCID: PMC5007918 DOI: 10.4103/0974-7753.188966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells.
Collapse
Affiliation(s)
| | - Nicholas Wolfgang Rufaut
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Dermatology, Epworth Hospital, Melbourne, Victoria, Australia
| | - Leslie Norman Jones
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Dermatology, Epworth Hospital, Melbourne, Victoria, Australia
| | - Rodney Daniel Sinclair
- Department of Medicine, University of Melbourne, Parkville, Australia; Department of Dermatology, Epworth Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
68
|
Tosti A, Zaiac MN, Canazza A, Sanchis-Gomar F, Pareja-Galeano H, Alis R, Lucia A, Emanuele E. Topical application of the Wnt/β-catenin activator methyl vanillate increases hair count and hair mass index in women with androgenetic alopecia. J Cosmet Dermatol 2016; 15:469-474. [DOI: 10.1111/jocd.12225] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Antonella Tosti
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Martin N. Zaiac
- Greater Miami Skin and Laser Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - Agnese Canazza
- Greater Miami Skin and Laser Center; Mount Sinai Medical Center; Miami Beach FL USA
| | | | - Helios Pareja-Galeano
- Research Institute of the Hospital 12 de Octubre (“i + 12”); Madrid Spain
- European University of Madrid; Madrid Spain
| | - Rafael Alis
- Research Institute “Dr. Viña Giner”; Molecular and Mitochondrial Medicine; Catholic University of Valencia San Vicente Mártir; Valencia Spain
- School of Medicine; Catholic University of Valencia San Vicente Mártir; Valencia Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre (“i + 12”); Madrid Spain
- European University of Madrid; Madrid Spain
| | | |
Collapse
|
69
|
Seo SH, Lee SH, Cha PH, Kim MY, Min DS, Choi KY. Polygonum aviculare L. and its active compounds, quercitrin hydrate, caffeic acid, and rutin, activate the Wnt/β-catenin pathway and induce cutaneous wound healing. Phytother Res 2016; 30:848-54. [PMID: 26929003 DOI: 10.1002/ptr.5593] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/30/2015] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Polygonum aviculare L. is a member of the Polygonaceae family of plants, which has been known for its antioxidant and anti-obesity effects. However, the wound healing function of P. aviculare extract has not been assessed. In this study, we identified a novel property of P. aviculare extract as a Wnt/β-catenin pathway activator based on a screen of 350 plant extracts using HEK293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. P. aviculare extract accelerated the migration of HaCaT keratinocytes without showing significant cytotoxicity. Moreover, P. aviculare extract efficiently re-epithelized wounds generated on mice. Additionally, ingredients of P. aviculare extract, such as quercitrin hydrate, caffeic acid, and rutin, also accelerated the motility of HaCaT keratinocytes with the activation of Wnt/β-catenin signaling. Therefore, based on our findings, P. aviculare extract and its active ingredients could be potential therapeutic agents for wound healing. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Seol Hwa Seo
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Soung-Hoon Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Mi-Yeon Kim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 609-735, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
70
|
Human placental extract exerts hair growth-promoting effects through the GSK-3β signaling pathway in human dermal papilla cells. Int J Mol Med 2015; 36:1088-96. [PMID: 26311045 DOI: 10.3892/ijmm.2015.2316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/23/2015] [Indexed: 11/05/2022] Open
Abstract
Human placental extract (HPE) is widely used in Korea to relieve fatigue. However, its effects on human dermal papilla cells (hDPCs) remain unknown. In the present study, in an effort to develop novel therapies to promote hair growth, we screened HPE. We demonstrate that HPE has hair growth‑promoting activities and induces β‑catenin expression through the inhibition of glycogen synthase kinase‑3β (GSK‑3β) by phosphorylation in hDPCs. Treatment with HPE significantly increased the viability of the hDPCs in a concentration‑dependent manner, as shown by bromodeoxyuridine (BrdU) assay. HPE also significantly increased the alkaline phosphatase (ALP) expression levels. The increased β‑catenin levels and the inhibition of GSK‑3β (Ser9) by phosphorylation suggested that HPE promoted the hair-inductive capacity of hDPCs. We compared the effects of treatment with HPE alone and treatment with HPE in conjunction with minoxidil (MXD). We found that HPE plus MXD effectively inhibited GSK‑3β by phosphorylation (Ser9) in the hDPCs. Moreover, we demonstrated that HPE was effective in inducing root hair elongation in rat vibrissa hair follicles, and that treatment with HPE led to a delay in catagen progression. Overall, our findings suggest that HPE promotes hair growth and may thus provide the basis of a novel therapeutic strategy for the clinical treatment of hair loss.
Collapse
|
71
|
Shim JH. Hair growth-promoting effect of human dermal stem/progenitor cell-derived conditioned medium. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
72
|
Zhang P, Kling RE, Ravuri SK, Kokai LE, Rubin JP, Chai JK, Marra KG. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. J Tissue Eng 2014; 5:2041731414556850. [PMID: 25383178 PMCID: PMC4221925 DOI: 10.1177/2041731414556850] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022] Open
Abstract
Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Russell E Kling
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudheer K Ravuri
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Jia-Ke Chai
- Department of Burns and Plastic Surgery, First Hospital Affiliated to General Hospital of PLA, Beijing, China
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA ; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
73
|
Abstract
INTRODUCTION Alopecia is a common concern encountered in the medical practice. Treatment approach varies according to the type and severity of alopecia. However, available treatment options have limited efficacy and several adverse effects. Presently, there are different treatment options being studied to overcome these limitations. Additionally, cellular pathways involved in the pathophysiology of alopecia are further being clarified to potentially target pathogenic molecules. AREAS COVERED We searched the literature for recently published articles discussing new treatment options as well as mechanisms involved in alopecia. We discuss the use of stem cells, growth factors, cellular pathways and robotic hair transplant, among other emerging therapies used for alopecia. EXPERT OPINION Future looks very promising and new effective treatments such as janus kinase inhibitors could possibly be available for alopecia areata. The stem-cell technology is advancing and companies involved in hair follicle neogenesis are starting clinical trials on patients with androgenetic alopecia.
Collapse
Affiliation(s)
- Leyre Falto-Aizpurua
- University of Miami, Miller School of Medicine, Department of Dermatology and Cutaneous Surgery , 1475 NW 12th Avenue, Suite 2175, Miami, FL 33136 , USA
| | | | | |
Collapse
|
74
|
Hall AP, Escott KJ, Sanganee H, Hickling KC. Preclinical toxicity of AZD7969: Effects of GSK3β inhibition in adult stem cells. Toxicol Pathol 2014; 43:384-99. [PMID: 25326587 DOI: 10.1177/0192623314544468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AZD7969 is a potent inhibitor of glycogen synthase kinase 3 (GSK3β), which is a multifunctional serine/threonine kinase that negatively regulates the Wnt/β-catenin signaling pathway. Treatment of rats and dogs with AZD7969 for periods of up to 4 weeks resulted in a number of changes, the most significant of which was a dose-dependent, and treatment-related, increase in proliferation in a number of tissues that was thought to arise from derepression of Wnt/β-catenin signaling in the stem cell compartment. Phenotypically, this resulted in hyperplasia that either maintained normal tissue architecture in the gastrointestinal tract, liver, kidney, and adrenals or effaced normal tissue architecture within the bones, incisor teeth, and femorotibial joint. In addition to these changes, we noted a treatment-related increase in iron loading in the liver and proximal small intestines. This off-target effect was robust, potent, and occurred in both dogs and rats suggesting that AZD7969 might be a useful tool compound to study iron storage disorders in the laboratory.
Collapse
Affiliation(s)
- A P Hall
- Drug Safety & Metabolism Innovative Medicines, Macclesfield, Cheshire, England
| | - K J Escott
- Emerging Innovations, Scientific Partnering & Alliances, Macclesfield, Cheshire, England
| | - H Sanganee
- Emerging Innovations, Scientific Partnering & Alliances, Macclesfield, Cheshire, England
| | - K C Hickling
- Drug Safety & Metabolism Innovative Medicines, Macclesfield, Cheshire, England
| |
Collapse
|
75
|
Ryu S, Lee Y, Hyun MY, Choi SY, Jeong KH, Park YM, Kang H, Park KY, Armstrong CA, Johnson A, Song PI, Kim BJ. Mycophenolate antagonizes IFN-γ-induced catagen-like changes via β-catenin activation in human dermal papilla cells and hair follicles. Int J Mol Sci 2014; 15:16800-15. [PMID: 25247578 PMCID: PMC4200814 DOI: 10.3390/ijms150916800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/23/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 137-701, Korea.
| | - Yonghee Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 137-701, Korea.
| | - Moo Yeol Hyun
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 137-701, Korea.
| | - Sun Young Choi
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 137-701, Korea.
| | - Kwan Ho Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, the Catholic University of Korea, Seoul 137-701, Korea.
| | - Young Min Park
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul 137-701, Korea.
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, the Catholic University of Korea, Seoul 137-701, Korea.
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 137-701, Korea.
| | - Cheryl A Armstrong
- Department of Dermatology, Denver Health Medical Center, Denver, CO 80204, USA.
| | - Andrew Johnson
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Peter I Song
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 137-701, Korea.
| |
Collapse
|
76
|
Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:28. [PMID: 26056595 PMCID: PMC4452063 DOI: 10.1186/2052-8426-2-28] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/05/2014] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells – cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.
Collapse
Affiliation(s)
- Artem Blagodatski
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | | | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
77
|
Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:28. [PMID: 26056595 PMCID: PMC4452063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/05/2014] [Indexed: 11/21/2023]
Abstract
The Wnt/β-catenin signaling pathway is crucial in animal development from sponges to humans. Its activity in the adulthood is less general, with exceptions having huge medical importance. Namely, improper activation of this pathway is carcinogenic in many tissues, most notably in the colon, liver and the breast. On the other hand, the Wnt/β-catenin signaling must be re-activated in cases of tissue damage, and insufficient activation results in regeneration failure and degeneration. These both medically important implications are unified by the emerging importance of this signaling pathway in the control of proliferation of various types of stem cells, crucial for tissue regeneration and, in case of cancer stem cells - cancer progression and relapse. This article aims at briefly reviewing the current state of knowledge in the field of Wnt signaling, followed by a detailed discussion of current medical developments targeting distinct branches of the Wnt pathway for anti-cancer and pro-regeneration therapies.
Collapse
Affiliation(s)
- Artem Blagodatski
- />Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russian Federation
| | | | - Vladimir L Katanaev
- />Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
78
|
Dong L, Hao H, Xia L, Liu J, Ti D, Tong C, Hou Q, Han Q, Zhao Y, Liu H, Fu X, Han W. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth. Sci Rep 2014; 4:5432. [PMID: 24961246 PMCID: PMC4069670 DOI: 10.1038/srep05432] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/05/2014] [Indexed: 12/24/2022] Open
Abstract
Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engage in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP's ability to induce hair cycling and regeneration.
Collapse
Affiliation(s)
- Liang Dong
- 1] Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Haojie Hao
- 1] Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Lei Xia
- 1] Department of Medical Administration,Chinese PLA General Hospital, Beijing 100853, China [2]
| | - Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Hou
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Qingwang Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Zhao
- Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, 572013, China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
79
|
Thangapazham RL, Darling TN, Meyerle J. Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 2014; 15:8407-27. [PMID: 24828202 PMCID: PMC4057739 DOI: 10.3390/ijms15058407] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/19/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022] Open
Abstract
Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.
Collapse
Affiliation(s)
- Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| | - Jon Meyerle
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD 20851, USA.
| |
Collapse
|
80
|
Jo SJ, Shin H, Park YW, Paik SH, Park WS, Jeong YS, Shin HJ, Kwon O. Topical valproic acid increases the hair count in male patients with androgenetic alopecia: a randomized, comparative, clinical feasibility study using phototrichogram analysis. J Dermatol 2014; 41:285-91. [PMID: 24533507 DOI: 10.1111/1346-8138.12422] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022]
Abstract
Valproic acid (VPA), a widely used anticonvulsant, inhibits glycogen synthase kinase 3β and activates the Wnt/β-catenin pathway, which is associated with hair growth cycle and anagen induction. To assess the efficacy of topical VPA for treating androgenetic alopecia (AGA), we performed a randomized, double-blind, placebo-controlled clinical trial. Male patients with moderate AGA underwent treatment with either VPA (sodium valproate, 8.3%) or placebo spray for 24 weeks. The primary end-point for efficacy was the change in hair count during treatment, which was assessed by phototrichogram analysis. Of the 40 patients enrolled in the study, 27 (n = 15, VPA group; n = 12, placebo group) completed the entire protocol with good compliance. No statistical differences in age, hair loss duration and total hair count at baseline were found between the groups. The mean change in total hair count was significantly higher in the VPA group than in the placebo group (P = 0.047). Both groups experienced mostly mild and self-limited adverse events, but their differences in prevalence rates were similar between the two groups (P = 0.72). A subject treated with topical VPA developed ventricular tachycardia, but it did not seem to be related to the VPA spray. Topical VPA increased the total hair counts of our patients; therefore, it is a potential treatment option for AGA.
Collapse
Affiliation(s)
- Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Gyeonggi-do, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Choi SY, Seop SY, Hyun MY, Yoo KH, Kim BJ, Kim MN, Cho JW. Safety evaluation of topical valproate application. Toxicol Res 2013; 29:87-90. [PMID: 24278633 PMCID: PMC3834454 DOI: 10.5487/tr.2013.29.2.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/25/2013] [Accepted: 06/05/2013] [Indexed: 12/02/2022] Open
Abstract
The potential role of topical valproate (VPA) in hair regrowth has been recently suggested. However, safety reports of VPA as a topical formulation are lacking. Therefore, in the present study, we investigated whether VPA causes skin irritation in humans. We first performed a cell viability test and showed that VPA did not exhibit toxicity toward HaCaT keratinocytes, fibroblasts, and RBL-3H mast cells. We then performed clinical patch test and skin irritation test through transdermal drug delivery with the help of microneedle rollers. No significant findings were obtained in the clinical patch test. In the skin irritation test, only 1 patient showed erythema at 1 hr, but the irritation reaction faded away within a few hours. Erythema and edema were not observed at 24 hr. We concluded that VPA has minimal potential to elicit skin irritation. Therefore, we consider that VPA can safely be applied to human skin.
Collapse
Affiliation(s)
- Sun Young Choi
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
82
|
A rapid and highly sensitive UPLC-MS/MS method using pre-column derivatization with 2-picolylamine for intravenous and percutaneous pharmacokinetics of valproic acid in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 938:35-42. [PMID: 24041657 DOI: 10.1016/j.jchromb.2013.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/10/2013] [Accepted: 08/16/2013] [Indexed: 11/21/2022]
Abstract
A rapid, highly sensitive and specific ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) for the detection of valproic acid (VPA) in rat plasma following the topical application was developed and validated. This method was carried out with pre-column derivatization using 2-picolylamine (PA) which reacts with the carboxylic acid group of VPA. The derivatization was completed in 10min and the resulting PA-VPA derivative enabled the sensitive detection of VPA in selected reaction monitoring (SRM) mode. Sample preparation was done with simple liquid-liquid extraction and chromatographic separation was achieved within 5min on a C18 column using a gradient elution with the mobile phase of 2mM ammonium formate containing 0.1% formic acid and methanol. The standard curves were linear over the concentration range of 0.07-200μg/mL with a correlation coefficient higher than 0.99. The limit of detection (LOD) and the lower limit of quantification (LLOQ) was 0.03 and 0.07μg/mL, respectively with 100μL of plasma sample. The intra- and inter-day precisions were measured to be below 10.7% and accuracies were within the range of 94.1-115.9%. The validated method was successfully applied to the pharmacokinetics of VPA in the rat following topical and intravenous applications.
Collapse
|
83
|
Jo SJ, Choi SJ, Yoon SY, Lee JY, Park WS, Park PJ, Kim KH, Eun HC, Kwon O. Valproic acid promotes human hair growth in in vitro culture model. J Dermatol Sci 2013; 72:16-24. [PMID: 23810771 DOI: 10.1016/j.jdermsci.2013.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. OBJECTIVES To determine the effect of VPA on human hair growth. METHODS We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. RESULTS Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. CONCLUSIONS Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia.
Collapse
Affiliation(s)
- Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Affiliation(s)
- Sun Young Choi
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | |
Collapse
|
85
|
Valente Duarte de Sousa IC, Tosti A. New investigational drugs for androgenetic alopecia. Expert Opin Investig Drugs 2013; 22:573-89. [PMID: 23550739 DOI: 10.1517/13543784.2013.784743] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Androgenetic alopecia (AGA) is the most common form of hair loss, however current treatment options are limited and moderately effective. In the past few years, there has been an increased interest in deciphering the molecular mechanisms responsible for this disorder, which has opened the possibility of novel treatments that promise to not only stimulate hair growth, but also to induce formation of new hair follicles. AREAS COVERED The future holds more effective topical treatments with less systemic side effects (such as topical 5-alfa-reductase inhibitors), prostaglandin analogs and antagonists, medications which act through the Wnt signaling pathway, stem cells for hair regeneration, platelet-rich plasma (PRP) and more effective ways of transplanting hair. A comprehensive search was made using PubMed, GoogleScholar and Clinicaltrial.gov using different combination of key words, which included AGA treatment, new treatments for AGA, Wnt pathway, prostaglandins, PRP and stem cells for hair regrowth. EXPERT OPINION In the near future, treatments with topical 5-alfa-reductase inhibitors and prostaglandin agonists or antagonists are expected. More evidence is needed to verify the efficacy of PRP. Although hair follicle bioengineering and multiplication is a fascinating and promising field, it is still a long way from being available to clinicians.
Collapse
|
86
|
Lee SH, Zahoor M, Hwang JK, Min DS, Choi KY. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility. PLoS One 2012; 7:e48791. [PMID: 23144972 PMCID: PMC3492241 DOI: 10.1371/journal.pone.0048791] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background Cutaneous wound healing is a complex process involving several signaling pathways such as the Wnt and extracellular signal-regulated kinase (ERK) signaling pathways. Valproic acid (VPA) is a commonly used antiepileptic drug that acts on these signaling pathways; however, the effect of VPA on cutaneous wound healing is unknown. Methods and Findings We created full-thickness wounds on the backs of C3H mice and then applied VPA. After 7 d, we observed marked healing and reduced wound size in VPA-treated mice. In the neo-epidermis of the wounds, β-catenin and markers for keratinocyte terminal differentiation were increased after VPA treatment. In addition, α-smooth muscle actin (α-SMA), collagen I and collagen III in the wounds were significantly increased. VPA induced proliferation and suppressed apoptosis of cells in the wounds, as determined by Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining analyses, respectively. In vitro, VPA enhanced the motility of HaCaT keratinocytes by activating Wnt/β-catenin, ERK and phosphatidylinositol 3-kinase (PI3-kinase)/Akt signaling pathways. Conclusions VPA enhances cutaneous wound healing in a murine model and induces migration of HaCaT keratinocytes.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Muhammad Zahoor
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jae-Kwan Hwang
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|