51
|
Abstract
This Opinion article discusses emerging evidence of direct contributions of nicotine to cancer onset and growth. The list of cancers reportedly connected to nicotine is expanding and presently includes small-cell and non-small-cell lung carcinomas, as well as head and neck, gastric, pancreatic, gallbladder, liver, colon, breast, cervical, urinary bladder and kidney cancers. The mutagenic and tumour-promoting activities of nicotine may result from its ability to damage the genome, disrupt cellular metabolic processes, and facilitate growth and spreading of transformed cells. The nicotinic acetylcholine receptors (nAChRs), which are activated by nicotine, can activate several signalling pathways that can have tumorigenic effects, and these receptors might be able to be targeted for cancer therapy or prevention. There is also growing evidence that the unique genetic makeup of an individual, such as polymorphisms in genes encoding nAChR subunits, might influence the susceptibility of that individual to the pathobiological effects of nicotine. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the evaluation of regulations on nicotine product manufacturing, distribution and marketing.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and Cancer Center and Research Institute, University of California, Irvine, California 92782, USA
| |
Collapse
|
52
|
Fu L, Shi K, Wang J, Chen W, Shi D, Tian Y, Guo W, Yu W, Xiao X, Kang T, Wang S, Huang W, Deng W. TFAP2B overexpression contributes to tumor growth and a poor prognosis of human lung adenocarcinoma through modulation of ERK and VEGF/PEDF signaling. Mol Cancer 2014; 13:89. [PMID: 24766673 PMCID: PMC4021500 DOI: 10.1186/1476-4598-13-89] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND TFAP2B is a member of the AP2 transcription factor family, which orchestrates a variety of cell processes. However, the roles of TFAP2B in regulating carcinogenesis remain largely unknown. Here, we investigated the regulatory effects of TFAP2B on lung adenocarcinomas growth and identified the underlying mechanisms of actions in non-small cell lung cancer (NSCLC) cells. METHODS We first examined the expression of TFAP2B in lung cancer cell lines and tumor tissues. We also analyzed the prognostic predicting value of TFAP2B in lung adenocarcinomas. Then we investigated the molecular mechanisms by which TFAP2B knockdown or overexpression regulated lung cancer cell growth, angiogenesis and apoptosis, and further confirmed the role of TFAP2B in tumor growth in a lung cancer xenograft mouse model. RESULTS TFAP2B was highly expressed in NSCLC cell lines and tumor tissues. Strong TFAP2B expression showed a positive correlation with the poor prognoses of patients with lung adenocarcinomas (P < 0.001). TFAP2B knockdown by siRNA significantly inhibited cell growth and induced apoptosis in NSCLC cells in vitro and in a lung cancer subcutaneous xenograft model, whereas TFAP2B overexpression promoted cell growth. The observed regulation of cell growth was accompanied by the TFAP2B-mediated modulation of the ERK/p38, caspase/cytochrome-c and VEGF/PEDF-dependent signaling pathways in NSCLC cells. CONCLUSIONS These results indicate that TFAP2B plays a critical role in regulating lung adenocarcinomas growth and could serve as a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shusen Wang
- State Key Laboratory of Oncology in South China, Colaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| | | | | |
Collapse
|
53
|
Wang YY, Liu Y, Ni XY, Bai ZH, Chen QY, Zhang Y, Gao FG. Nicotine promotes cell proliferation and induces resistance to cisplatin by α7 nicotinic acetylcholine receptor‑mediated activation in Raw264.7 and El4 cells. Oncol Rep 2013; 31:1480-8. [PMID: 24399025 DOI: 10.3892/or.2013.2962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 11/05/2022] Open
Abstract
Although nicotine is a risk factor for carcinogenesis and atherosclerosis, epidemiological data indicate that nicotine has therapeutic benefits in treating Alzheimer's disease. Our previous studies also showed that nicotine-treated dendritic cells have potential antitumor effects. Hence, the precise effects of nicotine on the biological characterizations of cells are controversial. The aim of the present study was to assess the roles of α7 nicotinic acetylcholine receptors (nAChRs), Erk1/2-p38-JNK and PI3K-Akt pathway in nicotine-mediated proliferation and anti-apoptosis effects. The results firstly showed that nicotine treatment clearly augmented cell viability and upregulated PCNA expression in both Raw264.7 and El4 cells. Meanwhile, nicotine afforded protection against cisplatin-induced toxicity through inhibiting caspase-3 activation and upregulating anti-apoptotic protein expression. Further exploration demonstrated that nicotine efficiently abolished cisplatin-promoted mitochondria translocation of Bax and the release of cytochrome c. The pretreatment of α-bungarotoxin and tubocurarine chloride significantly attenuated nicotine-augmented cell viability, abolished caspase-3 activation and α7 nAChR upregulation. Both Erk-JNK-p38 and PI3K-Akt signaling pathways could be activated by nicotine treatment in Raw264.7 and El4 cells. Notably, when Erk-JNK and PI3K-Akt activities were inhibited, nicotine-augmented cell proliferation and anti-apoptotic effects were abolished accordingly. The results presented here indicate that nicotine could achieve α7 nAChR-mediated proliferation and anti-apoptotic effects by activating Erk-JNK and PI3K-Akt pathways respectively, providing potential therapeutic molecules to deal with smoking-associated human diseases.
Collapse
Affiliation(s)
- Yan Yan Wang
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yao Liu
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiao Yan Ni
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhen Huan Bai
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Qiong Yun Chen
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Ye Zhang
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Feng Guang Gao
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
54
|
Nicotine effect on inflammatory and growth factor responses in murine cutaneous wound healing. Int Immunopharmacol 2013; 17:1155-64. [PMID: 24201082 DOI: 10.1016/j.intimp.2013.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022]
Abstract
The aim of the current study was to investigate the effect of nicotine in an experimental mouse model of cutaneous injury and healing responses, during the inflammatory phase of repair. Nicotine injection in full-thickness excisional skin wounds minimally affected inflammatory mediators like TNF, IL-6 and IL-12 while it induced a down-regulation in the expression of growth factors like VEGF, PDGF, TGF-β1 and TGF-β2, and the anti-inflammatory cytokine IL-10. Analysis of wound closure rate indicated no significant differences between nicotine and saline injected controls. In-vitro studies using bone marrow derived macrophages, resident peritoneal macrophages and RAW 264.7 macrophages, indicated that nicotine down-regulates TNF production. Moreover, nicotine was shown to down-regulate VEGF, PDGF and TGF-β1 in both bone marrow derived macrophages and RAW 264.7 cells. Using an NF-κB luciferase reporter RAW 264.7 cell line, we show that nicotine effects are minimally dependent on NF-κB inhibition. Moreover, nicotinic acetylcholine receptor (nAChR) subunit expression analyses indicated that while β2 nAChR subunit is expressed in mouse macrophages, α7 nAChR is not. In conclusion, while skin inflammatory parameters were not significantly affected by nicotine, a down-regulation of growth factor expression in both mouse skin and macrophages was observed. Reduced growth factor expression by nicotine might contribute, at least in part, to the overall detrimental effects of tobacco use in wound healing and skin diseases.
Collapse
|
55
|
Quabius ES, Möller P, Haag J, Pfannenschmidt S, Hedderich J, Görögh T, Röcken C, Hoffmann M. The role of the antileukoprotease SLPI in smoking-induced human papillomavirus-independent head and neck squamous cell carcinomas. Int J Cancer 2013; 134:1323-34. [PMID: 23996702 DOI: 10.1002/ijc.28462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/01/2013] [Accepted: 08/15/2013] [Indexed: 11/06/2022]
Abstract
Recently, we showed that increased SLPI levels prevent human papillomavirus (HPV) infections and metastasis in smoking-induced, non-HPV-driven head and neck squamous cell carcinoma (HNSCC). Here, we focus on the role of SLPI in non-HPV-driven HNSCC, investigating tumor tissue and non-neoplastic mucosa from the same patients and from non-HNSCC patients. Gene and protein expression of SLPI and gene expression of annexin 2 (a SLPI receptor), nicotine receptor (α7AChR) and arylhydrocarbon receptor (AhR) were analyzed in HNSCC patients (20 smokers; 16 nonsmokers). SLPI-results were correlated with the patients' HPV status. Non-neoplastic mucosa of HNSCC patients and normal mucosa from non-HNSCC individuals (18 smokers; 20 nonsmokers) was analyzed for the same parameters. Tissue of the inferior turbinate (n = 10) was incubated with nicotine for analysis of the same genes. SLPI gene expression in tumor tissue was 109.26 ± 23.08 times higher in smokers versus nonsmokers. Non-neoplastic mucosa of smokers showed also higher SLPI gene expression (10.49 ± 1.89-fold non-HNSCC; 18.02 ± 3.93-fold HNSCC patients). Annexin 2 gene expression was also increased in smokers. SLPI data were corroborated by immunohistochemistry. A nicotine dependent correlation between SLPI and annexin 2 gene expression (r(2) = 0.15, p < 0.001) was shown ex vivo. Nicotine and smoking increased α7AChR and AhR gene expression. Five patients, showing no/low SLPI expression, were HPV16-positive. A significant correlation between smoking and SLPI expression in tumors and to our knowledge for the first time in mucosa of HNSCC and non-HNSCC patients was established. Together with the finding that all patients with HPV infection showed no/low SLPI expression, these data support our intriguing hypothesis that smoking induced upregulated SLPI prevents HPV infections.
Collapse
Affiliation(s)
- Elgar Susanne Quabius
- Department of Otorhinolaryngology Head and Neck Surgery, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany; Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Tian Y, Xie Q, Tian Y, Liu Y, Huang Z, Fan C, Hou B, Sun D, Yao K, Chen T. Radioactive ¹²⁵I seed inhibits the cell growth, migration, and invasion of nasopharyngeal carcinoma by triggering DNA damage and inactivating VEGF-A/ERK signaling. PLoS One 2013; 8:e74038. [PMID: 24040157 PMCID: PMC3769370 DOI: 10.1371/journal.pone.0074038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Although radiotherapy technology has progressed rapidly in the past decade, the inefficiency of radiation and cancer cell resistance mean that the 5-year survival rate of patients with nasopharyngeal carcinoma (NPC) is low. Radioactive 125I seed implantation has received increasing attention as a clinical treatment for cancers. Vascular endothelial growth factor-A (VEGF-A) is one of the most important members of the VEGF family and plays an important role in cell migration through the extracellular-signal-regulated kinase (ERK) pathway. Here we show that radioactive 125I seeds more effectively inhibit NPC cell growth through DNA damage and subsequent induction of apoptosis, compared with X-ray irradiation. Moreover, cell migration was effectively inhibited by 125I seed irradiation through VEGF-A/ERK inactivation. VEGF-A pretreatment significantly blocked 125I seed irradiation-induced inhibition of cell migration by recovering the levels of phosphorylated ERK (p-ERK) protein. Interestingly, in vivo study results confirmed that 125I seed irradiation was more effective in inhibiting tumor growth than X-ray irradiation. Taken together, these results suggest that radioactive 125I seeds exert novel anticancer activity by triggering DNA damage and inactivating VEGF-A/ERK signaling. Our finding provides evidence for the efficacy of 125I seeds for treating NPC patients, especially those with local recurrence.
Collapse
Affiliation(s)
- Yunhong Tian
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province, People's Republic of China
| | - Qiang Xie
- Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province, People's Republic of China
- Department of Pathology, Medical College of Jinan University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yunming Tian
- State Key Laboratory Oncology in Southern China, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Radiation Oncology, Cancer Center of Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ying Liu
- Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province, People's Republic of China
| | - Zuoping Huang
- Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province, People's Republic of China
| | - Cundong Fan
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Bing Hou
- Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province, People's Republic of China
| | - Dan Sun
- Department of Oncology, Armed Police Hospital of Guangdong Province, Guangzhou, Guangdong Province, People's Republic of China
| | - Kaitai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (KY), (TC)
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail: (KY), (TC)
| |
Collapse
|
57
|
Fu L, Chen W, Guo W, Wang J, Tian Y, Shi D, Zhang X, Qiu H, Xiao X, Kang T, Huang W, Wang S, Deng W. Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth. PLoS One 2013; 8:e69240. [PMID: 23869238 PMCID: PMC3711861 DOI: 10.1371/journal.pone.0069240] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/06/2013] [Indexed: 12/31/2022] Open
Abstract
Berberine (BBR), an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC) cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wangbing Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian medical University Cancer Center, Dalian, China
| | - Jingshu Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dingbo Shi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaohong Zhang
- Institute of Cancer Stem Cell, Dalian medical University Cancer Center, Dalian, China
| | - Huijuan Qiu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangsheng Xiao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Shusen Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Institute of Cancer Stem Cell, Dalian medical University Cancer Center, Dalian, China
- State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|