51
|
Huang S, Slomianka L, Farmer AJ, Kharlamova AV, Gulevich RG, Herbeck YE, Trut LN, Wolfer DP, Amrein I. Selection for tameness, a key behavioral trait of domestication, increases adult hippocampal neurogenesis in foxes. Hippocampus 2015; 25:963-75. [DOI: 10.1002/hipo.22420] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Shihhui Huang
- Department of Health Sciences and Technology; Institute of Human Movement Sciences and Sport; ETH Zurich Zürich Switzerland
- Division of Functional Neuroanatomy; Institute of Anatomy, Functional Neuroanatomy, University of Zurich; Zürich Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich; Zürich Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy; Institute of Anatomy, Functional Neuroanatomy, University of Zurich; Zürich Switzerland
| | | | - Anastasiya V. Kharlamova
- Division of Siberian; Institute of Cytology and Genetics of the Russian Academy of Sciences; Novosibirsk Russia
| | - Rimma G. Gulevich
- Division of Siberian; Institute of Cytology and Genetics of the Russian Academy of Sciences; Novosibirsk Russia
| | - Yury E. Herbeck
- Division of Siberian; Institute of Cytology and Genetics of the Russian Academy of Sciences; Novosibirsk Russia
| | - Lyudmila N. Trut
- Division of Siberian; Institute of Cytology and Genetics of the Russian Academy of Sciences; Novosibirsk Russia
| | - David P. Wolfer
- Department of Health Sciences and Technology; Institute of Human Movement Sciences and Sport; ETH Zurich Zürich Switzerland
- Division of Functional Neuroanatomy; Institute of Anatomy, Functional Neuroanatomy, University of Zurich; Zürich Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich; Zürich Switzerland
- Zurich Center for Integrative Human Physiology ZIHP; University of Zurich; Zurich Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy; Institute of Anatomy, Functional Neuroanatomy, University of Zurich; Zürich Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich; Zürich Switzerland
| |
Collapse
|
52
|
Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn Sci 2015; 19:151-61. [DOI: 10.1016/j.tics.2015.01.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/18/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023]
|
53
|
Seib DR, Martin-Villalba A. Neurogenesis in the Normal Ageing Hippocampus: A Mini-Review. Gerontology 2014; 61:327-35. [DOI: 10.1159/000368575] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
|
54
|
Prior high corticosterone exposure reduces activation of immature neurons in the ventral hippocampus in response to spatial and nonspatial memory. Hippocampus 2014; 25:329-44. [DOI: 10.1002/hipo.22375] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
|
55
|
Bekiari C, Giannakopoulou A, Siskos N, Grivas I, Tsingotjidou A, Michaloudi H, Papadopoulos GC. Neurogenesis in the septal and temporal part of the adult rat dentate gyrus. Hippocampus 2014; 25:511-23. [PMID: 25394554 DOI: 10.1002/hipo.22388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 12/19/2022]
Abstract
Structural and functional dissociation between the septal and the temporal part of the dentate gyrus predispose for possible differentiations in the ongoing neurogenesis process of the adult hippocampus. In this study, BrdU-dated subpopulations of the rat septal and temporal dentate gyrus (coexpressing GFAP, DCX, NeuN, calretinin, calbindin, S100, caspase-3 or fractin) were quantified comparatively at 2, 5, 7, 14, 21, and 30 days after BrdU administration in order to examine the successive time-frames of the neurogenesis process, the glial or neuronal commitment of newborn cells and the occurring apoptotic cell death. Newborn neurons' migration from the neurogenic subgranular zone to the inner granular cell layer and expression of glutamate NMDA and AMPA receptors were also studied. BrdU immunocytochemistry revealed comparatively higher numbers of BrdU(+) cells in the septal part, but stereological analysis of newborn and total granule cells showed an identical ratio in the two parts, indicating an equivalent neurogenic ability, and a common topographical pattern along each part's longitudinal and transverse axis. Similarly, both parts exhibited extremely low levels of newborn glial and apoptotic cells. However, despite the initially equal division rate and pattern of the septal and temporal proliferating cells, their later proliferative profile diverged in the two parts. Dynamic differences in the differentiation, migration and maturation process of the two BrdU-incorporating subpopulations of newborn neurons were also detected, along with differences in their survival pattern. Therefore, we propose that various factors, including developmental date birth, local DG microenvironment and distinct functionality of the two parts may be the critical regulators of the ongoing neurogenesis process, leading the septal part to a continuous, rapid, and less-disciplined genesis rate, whereas the quiescent temporal microenvironment preserves a quite steady, less-demanding neurogenesis process.
Collapse
Affiliation(s)
- Chryssa Bekiari
- Laboratory of Anatomy, Histology and Embryology, Department of Structure and Function of Living Organisms, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
56
|
Barr JL, Unterwald EM. Activity-regulated gene expression in immature neurons in the dentate gyrus following re-exposure to a cocaine-paired environment. Hippocampus 2014; 25:354-62. [PMID: 25294309 DOI: 10.1002/hipo.22377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022]
Abstract
Intense craving for drug and relapse are observed in addicts who are exposed to environmental stimuli associated with drug-taking behavior even after long periods of abstinence. The hippocampus is a brain region known to be involved in contextual processing, taking place predominantly in the septal hippocampus, and emotional processing, taking place predominantly in the temporal hippocampus. Conditioned place preference is an animal model of context-conditioned reward. The dentate gyrus is a hippocampal sub-region particularly important for the acquisition of cocaine-induced place preference and is a site of continuous neurogenesis, which has been implicated in the vulnerability to drug-taking behavior. Therefore, these experiments explored the role of newly generated neurons in drug reward-context association by examining the activation, as determined by expression of the immediate early gene cfos, of young and mature granule cells in the septal and temporal dentate gyrus of adult rats that were re-exposed to a drug-paired environment following the development of cocaine place preference. The overall level of cfos expression was increased in both the septal and temporal dentate gyrus of animals that developed place preference and were re-exposed to the drug paired environment compared with re-exposure to a neutral environment. Overall level of neurogenesis, as detected by the S-phase marker 5'-bromo-2'-deoxyuridine (BrdU) and the immature neuron marker doublecortin (DCX), was unaltered by cocaine conditioning. However, the number of activated new neurons (DCX + cfos) was greater in the temporal dentate gyrus of cocaine-conditioned rats re-exposed to the drug-paired environment as compared to those re-exposed to a neutral environment. Further understanding of the role of dentate gyrus neurogenesis on the conditioned effects of drugs of abuse may provide new insights into the role of this process in the expression of addictive behaviors.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
57
|
O'Leary OF, Cryan JF. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci 2014; 35:675-87. [PMID: 25455365 DOI: 10.1016/j.tips.2014.09.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/26/2022]
Abstract
Adult hippocampal neurogenesis is implicated in antidepressant action, stress responses, and cognitive functioning. The hippocampus is functionally segregated along its longitudinal axis into dorsal (dHi) and ventral (vHi) regions in rodents, and analogous posterior and anterior regions in primates, whereby the vHi preferentially regulates stress and anxiety, while the dHi preferentially regulates spatial learning and memory. Given the role of neurogenesis in functions preferentially regulated by the dHi or vHi, it is plausible that neurogenesis is preferentially regulated in either the dHi or vHi depending upon the stimulus. We appraise here the literature on the effects of stress and antidepressants on neurogenesis along the hippocampal longitudinal axis and explore whether preferential regulation of neurogenesis in the vHi/anterior hippocampus contributes to stress resilience and antidepressant action.
Collapse
Affiliation(s)
- Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
58
|
Toyoda A, Iio W, Goto T, Koike H, Tsukahara T. Differential expression of genes encoding neurotrophic factors and their receptors along the septal-temporal axis of the rat hippocampus. Anim Sci J 2014; 85:986-93. [PMID: 25185865 DOI: 10.1111/asj.12268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022]
Abstract
The hippocampus plays a key role in learning and emotional regulation. The hippocampus' function varies along its septotemporal axis, with the septal pole being more frequently involved in spatial learning and memory, and the temporal pole playing a greater role in emotional behaviors. In this study, we present findings aimed at checking the expression level of the genes encoding neurotrophins and their receptors, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and their receptors (TrkA, TrkB and TrkC) in the hippocampus along the septotemporal axis. Using real-time PCR, several different expression patterns were observed. Remarkably, the expression of both NT-3 and TrkA genes in the septal hippocampus was higher than in the middle and temporal hippocampus. Higher expression of NT-3 and TrkA may implicate active neurogenesis in the dentate gyrus (DG) of the septal hippocampus because more neurogenesis occurs in the septal than the temporal DG of rats. Finally, the results obtained in this study emphasize the importance of choosing the hippocampal portion along its septotemporal axis for any hippocampal molecular and biochemical experimental studies.
Collapse
Affiliation(s)
- Atsushi Toyoda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan; College of Agriculture, Ibaraki University, Ibaraki, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ibaraki, Japan
| | | | | | | | | |
Collapse
|
59
|
Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J 2014; 32:103-15. [PMID: 25324981 PMCID: PMC4194292 DOI: 10.3857/roj.2014.32.3.103] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Kenneth A. Jenrow
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
60
|
Amrein I, Becker AS, Engler S, Huang SH, Müller J, Slomianka L, Oosthuizen MK. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species. Front Neuroanat 2014; 8:39. [PMID: 24904308 PMCID: PMC4033039 DOI: 10.3389/fnana.2014.00039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/30/2014] [Indexed: 12/03/2022] Open
Abstract
African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents.
Collapse
Affiliation(s)
- Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Anton S. Becker
- Division of Functional Neuroanatomy, Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Stefanie Engler
- Division of Functional Neuroanatomy, Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Shih-hui Huang
- Division of Functional Neuroanatomy, Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Julian Müller
- Division of Functional Neuroanatomy, Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Maria K. Oosthuizen
- Department of Zoology and Entomology, University of PretoriaPretoria, South Africa
| |
Collapse
|
61
|
Williamson LL, Bilbo SD. Neonatal infection modulates behavioral flexibility and hippocampal activation on a Morris Water Maze task. Physiol Behav 2014; 129:152-9. [PMID: 24576680 PMCID: PMC4005787 DOI: 10.1016/j.physbeh.2014.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/29/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Neonatal infection has enduring effects on the brain, both at the cellular and behavioral levels. We determined the effects of peripheral infection with Escherichia coli at postnatal day (P) 4 in rats on a water maze task in adulthood, and assessed neuronal activation in the dentate gyrus (DG) following the memory test. Rats were trained and tested on one of 3 distinct water maze task paradigms: 1) minimal training (18 trials/3days), 2) extended training (50 trials/10days) or 3) reversal training (extended training followed by 30 trials/3days with a new platform location). Following a 48h memory test, brains were harvested to assess neuronal activation using activity-regulated cytoskeleton-associated (Arc) protein in the DG. Following minimal training, rats treated neonatally with E. coli had improved performance and paradoxically reduced Arc expression during the memory test compared to control rats treated with PBS early in life. However, neonatally-infected rats did not differ from control rats in behavior or neuronal activation during the memory test following extended training. Furthermore, rats treated neonatally with E. coli were significantly impaired during the 48h memory test for a reversal platform location, unlike controls. Specifically, whereas neonatally-infected rats were able to acquire the new location at the same rate as controls, they spent significantly less time in the target quadrant for the reversal platform during a memory test. However, neonatally-infected and control rats had similar levels of Arc expression following the 48h memory test for reversal. Together, these data indicate that neonatal infection may improve the rate of acquisition on hippocampal-dependent tasks while impairing flexibility on the same tasks; in addition, network activation in the DG during learning may be predictive of future cognitive flexibility on a hippocampal-dependent task.
Collapse
Affiliation(s)
- Lauren L Williamson
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, United States.
| | - Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, United States
| |
Collapse
|
62
|
Li H, Mao S, Wang H, Zen K, Zhang C, Li L. MicroRNA-29a modulates axon branching by targeting doublecortin in primary neurons. Protein Cell 2014; 5:160-9. [PMID: 24535747 PMCID: PMC3956970 DOI: 10.1007/s13238-014-0022-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/20/2013] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed small, non-coding transcripts that regulate protein expression. Substantial evidences suggest that miRNAs are enriched in central nervous system, where they are hypothesized to play pivotal roles during neural development. In the present study, we analyzed miRNAs expression in mice cerebral cortex and hippocampus at different developmental stages and found miR-29a increased dramatically at postnatal stages. In addition, we provided strong evidences that miR-29a is enriched in mature neurons both in vitro and in vivo. Further investigation demonstrated that the activation of glutamate receptors induced endogenous miR-29a level in primary neurons. Moreover, we showed that miR-29a directly regulated its target protein Doublecortin (DCX) expression, which further modulated axon branching in primary culture. Together, our results suggested that miR-29a play an important role in neuronal development of mice cerebrum.
Collapse
Affiliation(s)
- Hanqin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, 210093, China
| | | | | | | | | | | |
Collapse
|
63
|
Lacar B, Parylak SL, Vadodaria KC, Sarkar A, Gage FH. Increasing the resolution of the adult neurogenesis picture. F1000PRIME REPORTS 2014; 6:8. [PMID: 24592320 PMCID: PMC3914506 DOI: 10.12703/p6-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The birth of new neurons in the adult mammalian brain—once thought impossible—is now a well-accepted phenomenon that takes place in the subventricular zone of the lateral ventricles and the hippocampus. This review focuses on the recent work that has sharpened our views of how hippocampal newborn neurons are regulated and function. Areas of study include (a) how neurogenesis contributes to behavioral pattern separation, (b) how pattern separation may be influenced by the properties and circuitry of newborn neurons, (c) differences along the dorsal-ventral axis of how neurogenesis is regulated and functions, and (d) adult neurogenesis in primates, including new human data. These current avenues of research reveal new details of adult neurogenesis and foreshadow what we may learn about this exciting phenomenon in the near future.
Collapse
|
64
|
Abstract
Adult neurogenesis continually produces a small population of immature granule cells (GCs) within the dentate gyrus. The physiological properties of immature GCs distinguish them from the more numerous mature GCs and potentially enables distinct network functions. To test how the changing properties of developing GCs affect spiking behavior, we examined synaptic responses of mature and immature GCs in hippocampal slices from adult mice. Whereas synaptic inhibition restricted GC spiking at most stages of maturation, the relative influence of inhibition, excitatory synaptic drive, and intrinsic excitability shifted over the course of maturation. Mature GCs received profuse afferent innervation such that spiking was suppressed primarily by inhibition, whereas immature GC spiking was also limited by the strength of excitatory drive. Although the input resistance was a reliable indicator of maturation, it did not determine spiking probability at immature stages. Our results confirm the existence of a transient period during GC maturation when perforant path stimulation can generate a high probability of spiking, but also reveal that immature GC excitability is tempered by functional synaptic inhibition and reduced excitatory innervation, likely maintaining the sparse population activity observed in vivo.
Collapse
|
65
|
Mendonça MCP, Soares ES, Stávale LM, Rapôso C, Coope A, Kalapothakis E, da Cruz-Höfling MA. Expression of VEGF and Flk-1 and Flt-1 receptors during blood-brain barrier (BBB) impairment following Phoneutria nigriventer spider venom exposure. Toxins (Basel) 2013; 5:2572-88. [PMID: 24351717 PMCID: PMC3873701 DOI: 10.3390/toxins5122572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 01/19/2023] Open
Abstract
Apart from its angiogenic and vascular permeation activity, the vascular endothelial growth factor (VEGF) has been also reported as a potent neuronal protector. Newborn rats with low VEGF levels develop neuron degeneration, while high levels induce protective mechanisms in several neuropathological conditions. Phoneutria nigriventer spider venom (PNV) disrupts the blood-brain barrier (BBB) and causes neuroinflammation in central neurons along with excitotoxic signals in rats and humans. All these changes are transient. Herein, we examined the expression of VEGF and its receptors, Flt-1 and Flk-1 in the hippocampal neurons following envenomation by PNV. Adult and neonatal rats were evaluated at time limits of 2, 5 and 24 h. Additionally, BBB integrity was assessed by measuring the expression of occludin, β-catenin and laminin and neuron viability was evaluated by NeuN expression. VEGF, Flt-1 and Flk-1 levels increased in PNV-administered rats, concurrently with respective mRNAs. Flt-1 and Flk-1 immunolabeling was nuclear in neurons of hippocampal regions, instead of the VEGF membrane-bound typical location. These changes occurred simultaneously with the transient decreases in BBB-associated proteins and NeuN positivity. Adult rats showed more prominent expressional increases of the VEGF/Flt-1/Flk-1 system and earlier recovery of BBB-related proteins than neonates. We conclude that the reactive expressional changes seen here suggest that VEGF and receptors could have a role in the excitotoxic mechanism of PNV and that such role would be less efficient in neonate rats.
Collapse
Affiliation(s)
- Monique C. P. Mendonça
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (Unicamp) Campinas, SP 13083-887, Brazil; E-Mail:
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Edilene S. Soares
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Leila M. Stávale
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Catarina Rapôso
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Andressa Coope
- Cell Signaling Laboratory, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP 13081-970, Brazil; E-Mail:
| | - Evanguedes Kalapothakis
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil; E-Mail:
| | - Maria Alice da Cruz-Höfling
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (Unicamp) Campinas, SP 13083-887, Brazil; E-Mail:
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-19-3521-6224; Fax: +55-19-3289-3124
| |
Collapse
|
66
|
Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 2013; 38:173-92. [PMID: 24300695 DOI: 10.1016/j.neubiorev.2013.11.009] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023]
Abstract
Chronic stressful life events are risk factors for developing major depression, the pathophysiology of which is strongly linked to impairments in serotonin (5-HT) neurotransmission. Exposure to chronic unpredictable stress (CUS) has been found to induce depressive-like behaviours, including passive behavioural coping and anhedonia in animal models, along with many other affective, cognitive, and behavioural symptoms. The heterogeneity of these symptoms represents the plurality of corticolimbic structures involved in mood regulation that are adversely affected in the disorder. Chronic stress has also been shown to negatively regulate adult hippocampal neurogenesis, a phenomenon that is involved in antidepressant effects and regulates subsequent stress responses. Although there exists an enormous body of data on stress-induced alterations of 5-HT activity, there has not been extensive exploration of 5-HT adaptations occurring presynaptically or at the level of the raphe nuclei after exposure to CUS. Similarly, although hippocampal neurogenesis is known to be negatively regulated by stress and positively regulated by antidepressant treatment, the role of neurogenesis in mediating affective behaviour in the context of stress remains an active area of investigation. The goal of this review is to link the serotonergic and neurogenic hypotheses of depression and antidepressant effects in the context of stress. Specifically, chronic stress significantly attenuates 5-HT neurotransmission and 5-HT1A autoreceptor sensitivity, and this effect could represent an endophenotypic hallmark for mood disorders. In addition, by decreasing neurogenesis, CUS decreases hippocampal inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, exacerbating stress axis overactivity. Similarly, we discuss the possibility that adult hippocampal neurogenesis mediates antidepressant effects via the ventral (in rodents; anterior in humans) hippocampus' influence on the HPA axis, and mechanisms by which antidepressants may reverse chronic stress-induced 5-HT and neurogenic changes. Although data are as yet equivocal, antidepressant modulation of 5-HT neurotransmission may well serve as one of the factors that could drive neurogenesis-dependent antidepressant effects through these stress regulation-related mechanisms.
Collapse
Affiliation(s)
- Ian Mahar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | | | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
67
|
Abstract
In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity after the perinatal period suggests that unique aspects of the structure and function of DG and olfactory bulb circuits allow them to benefit from the adult generation of neurons. In this review, we consider the distinctive features of the DG that may account for it being able to profit from this singular form of neural plasticity. Approaches to the problem of neurogenesis are grouped as "bottom-up," where the phenotype of adult-born granule cells is contrasted to that of mature developmentally born granule cells, and "top-down," where the impact of altering the amount of neurogenesis on behavior is examined. We end by considering the primary implications of these two approaches and future directions.
Collapse
Affiliation(s)
- Liam J Drew
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York 10032, USA
| | | | | |
Collapse
|
68
|
Neurogenesis along the septo-temporal axis of the hippocampus: Are depression and the action of antidepressants region-specific? Neuroscience 2013; 252:234-52. [DOI: 10.1016/j.neuroscience.2013.08.017] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/01/2013] [Accepted: 08/12/2013] [Indexed: 01/25/2023]
|
69
|
Castilla-Ortega E, Rosell-Valle C, Blanco E, Pedraza C, Chun J, Rodríguez de Fonseca F, Estivill-Torrús G, Santín LJ. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: the importance of assessing the amount of running in transgenic mice studies. Neurosci Res 2013; 77:170-9. [PMID: 24055600 DOI: 10.1016/j.neures.2013.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023]
Abstract
This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario Carlos Haya de Málaga, E-29010 Málaga, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J Neurosci 2013; 33:8079-87. [PMID: 23637197 DOI: 10.1523/jneurosci.5458-12.2013] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Memories can be recalled at different levels of resolution, from a detailed rendition of specific events within a single experience to a broad generalization across multiple related experiences. Here we provide evidence that neural representations reflecting the specificity or generality of memories are differentially represented along the dorsoventral axis of the CA3 area of the rat hippocampus. In dorsal CA3, neurons rapidly associate the identity of events with specific locations whereas, in more ventrally located CA3 regions, neurons gradually accumulate information across extended training to form representations that generalize across related events within a spatial context and distinguish events across contexts.
Collapse
|
71
|
Tanti A, Westphal WP, Girault V, Brizard B, Devers S, Leguisquet AM, Surget A, Belzung C. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus 2013; 23:797-811. [DOI: 10.1002/hipo.22134] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Arnaud Tanti
- INSERM UMR930; Tours France
- Université François Rabelais; Tours France
| | | | - Virginie Girault
- INSERM UMR930; Tours France
- Université François Rabelais; Tours France
| | - Bruno Brizard
- INSERM UMR930; Tours France
- Université François Rabelais; Tours France
| | - Severine Devers
- INSERM UMR930; Tours France
- Université François Rabelais; Tours France
| | | | - Alexandre Surget
- INSERM UMR930; Tours France
- Université François Rabelais; Tours France
| | - Catherine Belzung
- INSERM UMR930; Tours France
- Université François Rabelais; Tours France
| |
Collapse
|
72
|
Poppenk J, Evensmoen HR, Moscovitch M, Nadel L. Long-axis specialization of the human hippocampus. Trends Cogn Sci 2013; 17:230-40. [DOI: 10.1016/j.tics.2013.03.005] [Citation(s) in RCA: 558] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/20/2022]
|
73
|
Epp JR, Chow C, Galea LAM. Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci 2013; 7:57. [PMID: 23596385 PMCID: PMC3627134 DOI: 10.3389/fnins.2013.00057] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/28/2013] [Indexed: 12/26/2022] Open
Abstract
The structure of the mammalian hippocampus continues to be modified throughout life by continuous addition of neurons in the dentate gyrus. Although the existence of adult neurogenesis is now widely accepted the function that adult generated granule cells play is a topic of intense debate. Many studies have argued that adult generated neurons, due to unique physiological characteristics, play a unique role in hippocampus-dependent learning and memory. However, it is not currently clear whether this is the case or what specific capability adult generated neurons may confer that developmentally generated neurons do not. These questions have been addressed in numerous ways, from examining the effects of increasing or decreasing neurogenesis to computational modeling. One particular area of research has examined the effects of hippocampus dependent learning on proliferation, survival, integration and activation of immature neurons in response to memory retrieval. Within this subfield there remains a range of data showing that hippocampus dependent learning may increase, decrease or alternatively may not alter these components of neurogenesis in the hippocampus. Determining how and when hippocampus-dependent learning alters adult neurogenesis will help to further clarify the role of adult generated neurons. There are many variables (such as age of immature neurons, species, strain, sex, stress, task difficulty, and type of learning) as well as numerous methodological differences (such as marker type, quantification techniques, apparatus size etc.) that could all be crucial for a clear understanding of the interaction between learning and neurogenesis. Here, we review these findings and discuss the different conditions under which hippocampus-dependent learning impacts adult neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Jonathan R. Epp
- *Correspondence: Jonathan R. Epp, Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada. e-mail: ;
| | | | - Liisa A. M. Galea
- Department of Psychology, Program in Neuroscience, Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|