51
|
Jelly NS, Valat L, Walter B, Maillot P. Transient expression assays in grapevine: a step towards genetic improvement. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1231-45. [PMID: 25431200 DOI: 10.1111/pbi.12294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 10/16/2014] [Indexed: 05/06/2023]
Abstract
In the past few years, the usefulness of transient expression assays has continuously increased for the characterization of unknown gene function and metabolic pathways. In grapevine (Vitis vinifera L.), one of the most economically important fruit crops in the world, recent systematic sequencing projects produced many gene data sets that require detailed analysis. Due to their rapid nature, transient expression assays are well suited for large-scale genetic studies. Although genes and metabolic pathways of any species can be analysed by transient expression in model plants, a need for homologous systems has emerged to avoid the misinterpretation of results due to a foreign genetic background. Over the last 10 years, various protocols have thus been developed to apply this powerful technology to grapevine. Using cell suspension cultures, somatic embryos, leaves or whole plantlets, transient expression assays enabled the study of the function, regulation and subcellular localization of genes involved in specific metabolic pathways such as the biosynthesis of phenylpropanoids. Disease resistance genes that could be used for marker-assisted selection in conventional breeding or for stable transformation of elite cultivars have also been characterized. Additionally, transient expression assays have proved useful for shaping new tools for grapevine genetic improvement: synthetic promoters, silencing constructs, minimal linear cassettes or viral vectors. This review provides an update on the different tools (DNA constructs, reporter genes, vectors) and methods (Agrobacterium-mediated and direct gene transfer methods) available for transient gene expression in grapevine. The most representative results published thus far are then described.
Collapse
Affiliation(s)
- Noémie S Jelly
- Laboratoire Vigne, Biotechnologies & Environnement-EA 3991, Université de Haute Alsace, Colmar Cedex, France
| | | | | | | |
Collapse
|
52
|
Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L, Zhang X. Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. PLANT PHYSIOLOGY 2014; 166:2179-94. [PMID: 25301887 PMCID: PMC4256851 DOI: 10.1104/pp.114.246694] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/07/2014] [Indexed: 05/18/2023]
Abstract
Plants have evolved an elaborate signaling network to ensure an appropriate level of immune response to meet the differing demands of developmental processes. Previous research has demonstrated that DELLA proteins physically interact with JASMONATE ZIM-DOMAIN1 (JAZ1) and dynamically regulate the interaction of the gibberellin (GA) and jasmonate (JA) signaling pathways. However, whether and how the JAZ1-DELLA regulatory node is regulated at the transcriptional level in plants under normal growth conditions or during pathogen infection is not known. Here, we demonstrate multiple functions of cotton (Gossypium barbadense) GbWRKY1 in the plant defense response and during development. Although GbWRKY1 expression is induced rapidly by methyl jasmonate and infection by Verticillium dahliae, our results show that GbWRKY1 is a negative regulator of the JA-mediated defense response and plant resistance to the pathogens Botrytis cinerea and V. dahliae. Under normal growth conditions, GbWRKY1-overexpressing lines displayed GA-associated phenotypes, including organ elongation and early flowering, coupled with the down-regulation of the putative targets of DELLA. We show that the GA-related phenotypes of GbWRKY1-overexpressing plants depend on the constitutive expression of Gossypium hirsutum GhJAZ1. We also show that GhJAZ1 can be transactivated by GbWRKY1 through TGAC core sequences, and the adjacent sequences of this binding site are essential for binding specificity and affinity to GbWRKY1, as revealed by dual-luciferase reporter assays and electrophoretic mobility shift assays. In summary, our data suggest that GbWRKY1 is a critical regulator mediating the plant defense-to-development transition during V. dahliae infection by activating JAZ1 expression.
Collapse
Affiliation(s)
- Chao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangyin Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linlin Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
53
|
Gray DJ, Li ZT, Dhekney SA. Precision breeding of grapevine (Vitis vinifera L.) for improved traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:3-10. [PMID: 25438781 DOI: 10.1016/j.plantsci.2014.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 05/26/2023]
Abstract
This review provides an overview of recent technological advancements that enable precision breeding to genetically improve elite cultivars of grapevine (Vitis vinifera L.). Precision breeding, previously termed "cisgenic" or "intragenic" genetic improvement, necessitates a better understanding and use of genomic resources now becoming accessible. Although it is now a relatively simple task to identify genetic elements and genes from numerous "omics" databases, the control of major agronomic and enological traits often involves the currently unknown participation of many genes and regulatory machineries. In addition, genetic evolution has left numerous vestigial genes and sequences without tangible functions. Thus, it is critical to functionally test each of these genetic entities to determine their real-world functionality or contribution to trait attributes. Toward this goal, several diverse techniques now are in place, including cell culture systems to allow efficient plant regeneration, advanced gene insertion techniques, and, very recently, resources for genomic analyses. Currently, these techniques are being used for high-throughput expression analysis of a wide range of grapevine-derived promoters and disease-related genes. It is envisioned that future research efforts will be extended to the study of promoters and genes functioning to enhance other important traits, such as fruit quality and vigor.
Collapse
Affiliation(s)
- Dennis J Gray
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504 USA.
| | - Zhijian T Li
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, University of Florida/IFAS, 2725 Binion Road, Apopka, FL 32703-8504 USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, 663 Wyarno Road, Sheridan, WY 82801 USA
| |
Collapse
|
54
|
Pilati S, Brazzale D, Guella G, Milli A, Ruberti C, Biasioli F, Zottini M, Moser C. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC PLANT BIOLOGY 2014; 14:87. [PMID: 24693871 PMCID: PMC4021102 DOI: 10.1186/1471-2229-14-87] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The ripening of fleshy fruits is a complex developmental program characterized by extensive transcriptomic and metabolic remodeling in the pericarp tissues (pulp and skin) making unripe green fruits soft, tasteful and colored. The onset of ripening is regulated by a plethora of endogenous signals tuned to external stimuli. In grapevine and tomato, which are classified as non-climacteric and climacteric species respectively, the accumulation of hydrogen peroxide (H2O2) and extensive modulation of reactive oxygen species (ROS) scavenging enzymes at the onset of ripening has been reported, suggesting that ROS could participate to the regulatory network of fruit development. In order to investigate this hypothesis, a comprehensive biochemical study of the oxidative events occurring at the beginning of ripening in Vitis vinifera cv. Pinot Noir has been undertaken. RESULTS ROS-specific staining allowed to visualize not only H2O2 but also singlet oxygen (1O2) in berry skin cells just before color change in distinct subcellular locations, i.e. cytosol and plastids. H2O2 peak in sample skins at véraison was confirmed by in vitro quantification and was supported by the concomitant increase of catalase activity. Membrane peroxidation was also observed by HPLC-MS on galactolipid species at véraison. Mono- and digalactosyl diacylglycerols were found peroxidized on one or both α-linolenic fatty acid chains, with a 13(S) absolute configuration implying the action of a specific enzyme. A lipoxygenase (PnLOXA), expressed at véraison and localizing inside the chloroplasts, was indeed able to catalyze membrane galactolipid peroxidation when overexpressed in tobacco leaves. CONCLUSIONS The present work demonstrates the controlled, harmless accumulation of specific ROS in distinct cellular compartments, i.e. cytosol and chloroplasts, at a definite developmental stage, the onset of grape berry ripening. These features strongly candidate ROS as cellular signals in fruit ripening and encourage further studies to identify downstream elements of this cascade. This paper also reports the transient galactolipid peroxidation carried out by a véraison-specific chloroplastic lipoxygenase. The function of peroxidized membranes, likely distinct from that of free fatty acids due to their structural role and tight interaction with photosynthesis protein complexes, has to be ascertained.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Daniele Brazzale
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Graziano Guella
- Department of Physics, Bioorganic Chemistry Lab, University of Trento, Via Sommarive 14, 38123 Trento, Povo, Italy
- CNR, Istituto di Biofisica Trento, Via alla Cascata 56/C, 38123 Trento, Povo, Italy
| | - Alberto Milli
- Department of Physics, Bioorganic Chemistry Lab, University of Trento, Via Sommarive 14, 38123 Trento, Povo, Italy
| | - Cristina Ruberti
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| |
Collapse
|
55
|
Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants. Nat Protoc 2014; 9:939-49. [PMID: 24675734 DOI: 10.1038/nprot.2014.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Artificial miRNA (amiRNA) technology offers highly specific gene silencing in diverse plant species. The principal challenge in amiRNA application is to select potent amiRNAs from hundreds of bioinformatically designed candidates to enable maximal target gene silencing at the protein level. To address this issue, we developed the epitope-tagged protein-based amiRNA (ETPamir) screens, in which single or multiple potential target genes encoding epitope-tagged proteins are constitutively or inducibly coexpressed with individual amiRNA candidates in plant protoplasts. Accumulation of tagged proteins, detected by immunoblotting with commercial tag antibodies, inversely and quantitatively reflects amiRNA efficacy in vivo. The core procedure, from protoplast isolation to identification of optimal amiRNA, can be completed in 2-3 d. The ETPamir screens circumvent the limited availability of plant antibodies and the complexity of plant amiRNA silencing at target mRNA and/or protein levels. The method can be extended to verify predicted target genes for endogenous plant miRNAs.
Collapse
|
56
|
Gauthier A, Trouvelot S, Kelloniemi J, Frettinger P, Wendehenne D, Daire X, Joubert JM, Ferrarini A, Delledonne M, Flors V, Poinssot B. The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola. PLoS One 2014; 9:e88145. [PMID: 24516597 PMCID: PMC3916396 DOI: 10.1371/journal.pone.0088145] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022] Open
Abstract
Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i) the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii) grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i) PS3 was unable to elicit reactive oxygen species (ROS) production, cytosolic Ca(2+) concentration variations, mitogen-activated protein kinase (MAPK) activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii) PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA) and jasmonate-(JA)-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.
Collapse
Affiliation(s)
- Adrien Gauthier
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
| | | | - Jani Kelloniemi
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
| | | | | | | | | | - Alberto Ferrarini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Victor Flors
- Plant Physiology Section, University of Jaume I, Castellón, Spain
| | - Benoit Poinssot
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
- * E-mail:
| |
Collapse
|
57
|
Bakshi M, Oelmüller R. WRKY transcription factors: Jack of many trades in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e27700. [PMID: 24492469 PMCID: PMC4091213 DOI: 10.4161/psb.27700] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Amity Institute of Microbial Technology; Amity University; Noida, UP, India
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| |
Collapse
|
58
|
Yu Y, Xu W, Wang J, Wang L, Yao W, Yang Y, Xu Y, Ma F, Du Y, Wang Y. The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor. THE NEW PHYTOLOGIST 2013; 200:834-846. [PMID: 23905547 DOI: 10.1111/nph.12418] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/20/2013] [Indexed: 05/19/2023]
Abstract
Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Yihe Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weirong Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenkong Yao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yazhou Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangjian Du
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
59
|
Shekhawat UKS, Ganapathi TR. MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 2013; 8:e75506. [PMID: 24116051 PMCID: PMC3792942 DOI: 10.1371/journal.pone.0075506] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
WRKY transcription factors are specifically involved in the transcriptional reprogramming following incidence of abiotic or biotic stress on plants. We have previously documented a novel WRKY gene from banana, MusaWRKY71, which was inducible in response to a wide array of abiotic or biotic stress stimuli. The present work details the effects of MusaWRKY71 overexpression in transgenic banana plants. Stable integration and overexpression of MusaWRKY71 in transgenic banana plants was proved by Southern blot analysis and quantitative real time PCR. Transgenic banana plants overexpressing MusaWRKY71 displayed enhanced tolerance towards oxidative and salt stress as indicated by better photosynthesis efficiency (Fv/Fm) and lower membrane damage of the assayed leaves. Further, differential regulation of putative downstream genes of MusaWRKY71 was investigated using real-time RT-PCR expression analysis. Out of a total of 122 genes belonging to WRKY, pathogenesis-related (PR) protein genes, non-expressor of pathogenesis-related genes 1 (NPR1) and chitinase families analyzed, 10 genes (six belonging to WRKY family, three belonging to PR proteins family and one belonging to chitinase family) showed significant differential regulation in MusaWRKY71 overexpressing lines. These results indicate that MusaWRKY71 is an important constituent in the transcriptional reprogramming involved in diverse stress responses in banana.
Collapse
Affiliation(s)
- Upendra K. S. Shekhawat
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
60
|
Kushalappa AC, Gunnaiah R. Metabolo-proteomics to discover plant biotic stress resistance genes. TRENDS IN PLANT SCIENCE 2013; 18:522-31. [PMID: 23790252 DOI: 10.1016/j.tplants.2013.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/26/2013] [Accepted: 05/17/2013] [Indexed: 05/23/2023]
Abstract
Plants continuously encounter various environmental stresses and use qualitative and quantitative measures to resist pathogen attack. Qualitative stress responses, based on monogenic inheritance, have been elucidated and successfully used in plant improvement. By contrast, quantitative stress responses remain largely unexplored in plant breeding, due to complex polygenic inheritance, although hundreds of quantitative trait loci for resistance have been identified. Recent advances in metabolomic and proteomic technologies now offer opportunities to overcome the hurdle of polygenic inheritance and identify candidate genes for use in plant breeding, thus improving the global food security. In this review, we describe a conceptual background to the plant-pathogen relationship and propose ten heuristic steps streamlining the application of metabolo-proteomics to improve plant resistance to biotic stress.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | | |
Collapse
|