51
|
Cofer TM, Engelberth M, Engelberth J. Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. PLANT, CELL & ENVIRONMENT 2018; 41:1673-1682. [PMID: 29601632 DOI: 10.1111/pce.13204] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/22/2023]
Abstract
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress-related genes are significantly up-regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)-3-hexen-1-yl acetate (Z-3-HAC), and that seedlings primed with Z-3-HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.
Collapse
Affiliation(s)
- Tristan M Cofer
- Department of Environmental Science and Ecology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
- Center for Chemical Ecology, Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Marie Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Jurgen Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
52
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
53
|
Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. PLANT MOLECULAR BIOLOGY 2017; 95:399-409. [PMID: 28918565 PMCID: PMC5688203 DOI: 10.1007/s11103-017-0659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/12/2017] [Indexed: 05/20/2023]
Abstract
This work adds a new player, HER2, downstream of the perception of E-2-hexenal, a green leaf volatile, and shows that E-2-hexenal specifically changes the redox status of the mitochondria. It is widely accepted that plants produce and respond to green leaf volatiles (GLVs), but the molecular components involved in transducing their perception are largely unknown. The GLV E-2-hexenal inhibits root elongation in seedlings and, using this phenotype, we isolated E-2-hexenal response (her) Arabidopsis thaliana mutants. Using map-based cloning we positioned the her2 mutation to the At5g63620 locus, resulting in a phenylalanine instead of serine on position 223. Knockdown and overexpression lines of HER2 confirmed the role of HER2, which encodes an oxidoreductase, in the responsiveness to E-2-hexenal. Since E-2-hexenal is a reactive electrophile species, which are known to influence the redox status of cells, we utilized redox sensitive GFP2 (roGFP2) to determine the redox status of E-2-hexenal-treated root cells. Since the signal peptide of HER2 directed mCherry to the mitochondria, we targeted the expression of roGFP2 to this organelle besides the cytosol. E-2-hexenal specifically induced a change in the redox status in the mitochondria. We did not see a difference in the redox status in her2 compared to wild-type Arabidopsis. Still, the mitochondrial redox status did not change with Z-3-hexenol, another abundant GLV. These results indicate that HER2 is involved in transducing the perception of E-2-hexenal, which changes the redox status of the mitochondria.
Collapse
Affiliation(s)
- Alessandra Scala
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rossana Mirabella
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Department of Molecular Cytology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michel de Vries
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Spyropoulou EA, Dekker HL, Steemers L, van Maarseveen JH, de Koster CG, Haring MA, Schuurink RC, Allmann S. Identification and Characterization of (3 Z):(2 E)-Hexenal Isomerases from Cucumber. FRONTIERS IN PLANT SCIENCE 2017; 8:1342. [PMID: 28824678 PMCID: PMC5539243 DOI: 10.3389/fpls.2017.01342] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 05/23/2023]
Abstract
E-2-hexenal is a volatile compound that is commonly emitted by wounded or stressed plants. It belongs to the group of so-called green leaf volatiles (GLVs), which play an important role in transferring information to plants and insects. While most biosynthetic enzymes upstream of E-2-hexenal have been studied extensively, much less is known about the enzyme responsible for the conversion from Z-3- to E-2-hexenal. In this study we have identified two (3Z):(2E)-hexenal isomerases (HIs) from cucumber fruits by classical biochemical fractionation techniques and we were able to confirm their activity by heterologous expression. Recombinant protein of the HIs did not only convert the leaf aldehyde Z-3-hexenal to E-2-hexenal, but also (Z,Z)-3,6-nonadienal to (E,Z)-2,6-nonadienal, these last two representing major flavor volatiles of cucumber fruits. Transient expression of the cucumber HIs in Nicotiana benthamiana leaves drastically changed the GLV bouquet of damaged plants from a Z-3- to an E-2-enriched GLV profile. Furthermore, transcriptional analysis revealed that the two HIs showed distinct expression patterns. While HI-1 was specifically expressed in the flesh of cucumber fruits HI-2 was expressed in leaves as well. Interestingly, wounding of cucumber leaves caused only a slight increase in HI-2 transcript levels. These results demonstrate that cucumber HIs are responsible for the rearrangement of Z-3-aldehydes in both leaves and fruits. Future research will reveal the physiological importance of an increased conversion to E-2-aldehydes for plants and insects.
Collapse
Affiliation(s)
- Eleni A. Spyropoulou
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Henk L. Dekker
- Department of Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Luuk Steemers
- Department of Synthetic Organic Chemistry, Van ’t Hoff Institute for Molecular Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Jan H. van Maarseveen
- Department of Synthetic Organic Chemistry, Van ’t Hoff Institute for Molecular Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Chris G. de Koster
- Department of Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Michel A. Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Robert C. Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Silke Allmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
55
|
Almagro L, García-Pérez P, Belchí-Navarro S, Sánchez-Pujante PJ, Pedreño MA. New strategies for the use of Linum usitatissimum cell factories for the production of bioactive compounds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:73-8. [PMID: 26741536 DOI: 10.1016/j.plaphy.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 05/27/2023]
Abstract
In this work, suspension-cultured cells of Linum usitatissimum L. were used to evaluate the effect of two types of cyclodextrins, β-glucan and (Z)-3-hexenol separately or in combination on phytosterol and tocopherol production. Suspension-cultured cells of L. usitatissimum were able to produce high levels of phytosterols in the presence of 50 mM methylated-β-cyclodextrins (1325.96 ± 107.06 μg g dry weight(-1)) separately or in combination with β-glucan (1278.57 ± 190.10 μg g dry weight(-1)) or (Z)-3-hexenol (1507.88 ± 173.02 μg g dry weight(-1)), being cyclodextrins able to increase both the secretion and accumulation of phytosterols in the spent medium, whereas β-glucan and (Z)-3-hexenol themselves only increased its intracellular accumulation. Moreover, the phytosterol values found in the presence of hydroxypropylated-β-cyclodextrins were lower than those found in the presence of methylated-β-cyclodextrins in all cases studied. However, the results showed that the presence of methylated-β-cyclodextrins did not increase the tocopherols production and only an increase in tocopherol levels was observed when cells were elicited with 50 mM hydroxypropylated-β-cyclodextrins in combination with β-glucan (174 μg g dry weight(-1)) or (Z)-3-hexenol (257 μg g dry weight(-1)). Since the levels of tocopherol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. To sum up, flax cell cultures elicited with cyclodextrins alone or in combination with β-glucan or (Z)-3-hexenol were able produce phytosterols and tocopherols, and therefore, these elicited suspension-cultured cells of L. usitatissimum can provide an alternative system, which is at the same time more sustainable, economical and ecological for their production.
Collapse
Affiliation(s)
- Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain.
| | - Pascual García-Pérez
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - Sarai Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | | | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
56
|
Li T, Cofer T, Engelberth M, Engelberth J. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling. PLANTS (BASEL, SWITZERLAND) 2016; 5:E5. [PMID: 27135225 PMCID: PMC4844415 DOI: 10.3390/plants5010005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/14/2023]
Abstract
Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA.
Collapse
Affiliation(s)
- Ting Li
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Tristan Cofer
- Environmental Science Academic Program, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Marie Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Jurgen Engelberth
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
57
|
Mirabella R, Rauwerda H, Allmann S, Scala A, Spyropoulou EA, de Vries M, Boersma MR, Breit TM, Haring MA, Schuurink RC. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:1082-96. [PMID: 26243404 DOI: 10.1111/tpj.12953] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/21/2015] [Indexed: 05/20/2023]
Abstract
Plants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remains scarce. We study the response of Arabidopsis thaliana to E-2-hexenal, one of the green leaf volatiles (GLV) that is produced upon wounding, herbivory or infection with pathogens. We have taken a transcriptomics approach to identify genes that are induced by E-2-hexenal, but not by defence hormones or other GLVs. Furthermore, by studying the promoters of early E-2-hexenal-induced genes we determined that the only statistically enriched cis-element was the W-box motif. Since members of the plant-specific family of WRKY transcription factors act in trans on this cis-element, we focused on WRKY6, 40 and 53 that were most strongly induced by E-2-hexenal. Root elongation of Arabidopsis seedlings of the wrky40 wrky6 double mutant was much less inhibited than in wt plants, similar to the E-2-hexenal-responsive mutant her1, which is perturbed in γ-amino butyric acid (GABA) metabolism. The induction of several of the E-2-hexenal-specific genes was much higher in the wrky40, wrky6 or wrky40 wrky6 mutants, including GAD4, a glutamate decarboxylase that catalyzes the formation of GABA from glutamate. In conclusion, WRKY6 and 40 seem to act as important players transducing E-2-hexenal perception.
Collapse
Affiliation(s)
- Rossana Mirabella
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Han Rauwerda
- MAD, Dutch Genomics Service & Support Provider, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Silke Allmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Alessandra Scala
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Eleni A Spyropoulou
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michel de Vries
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Maaike R Boersma
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Timo M Breit
- MAD, Dutch Genomics Service & Support Provider, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
58
|
Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC, Rolff J, Romeis T, Schmülling T, Steppuhn A, van Dongen J, Whitcomb SJ, Wurst S, Zuther E, Kopka J. Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc 2015; 91:1118-1133. [PMID: 26289992 DOI: 10.1111/brv.12215] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/26/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022]
Abstract
Experience and memory of environmental stimuli that indicate future stress can prepare (prime) organismic stress responses even in species lacking a nervous system. The process through which such organisms prepare their phenotype for an improved response to future stress has been termed 'priming'. However, other terms are also used for this phenomenon, especially when considering priming in different types of organisms and when referring to different stressors. Here we propose a conceptual framework for priming of stress responses in bacteria, fungi and plants which allows comparison of priming with other terms, e.g. adaptation, acclimation, induction, acquired resistance and cross protection. We address spatial and temporal aspects of priming and highlight current knowledge about the mechanisms necessary for information storage which range from epigenetic marks to the accumulation of (dormant) signalling molecules. Furthermore, we outline possible patterns of primed stress responses. Finally, we link the ability of organisms to become primed for stress responses (their 'primability') with evolutionary ecology aspects and discuss which properties of an organism and its environment may favour the evolution of priming of stress responses.
Collapse
Affiliation(s)
- Monika Hilker
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie Universität (FU) Berlin, Haderslebener Straße 9, 12163, Berlin, Germany. .,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.
| | - Jens Schwachtje
- Applied Metabolome Analysis, Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Margarete Baier
- Plant Physiology, DCPS, Institute of Biology, FU Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Salma Balazadeh
- Institute for Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam-Golm, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam-Golm, Germany
| | - Sven Geiselhardt
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences (DCPS), Institute of Biology, Freie Universität (FU) Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Dirk K Hincha
- Central Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Reinhard Kunze
- Applied Genetics/Molecular Plant Genetics, DCPS, Institute of Biology, FU Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Bernd Mueller-Roeber
- Institute for Biochemistry and Biology, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam-Golm, Germany
| | - Matthias C Rillig
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195, Berlin, Germany.,Plant Ecology, DCPS, Institute of Biology, FU Berlin, Altensteinstraße 6, 14195, Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute of Biology, FU Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Tina Romeis
- Plant Biochemistry, DCPS, Institute of Biology, FU Berlin, Königin-Luise-Straße 12-16, 14195, Berlin, Germany
| | - Thomas Schmülling
- Applied Genetics, DCPS, Institute of Biology, FU Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, DCPS, Institute of Biology, FU Berlin, Haderslebener Straße 9, 12163, Berlin, Germany
| | - Joost van Dongen
- Rhizosphere Molecular Ecology, Institute of Biology, RWTH Aachen, Worringerweg 1, 52074, Aachen, Germany
| | - Sarah J Whitcomb
- Applied Metabolome Analysis, Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Susanne Wurst
- Functional Ecology, DCPS, Institute of Biology, FU Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Ellen Zuther
- Central Infrastructure Group Transcript Profiling, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Applied Metabolome Analysis, Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
59
|
ul Hassan MN, Zainal Z, Ismail I. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:727-39. [PMID: 25865366 DOI: 10.1111/pbi.12368] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/25/2023]
Abstract
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
Collapse
Affiliation(s)
- Muhammad Naeem ul Hassan
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Zamri Zainal
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| | - Ismanizan Ismail
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
60
|
Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, De Vleesschauwer D, Haesaert G, Smagghe G. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. PLANT PHYSIOLOGY 2015; 167:1671-84. [PMID: 25713338 PMCID: PMC4378182 DOI: 10.1104/pp.15.00107] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/16/2015] [Indexed: 05/20/2023]
Abstract
Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming with Z-3-HAC, wheat ears accumulated up to 40% fewer necrotic spikelets. Furthermore, leaves of seedlings showed significantly smaller necrotic lesions compared with nonprimed plants, coinciding with strongly reduced fungal growth in planta. Additionally, we found that F. graminearum produced more deoxynivalenol, a mycotoxin, in the primed treatment. Expression analysis of salicylic acid (SA) and jasmonic acid (JA) biosynthesis genes and exogenous methyl salicylate and methyl jasmonate applications showed that plant defense against F. graminearum is sequentially regulated by SA and JA during the early and later stages of infection, respectively. Interestingly, analysis of the effect of Z-3-HAC pretreatment on SA- and JA-responsive gene expression in hormone-treated and pathogen-inoculated seedlings revealed that Z-3-HAC boosts JA-dependent defenses during the necrotrophic infection stage of F. graminearum but suppresses SA-regulated defense during its biotrophic phase. Together, these findings highlight the importance of temporally separated hormone changes in molding plant health and disease and support a scenario whereby the green leaf volatile Z-3-HAC protects wheat against Fusarium head blight by priming for enhanced JA-dependent defenses during the necrotrophic stages of infection.
Collapse
Affiliation(s)
- Maarten Ameye
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - Kris Audenaert
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - Nathalie De Zutter
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - Kathy Steppe
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - Lieven Van Meulebroek
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - Lynn Vanhaecke
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - David De Vleesschauwer
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - Geert Haesaert
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection (M.A., N.D.Z., G.S.), Department of Applied Biosciences (M.A., K.A., N.D.Z., G.H.), Laboratory of Plant Ecology (K.S.), and Laboratory of Phytopathology, Department of Crop Protection (D.D.V.), Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; andLaboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium (L.V.M., L.V.)
| |
Collapse
|
61
|
Maag D, Erb M, Köllner TG, Gershenzon J. Defensive weapons and defense signals in plants: Some metabolites serve both roles. Bioessays 2014; 37:167-74. [DOI: 10.1002/bies.201400124] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Maag
- Laboratory of Fundamental and Applied Research in Chemical Ecology; University of Neuchâtel; Neuchâtel Switzerland
- Laboratory of Phytochemistry and Bioactive Natural Products; University of Geneva; Geneva Switzerland
| | - Matthias Erb
- Institute of Plant Sciences; University of Bern; Bern Switzerland
| | - Tobias G. Köllner
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Jena Germany
| | - Jonathan Gershenzon
- Department of Biochemistry; Max Planck Institute for Chemical Ecology; Jena Germany
| |
Collapse
|
62
|
Girón-Calva PS, Li T, Koski TM, Klemola T, Laaksonen T, Huttunen L, Blande JD. A role for volatiles in intra- and inter-plant interactions in birch. J Chem Ecol 2014; 40:1203-11. [PMID: 25352241 DOI: 10.1007/s10886-014-0514-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/25/2014] [Accepted: 10/14/2014] [Indexed: 12/29/2022]
Abstract
One of the first observations that plants might utilize cues released by damaged neighbors under natural conditions was made in birch forests in 1985. However, the mechanisms underlying the observations were not determined, and birch (Betula spp.) has been neglected as a study system for inter-plant interaction ever since. Volatiles released by vegetative plant parts in response to herbivore damage play important roles as signals in plant-to-plant interactions in a range of woody and herbaceous plant species, and also have been shown to mediate signaling between branches of the same plant that have limited vascular connection. We established greenhouse experiments to assess: 1) whether exposure to plant volatiles from herbivore-damaged birches primes defense responses in undamaged neighbors; and 2) whether defenses also are primed in undamaged parts of the same plants with limited vascular connection. We observed a priming of defense responses, which were manifested in an augmented emission of terpenes and aromatic compounds in undamaged conspecific neighbors, and also an augmented emission of green leaf volatiles in systemic branches. Our work provides strong evidence of inter-plant signaling by volatiles, and an intra-plant systemic response in birch. However, the responses are specific, with emissions of different groups of plant volatiles typifying the primed response. This work complements and extends the previous work conducted with a natural population of birches.
Collapse
Affiliation(s)
- P Sarai Girón-Calva
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|