51
|
Mitra C, Gummadidala PM, Afshinnia K, Merrifield RC, Baalousha M, Lead JR, Chanda A. Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus parasiticus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8085-8093. [PMID: 28618218 DOI: 10.1021/acs.est.7b01230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manufactured silver nanoparticles (Ag NPs) have long been used as antimicrobials. However, little is known about how these NPs affect fungal cell functions. While multiple previous studies reveal that Ag NPs inhibit secondary metabolite syntheses in several mycotoxin producing filamentous fungi, these effects are associated with growth repression and hence need sublethal to lethal NP doses, which besides stopping fungal growth, can potentially accumulate in the environment. Here we demonstrate that citrate-coated Ag NPs of size 20 nm, when applied at a selected nonlethal dose, can result in a >2 fold inhibition of biosynthesis of the carcinogenic mycotoxin and secondary metabolite, aflatoxin B1 in the filamentous fungus and an important plant pathogen, Aspergillus parasiticus, without inhibiting fungal growth. We also show that the observed inhibition was not due to Ag ions, but was specifically associated with the mycelial uptake of Ag NPs. The NP exposure resulted in a significant decrease in transcript levels of five aflatoxin genes and at least two key global regulators of secondary metabolism, laeA and veA, with a concomitant reduction of total reactive oxygen species (ROS). Finally, the depletion of Ag NPs in the growth medium allowed the fungus to regain completely its ability of aflatoxin biosynthesis. Our results therefore demonstrate the feasibility of Ag NPs to inhibit fungal secondary metabolism at nonlethal concentrations, hence providing a novel starting point for discovery of custom designed engineered nanoparticles that can efficiently prevent mycotoxins with minimal risk to health and environment.
Collapse
Affiliation(s)
- Chandrani Mitra
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Phani M Gummadidala
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Kamelia Afshinnia
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Ruth C Merrifield
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| | - Anindya Chanda
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina , Columbia, South Carolina, United States
| |
Collapse
|
52
|
Fang Y, Xiong D, Tian L, Tang C, Wang Y, Tian C. Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene 2017; 626:386-394. [PMID: 28578019 DOI: 10.1016/j.gene.2017.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022]
Abstract
bZIP transcription factors play various biological roles in stress responses, conidiation, and pathogenicity in pathogenic fungi. Here, we report two bZIP transcription factors (VDAG_08640 and VDAG_08676) of Verticillium dahliae, which were differentially expressed during microsclerotia development and induced by hydrogen peroxide as well. We find that deletion of either gene does not affect microsclerotia formation and the sensitivity to hydrogen peroxide; however, the mutants manifest decreased activity of extracellular peroxidase and laccase. Other phenotypic characterization reveals that VDAG_08676 disruption results in significant reduction of conidial production and virulence, while VDAG_08640 disruption does not lead to observable phenotypic variances compared with the wild-type strain. To elucidate whether they exhibit functional redundancy, double deletion mutants were generated. The double deletion mutants show remarkably increased sensitivity to hydrogen peroxide stress, whereas the two genes are not involved in microsclerotia formation. Taken together, our data demonstrate that a bZIP transcription factor gene VDAG_08676 is involved in the conidial production, oxidative stress response and virulence which may lay a foundation for further analysis of other bZIP transcription factors in V. dahliae.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Longyan Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
53
|
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016; 50:371-392. [DOI: 10.1146/annurev-genet-120215-035203] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Vito Valiante
- Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany;
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
54
|
Sun Y, Wang Y, Tian C. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genet Biol 2016; 95:58-66. [PMID: 27544415 DOI: 10.1016/j.fgb.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
Abstract
Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides.
Collapse
Affiliation(s)
- Yingjiao Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
55
|
Kumari I, Ahmed M, Akhter Y. Multifaceted impact of trichothecene metabolites on plant-microbe interactions and human health. Appl Microbiol Biotechnol 2016; 100:5759-71. [PMID: 27198722 DOI: 10.1007/s00253-016-7599-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
Abstract
Fungi present in rhizosphere produce trichothecene metabolites which are small in size and amphipathic in nature and some of them may cross cell membranes passively. Hypocreaceae family of rhizosphere fungi produce trichothecene molecules, however it is not a mandatory characteristic of all genera. Some of these molecules are also reported as growth adjuvant, while others are reported as deleterious for the plant growth. In this review, we are exploring the roles of these compounds during plant-microbe interactions. The three-way interaction among the plants, symbiotic microbial agents (fungi and bacteria), and the pathogenic microbes (bacteria, fungi) or multicellular pathogens like nematodes involving these compounds may only help us to understand better the complex processes happening in the microcosm of rhizosphere. These metabolites may further modulate the activity of different proteins involved in the cell signalling events of defence-related response in plants. That may induce the defence system against pathogens and growth promoting gene expression in plants, while in animal cells, these molecules have reported biochemical and pharmacological effects such as inducing oxidative stress, cell-cycle arrest and apoptosis, and may be involved in maintenance of membrane integrity. The biochemistry, chemical structures and specific functional group-mediated activity of these compounds have not been studied in details yet. Few of these molecules are also recently reported as novel anti-cancer agent against human chondrosarcoma cells.
Collapse
Affiliation(s)
- Indu Kumari
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, Kangra District, Himachal Pradesh, 176206, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences, Central University of Himachal Pradesh, Shahpur, Kangra District, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra District, Himachal Pradesh, 176206, India.
| |
Collapse
|
56
|
Martinez-Rocha AL, Woriedh M, Chemnitz J, Willingmann P, Kröger C, Hadeler B, Hauber J, Schäfer W. Posttranslational hypusination of the eukaryotic translation initiation factor-5A regulates Fusarium graminearum virulence. Sci Rep 2016; 6:24698. [PMID: 27098988 PMCID: PMC4838825 DOI: 10.1038/srep24698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 04/04/2016] [Indexed: 11/14/2022] Open
Abstract
Activation of eukaryotic translation initiation factor eIF5A requires a posttranslational modification, forming the unique amino acid hypusine. This activation is mediated by two enzymes, deoxyhypusine synthase, DHS, and deoxyhypusine hydroxylase, DOHH. The impact of this enzymatic complex on the life cycle of a fungal pathogen is unknown. Plant pathogenic ascomycetes possess a single copy of the eIF5A activated by hypusination. We evaluated the importance of imbalances in eIF5A hypusination in Fusarium graminearum, a devastating fungal pathogen of cereals. Overexpression of DHS leads to increased virulence in wheat, elevated production of the mycotoxin deoxynivalenol, more infection structures, faster wheat tissue invasion in plants and increases vegetatively produced conidia. In contrast, overexpression of DOHH completely prevents infection structure formation, pathogenicity in wheat and maize, leads to overproduction of ROS, reduced DON production and increased sexual reproduction. Simultaneous overexpression of both genes restores wild type-like phenotypes. Analysis of eIF5A posttranslational modification displayed strongly increased hypusinated eIF5A in DOHH overexpression mutant in comparison to wild type, and the DHS overexpression mutants. These are the first results pointing to different functions of differently modified eIF5A.
Collapse
Affiliation(s)
- Ana Lilia Martinez-Rocha
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Mayada Woriedh
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department Antiviral Strategies, Hamburg, D-20251, Germany
| | - Peter Willingmann
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Cathrin Kröger
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Birgit Hadeler
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department Antiviral Strategies, Hamburg, D-20251, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| | - Wilhelm Schäfer
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| |
Collapse
|
57
|
Yao SH, Guo Y, Wang YZ, Zhang D, Xu L, Tang WH. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genet Biol 2016; 91:32-42. [PMID: 27037138 DOI: 10.1016/j.fgb.2016.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/18/2016] [Accepted: 03/25/2016] [Indexed: 01/02/2023]
Abstract
Superoxide dismutases (SODs) are scavengers of superoxide radicals, one of the main reactive oxygen species (ROS) in the cell. SOD-based ROS scavenging system constitutes the frontline defense against intra- and extracellular ROS, but the roles of SODs in the important cereal pathogen Fusarium graminearum are not very clear. There are five SOD genes in F. graminearum genome, encoding cytoplasmic Cu-Zn SOD1 and MnSOD3, mitochondrial MnSOD2 and FeSOD4, and extracellular CuSOD5. Previous studies reported that the expression of SOD1 increased during infection of wheat coleoptiles and florets. In this work we showed that the recombinant SOD1 protein had the superoxide dismutase activity in vitro, and that the SOD1-mRFP fusion protein localized in the cytoplasm of F. graminearum. The Δsod1 mutants had slightly reduced hyphal growth and markedly increased sensitivity to the intracellular ROS generator menadione. The conidial germination under extracellular oxidative stress was significantly delayed in the mutants. Wheat floret infection assay showed that the Δsod1 mutants had a reduced pathogenicity. Furthermore, the Δsod1 mutants had a significant reduction in production of deoxynivalenol mycotoxin. Our results indicate that the cytoplasmic Cu-Zn SOD1 affects fungal growth probably depending on detoxification of intracellular superoxide radicals, and that SOD1-mediated deoxynivalenol production contributes to the virulence of F. graminearum in wheat head infection.
Collapse
Affiliation(s)
- Sheng-Hua Yao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science, East China Normal University, Shanghai 200062, China
| | - Yan Guo
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Zhang Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling Xu
- School of Life Science, East China Normal University, Shanghai 200062, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
58
|
Montibus M, Khosravi C, Zehraoui E, Verdal-Bonnin MN, Richard-Forget F, Barreau C. Is the Fgap1 mediated response to oxidative stress chemotype dependent in Fusarium graminearum? FEMS Microbiol Lett 2015; 363:fnv232. [PMID: 26656279 DOI: 10.1093/femsle/fnv232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
This study aims to compare the role of the transcription factor Fgap1 in oxidative stress response for two Fusarium graminearum strains belonging to the two chemotypes DON/ADON and NIV/FX. While the response to H2O2 was shown to be chemotype dependent, an opposite result was observed for diamide: whatever the chemotype, the global level of TCTB (i.e. trichothecene B) production was strongly increased by the treatment with diamide. Fgap1 was shown to be involved in this regulation for both chemotypes. Our data show that the response to diamide is mediated by Fgap1 whatever the chemotype of the F. graminearum strains. However, the NIV/FX chemotype has developed higher antioxidant capacities in response to oxidative stress. But when this capacity is overwhelmed by an increment in the H2O2 level, the NIV/FX strains also responds by an increase in toxin accumulation.
Collapse
Affiliation(s)
- Mathilde Montibus
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Claire Khosravi
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Enric Zehraoui
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | | | - Florence Richard-Forget
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Christian Barreau
- CNRS, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
59
|
Hou R, Jiang C, Zheng Q, Wang C, Xu JR. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2015; 16:987-99. [PMID: 25781642 PMCID: PMC6638501 DOI: 10.1111/mpp.12254] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.
Collapse
Affiliation(s)
- Rui Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Qian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agricultural and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
60
|
Keller NP. Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol 2015; 11:671-7. [PMID: 26284674 DOI: 10.1038/nchembio.1897] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/23/2015] [Indexed: 01/06/2023]
Abstract
Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs.
Collapse
Affiliation(s)
- Nancy P Keller
- Department of Bacteriology and Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
61
|
Ponts N. Mycotoxins are a component of Fusarium graminearum stress-response system. Front Microbiol 2015; 6:1234. [PMID: 26583017 PMCID: PMC4631952 DOI: 10.3389/fmicb.2015.01234] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Nadia Ponts
- UR1264 - MycSA, Institut National de la Recherche Agronomique, Centre de Bordeaux-Aquitaine Villenave d'Ornon, France
| |
Collapse
|
62
|
Mycoremediation with mycotoxin producers: a critical perspective. Appl Microbiol Biotechnol 2015; 100:17-29. [DOI: 10.1007/s00253-015-7032-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022]
|
63
|
Mentges M, Bormann J. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum. Sci Rep 2015; 5:14980. [PMID: 26446493 PMCID: PMC4597226 DOI: 10.1038/srep14980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
Balanced dynamics of reactive oxygen species in the phytopathogenic fungus Fusarium graminearum play key roles for development and infection. To monitor those dynamics, ratiometric analysis using the novel hydrogen peroxide (H2O2) sensitive fluorescent indicator protein HyPer-2 was established for the first time in phytopathogenic fungi. H2O2 changes the excitation spectrum of HyPer-2 with an excitation maximum at 405 nm for the reduced and 488 nm for the oxidized state, facilitating ratiometric readouts with maximum emission at 516 nm. HyPer-2 analyses were performed using a microtiter fluorometer and confocal laser scanning microscopy (CLSM). Addition of external H2O2 to mycelia caused a steep and transient increase in fluorescence excited at 488 nm. This can be reversed by the addition of the reducing agent dithiothreitol. HyPer-2 in F. graminearum is highly sensitive and specific to H2O2 even in tiny amounts. Hyperosmotic treatment elicited a transient internal H2O2 burst. Hence, HyPer-2 is suitable to monitor the intracellular redox balance. Using CLSM, developmental processes like nuclear division, tip growth, septation, and infection structure development were analyzed. The latter two processes imply marked accumulations of intracellular H2O2. Taken together, HyPer-2 is a valuable and reliable tool for the analysis of environmental conditions, cellular development, and pathogenicity.
Collapse
Affiliation(s)
- Michael Mentges
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Jörg Bormann
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststr. 18, D-22609 Hamburg, Germany
| |
Collapse
|
64
|
Wang X, Wu F, Liu L, Liu X, Che Y, Keller NP, Guo L, Yin WB. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genet Biol 2015; 81:221-8. [DOI: 10.1016/j.fgb.2015.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
|
65
|
Park AR, Son H, Min K, Park J, Goo JH, Rhee S, Chae SK, Lee YW. Autoregulation of ZEB2 expression for zearalenone production in Fusarium graminearum. Mol Microbiol 2015; 97:942-56. [PMID: 26036360 DOI: 10.1111/mmi.13078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2015] [Indexed: 12/30/2022]
Abstract
Several Fusarium species produce the polyketide mycotoxin zearalenone (ZEA), a causative agent of hyperestrogenic syndrome in animals that is often found in F. graminearum-infected cereals in temperate regions. The ZEA biosynthetic cluster genes PKS4, PKS13, ZEB1 and ZEB2 encode a reducing polyketide synthase, a non-reducing polyketide synthase, an isoamyl alcohol oxidase and a transcription factor respectively. In this study, the production of two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum via an alternative promoter was characterized. ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggers the induction of both ZEB2L and ZEB2S transcription. ZEB2L and ZEB2S interact with each other to form a heterodimer that regulates ZEA production by reducing the binding affinity of ZEB2L for the ZEB2L gene promoter. Our study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production; this regulatory mechanism is similar to that observed in higher eukaryotes.
Collapse
Affiliation(s)
- Ae Ran Park
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, 151-921, Seoul, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, 151-921, Seoul, Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, 151-921, Seoul, Korea
| | - Jinseo Park
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, 151-921, Seoul, Korea
| | - Jae Hwan Goo
- Jeonnam Nano Bio Research Center, 515-853, Jangseong, Korea
| | - Sangkee Rhee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, 151-921, Seoul, Korea
| | - Suhn-Kee Chae
- Department of Biochemistry, Paichai University, 302-735, Daejeon, Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, 151-921, Seoul, Korea
| |
Collapse
|
66
|
Calmes B, N’Guyen G, Dumur J, Brisach CA, Campion C, Iacomi B, Pigné S, Dias E, Macherel D, Guillemette T, Simoneau P. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. FRONTIERS IN PLANT SCIENCE 2015; 6:414. [PMID: 26089832 PMCID: PMC4452805 DOI: 10.3389/fpls.2015.00414] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 05/03/2023]
Abstract
Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.
Collapse
Affiliation(s)
- Benoit Calmes
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Guillaume N’Guyen
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Jérome Dumur
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Carlos A. Brisach
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Claire Campion
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Béatrice Iacomi
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Sandrine Pigné
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Eva Dias
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - David Macherel
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Thomas Guillemette
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Philippe Simoneau
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| |
Collapse
|
67
|
Yang F, Li W, Derbyshire M, Larsen MR, Rudd JJ, Palmisano G. Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics. BMC Genomics 2015; 16:362. [PMID: 25952551 PMCID: PMC4423625 DOI: 10.1186/s12864-015-1549-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/17/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. RESULTS The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici, but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. CONCLUSIONS The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction.
Collapse
Affiliation(s)
- Fen Yang
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | | | - Mark Derbyshire
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| | - Jason J Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
- Present address: Institute of Biomedical Science, Department of Parasitology, University of São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
68
|
Huang W, Shang Y, Chen P, Cen K, Wang C. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J Biol Chem 2015; 290:8218-31. [PMID: 25673695 DOI: 10.1074/jbc.m114.630939] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels.
Collapse
Affiliation(s)
- Wei Huang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanfang Shang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peilin Chen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kai Cen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
69
|
Erayman M, Turktas M, Akdogan G, Gurkok T, Inal B, Ishakoglu E, Ilhan E, Unver T. Transcriptome analysis of wheat inoculated with Fusarium graminearum. FRONTIERS IN PLANT SCIENCE 2015; 6:867. [PMID: 26539199 PMCID: PMC4611148 DOI: 10.3389/fpls.2015.00867] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 05/03/2023]
Abstract
Plants are frequently exposed to microorganisms like fungi, bacteria, and viruses that cause biotic stresses. Fusarium head blight (FHB) is an economically risky wheat disease, which occurs upon Fusarium graminearum (Fg) infection. Moderately susceptible (cv. "Mizrak 98") and susceptible (cv. "Gun 91") winter type bread wheat cultivars were subjected to transcriptional profiling after exposure to Fg infection. To examine the early response to the pathogen in wheat, we measured gene expression alterations in mock and pathogen inoculated root crown of moderately susceptible (MS) and susceptible cultivars at 12 hours after inoculation (hai) using 12X135K microarray chip. The transcriptome analyses revealed that out of 39,179 transcripts, 3668 genes in microarray were significantly regulated at least in one time comparison. The majority of differentially regulated transcripts were associated with disease response and the gene expression mechanism. When the cultivars were compared, a number of transcripts and expression alterations varied within the cultivars. Especially membrane related transcripts were detected as differentially expressed. Moreover, diverse transcription factors showed significant fold change values among the cultivars. This study presented new insights to understand the early response of selected cultivars to the Fg at 12 hai. Through the KEGG analysis, we observed that the most altered transcripts were associated with starch and sucrose metabolism and gluconeogenesis pathways.
Collapse
Affiliation(s)
- Mustafa Erayman
- Department of Biology, Faculty of Science, Mustafa Kemal UniversityHatay, Turkey
| | - Mine Turktas
- Department of Biology, Faculty of Science, Çankırı Karatekin UniversityÇankırı, Turkey
| | - Guray Akdogan
- Department of Field Crops, Faculty of Agriculture, Ankara UniversityAnkara, Turkey
| | - Tugba Gurkok
- Department of Biology, Faculty of Science, Çankırı Karatekin UniversityÇankırı, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt UniversitySiirt, Turkey
| | - Emre Ishakoglu
- Department of Biology, Faculty of Science, Mustafa Kemal UniversityHatay, Turkey
| | - Emre Ilhan
- Department of Biology, Faculty of Science, Mustafa Kemal UniversityHatay, Turkey
| | - Turgay Unver
- Department of Biology, Faculty of Science, Çankırı Karatekin UniversityÇankırı, Turkey
- *Correspondence: Turgay Unver
| |
Collapse
|
70
|
Shalaby S, Horwitz BA. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions. Curr Genet 2014; 61:347-57. [PMID: 25407462 DOI: 10.1007/s00294-014-0458-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion, Israel Institute of Technology, 3200000, Haifa, Israel
| | | |
Collapse
|
71
|
Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environ Microbiol 2014; 17:1377-96. [PMID: 25186614 DOI: 10.1111/1462-2920.12618] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
The basic leucine zipper (bZIP) domain-containing transcription factors (TFs) function as key regulators of cellular growth and differentiation in eukaryotic organisms including fungi. We have previously identified MoAp1 and MoAtf1 as bZIP TFs in Magnaporthe oryzae and demonstrated that they regulate the oxidative stress response and are critical in conidiogenesis and pathogenicity. Studies of bZIP proteins could provide a novel strategy for controlling rice blast, but a systematic examination of the bZIP proteins has not been carried out. Here, we identified 19 additional bZIP TFs and characterized their functions. We found that the majority of these TFs exhibit active functions, most notably, in conidiogenesis. We showed that MoHac1 regulates the endoplasmic reticulum stress response through a conserved unfolded protein response pathway, MoMetR controls amino acid metabolism to govern growth and differentiation, and MoBzip10 governs appressorium function and invasive hyphal growth. Moreover, MoBzip5 participates in appressorium formation through a pathway distinct from that MoBzip10, and MoMeaB appears to exert a regulatory role through nutrient uptake and nitrogen utilization. Collectively, our results provide insights into shared and specific functions associated with each of these TFs and link the regulatory roles to the fungal growth, conidiation, appressorium formation, host penetration and pathogenicity.
Collapse
Affiliation(s)
- Wei Tang
- Department of Plant Pathology, College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Jiang C, Zhang S, Zhang Q, Tao Y, Wang C, Xu JR. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 2014; 17:1245-60. [PMID: 25040476 DOI: 10.1111/1462-2920.12561] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-related transcription factor genes FgAP1, FgATF1 and FgSKN7. Although all of them played a role in tolerance to oxidative stress, deletion of FgAP1 or FgATF1 had no significant effect on DON production. In contrast, Fgskn7 mutants were reduced in DON production and defective in H2 O2 -induced TRI gene expression. The Fgap1 mutant had no detectable phenotype other than increased sensitivity to H2 O2 and Fgap1 Fgatf1 and Fgap1 Fgskn7 mutants lacked additional or more severe phenotypes than the single mutants. The Fgatf1, but not Fgskn7, mutant was significantly reduced in virulence and delayed in ascospore release. The Fgskn7 Fgatf1 double mutant had more severe defects in growth, conidiation and virulence than the Fgatf1 or Fgskn7 mutant. Instead of producing four-celled ascospores, it formed eight small, single-celled ascospores in each ascus. Therefore, FgSKN7 and FgATF1 must have overlapping functions in intracellular ROS signalling for growth, development and pathogenesis in F. graminearum.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Shaanxi, 712100, China; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | |
Collapse
|