51
|
Zeng C, Stroup EK, Zhang Z, Chiu BCH, Zhang W. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy. Cancer Commun (Lond) 2019; 39:12. [PMID: 30922396 PMCID: PMC6440138 DOI: 10.1186/s40880-019-0356-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Robust and clinically convenient biomarkers for cancer diagnosis, early detection, and prognosis have great potential to improve patient survival and are the key to precision medicine. The advent of next-generation sequencing technologies enables a more sensitive and comprehensive profiling of genetic and epigenetic information in tumor-derived materials. Researchers are now able to monitor the dynamics of tumorigenesis in new dimensions, such as using circulating cell-free DNA (cfDNA) and tumor DNA (ctDNA). Mutation-based assays in liquid biopsy cannot always provide consistent results across studies due partly to intra- and inter-tumoral heterogeneity as well as technical limitations. In contrast, epigenetic analysis of patient-derived cfDNA is a promising alternative, especially for early detection and disease surveillance, because epigenetic modifications are tissue-specific and reflect the dynamic process of cancer progression. Therefore, cfDNA-based epigenetic assays are emerging to be a highly sensitive, minimally invasive tool for cancer diagnosis and prognosis with great potential in future precise care of cancer patients. The major obstacle for applying epigenetic analysis of cfDNA, however, has been the lack of enabling techniques with high sensitivity and technical robustness. In this review, we summarized the advances in epigenome-wide profiling of 5-hydroxymethylcytosine (5hmC) in cfDNA, focusing on the detection approaches and potential role as biomarkers in different cancer types.
Collapse
Affiliation(s)
- Chang Zeng
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Emily Kunce Stroup
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
| | - Brian C-H Chiu
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA. .,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Institute of Precision Medicine, Jining Medical University, Jining, 272067, Shandong, P. R. China.
| |
Collapse
|
52
|
Genome-wide Analysis Reveals DNA Methylation Alterations in Obesity Associated with High Risk of Colorectal Cancer. Sci Rep 2019; 9:5100. [PMID: 30911103 PMCID: PMC6433909 DOI: 10.1038/s41598-019-41616-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is a high risk factor for colorectal cancer (CRC). The contribution of underlying epigenetic mechanisms to CRC and the precise targets of epigenetic alterations during cancer development are largely unknown. Several types of epigenetic processes have been described, including DNA methylation, histone modification, and microRNA expression. To investigate the relationship between obesity and CRC, we studied both obese and CRC patients, focusing on genome-wide peripheral blood DNA methylation alterations. Our results show abnormal distributions of overlapping differentially methylated regions (DMRs) such as hypermethylated CpG islands, which may account for epigenetic instability driving cancer initiation in obesity patients. Furthermore, functional analysis suggests that altered DNA methylation of extracellular (e.g., O-glycan processing) and intracellular components contribute to activation of oncogenes (e.g. KRAS and SCL2A1) and suppression of tumor suppressors (e.g. ARHGEF4, EPHB2 and SOCS3), leading to increased oncogenic potency. Our study demonstrates how DNA methylation changes in obesity contribute to CRC development, providing direct evidence of an association between obesity and CRC. It also reveals the diagnostic potential of using DNA methylation as an early risk evaluation to detect patients with high risk for CRC.
Collapse
|
53
|
Rozek LS, Virani S, Bellile EL, Taylor JMG, Sartor MA, Zarins KR, Virani A, Cote C, Worden FP, Mark MEP, McLean SA, Duffy SA, Yoo GH, Saba NF, Shin DM, Kucuk O, Wolf GT. Soy Isoflavone Supplementation Increases Long Interspersed Nucleotide Element-1 (LINE-1) Methylation in Head and Neck Squamous Cell Carcinoma. Nutr Cancer 2019; 71:772-780. [PMID: 30862188 PMCID: PMC6513708 DOI: 10.1080/01635581.2019.1577981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/13/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
AIM Soy isoflavones have been suggested as epigenetic modulating agents with effects that could be important in carcinogenesis. Hypomethylation of LINE-1 has been associated with head and neck squamous cell carcinoma (HNSCC) development from oral premalignant lesions and with poor prognosis. To determine if neoadjuvant soy isoflavone supplementation could modulate LINE-1 methylation in HNSCC, we undertook a clinical trial. METHODS Thirty-nine patients received 2-3 weeks of soy isoflavone supplements (300 mg/day) orally prior to surgery. Methylation of LINE-1, and 6 other genes was measured by pyrosequencing in biopsy, resection, and whole blood (WB) specimens. Changes in methylation were tested using paired t tests and ANOVA. Median follow up was 45 months. RESULTS LINE-1 methylation increased significantly after soy isoflavone (P < 0.005). Amount of change correlated positively with days of isoflavone taken (P = 0.04). Similar changes were not seen in corresponding WB samples. No significant changes in tumor or blood methylation levels were seen in the other candidate genes. CONCLUSION This is the first demonstration of in vivo increases in tissue-specific global methylation associated with soy isoflavone intake in patients with HNSCC. Prior associations of LINE-1 hypomethylation with genetic instability, carcinogenesis, and prognosis suggest that soy isoflavones maybe potential chemopreventive agents in HNSCC.
Collapse
Affiliation(s)
- Laura S Rozek
- a University of Michigan , Ann Arbor , Michigan, USA
| | - Shama Virani
- a University of Michigan , Ann Arbor , Michigan, USA
| | | | | | | | | | - A Virani
- a University of Michigan , Ann Arbor , Michigan, USA
| | - C Cote
- a University of Michigan , Ann Arbor , Michigan, USA
| | | | | | | | | | - George H Yoo
- c Karmanos Cancer Institute , Wayne State University , Detroit , Michigan 48201, USA
| | - Nabil F Saba
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | - Dong M Shin
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | - Omer Kucuk
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | | |
Collapse
|
54
|
Characterization of SIRT1/DNMTs Functions and LINE-1 Methylation in Patients with Age-Related Macular Degeneration. J Clin Med 2019; 8:jcm8020159. [PMID: 30717113 PMCID: PMC6406755 DOI: 10.3390/jcm8020159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Previous studies proposed the application of DNA methylation signatures as clinical biomarkers of age-related macular degeneration (AMD). However, the characterization of Long Interspersed Nuclear Element-1 (LINE-1) methylation levels—a surrogate marker of global DNA methylation—in AMD patients has not been investigated so far. In the present study, we first characterized DNA methyltransferases (DNMTs) and Sirtuin 1 (SIRT1) functions in blood samples of 40 AMD patients and 10 age- and sex-matched controls. Then, we evaluated whether changes in DNMTs functions were associated with different LINE-1 methylation levels in leukocyte DNA. We demonstrated that total DNMTs activity was 48% higher in AMD patients than in controls (p = 0.005). AMD patients also exhibited up-regulation of DNMT1 and DNMT3B expression (FC = 2.6; p = 0.003 and FC = 2.4; p = 0.018, respectively). In line with increased DNMTs functions, the LINE-1 methylation level was higher in AMD patients than in controls (mean = 69.10%; SE = 0.68 vs. mean = 65.73%; SE = 0.59; p = 0.020). All p-values were adjusted by Bonferroni correction. In AMD patients, LINE-1 methylation level was positively associated with total DNMTs activity (r = 0.694; p < 0.001), DNMT1 (r = 0.579; p < 0.001), and DNMT3B (r = 0.521; p = 0.001) expression. Our results encourage further large-size prospective research to understand the relationship between LINE-1 methylation and AMD aetiology, and its usefulness in the clinical setting.
Collapse
|
55
|
Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer 2019; 19:93. [PMID: 30665376 PMCID: PMC6341579 DOI: 10.1186/s12885-018-5226-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/16/2018] [Indexed: 12/17/2022] Open
Abstract
Background Visceral adipose tissue (VAT) has been identified as the essential fat depot for pathogenetic theories that associateobesity and colon cancer. LINE-1 hypomethylation has been mostly detected in tumor colon tissue, but less is known about the epigenetic pattern in surrounding tissues. The aim was to analyze for the first time the potential relationship between serum vitamin D, obesity and global methylation (LINE-1) in the visceral adipose tissue (VAT) from patients with and without colorectal cancer. Methods A total of 55 patients with colorectal cancer and 35 control subjects participated in the study. LINE-1 DNA methylation in VAT was measured by pyrosequencing. Serum 25(OH)D levels were determined by ELISA. Results Cancer patients had lower levels of LINE-1 methylation in VAT compared with the control group. In the subjects with colorectal cancer, LINE-1 DNA methylation levels were associated positively with vitamin D levels (r = 0,463; p < 0.001) and negatively with BMI (r = − 0.334, p = 0.01) and HOMA insulin resistance index (r = − 0.348, p = 0.01). Serum vitamin D was the main variable explaining the LINE-1% variance in the cancer group (β = 0.460, p < 0.001). In a multivariate analysis, subjects with higher LINE-1 methylation values had lower risk of developing colorectal cancer (OR = 0.53; IC95% =0.28–0.99) compared with the control group. Conclusions We showed for the first time an association between LINE-1 DNA methylation in VAT and vitamin D levels in subjects with colorectal cancer, highlighting the importance of VAT from cancer patients, which could be modified epigenetically compared to healthy subjects.
Collapse
|
56
|
Unveiling the Role of DNA Methylation in Kidney Transplantation: Novel Perspectives toward Biomarker Identification. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1602539. [PMID: 30766879 PMCID: PMC6350635 DOI: 10.1155/2019/1602539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
The burden of chronic kidney disease is dramatically rising, making it a major public health concern worldwide. Kidney transplantation is now the best treatment for patients with end-stage renal disease. Although kidney transplantation may improve survival and quality of life, its long-term results are hampered by immune- and/or non-immune-mediated complications. Thus, the identification of transplanted patients with a higher risk of posttransplant complications has become a big challenge for public health. However, current biomarkers of posttransplant complications have a poor predictive value, rising the need to explore novel approaches for the management of transplant patient. In this review we summarize the emerging literature about DNA methylation in kidney transplant complications, in order to highlight its perspectives toward biomarker identification. In the forthcoming future the monitoring of DNA methylation in kidney transplant patients could become a plausible strategy toward the prevention and/or treatment of kidney transplant complications.
Collapse
|
57
|
Kerachian MA, Kerachian M. Long interspersed nucleotide element-1 (LINE-1) methylation in colorectal cancer. Clin Chim Acta 2018; 488:209-214. [PMID: 30445031 DOI: 10.1016/j.cca.2018.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) represents a group of molecularly heterogeneous diseases characterized by genetic and epigenetic alterations. Long interspersed nuclear elements (LINEs) are a form of retrotransposable element found in many eukaryotic genomes. These LINEs, when active, can mobilize in the cell and steadily cause genomic rearrangement. Active LINE reorganization is a source of endogenous mutagenesis and polymorphism in the cell that brings about individual genomic variation. In normal somatic cells, these elements are heavily methylated and thus mostly suppressed, in turn, preventing their potential for bringing about genomic instability. When LINEs are inadequately controlled, they can play a role in the pathogenesis of several genetic diseases, such as cancer. In tumor cells, LINE hypomethylation can reactivate the mobilization of these elements and is associated with both an advanced stage and a poor prognosis. In this article, we summarize the current knowledge surrounding LINE methylation, its correlation to CRC and its application as a diagnostic, prognostic and predictive biomarker in colon cancer.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Matin Kerachian
- Faculty of Medicine, McGill University, Montreal, Canada; Research Institute at McGill University Health Center, Montreal, Canada
| |
Collapse
|
58
|
Barchitta M, Maugeri A, Quattrocchi A, Barone G, Mazzoleni P, Catalfo A, De Guidi G, Iemmolo MG, Crimi N, Agodi A. Mediterranean Diet and Particulate Matter Exposure Are Associated With LINE-1 Methylation: Results From a Cross-Sectional Study in Women. Front Genet 2018; 9:514. [PMID: 30425730 PMCID: PMC6218419 DOI: 10.3389/fgene.2018.00514] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/12/2018] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that air pollution increases the risk of cardiovascular disease (CVD) and metabolic disorders, adding to the global burden of disease attributable to lifestyle and behavioral factors. Although long interspersed nucleotide elements 1 (LINE-1) methylation has been associated with these disorders, no studies have simultaneously examined the effects of diet and air pollution exposure on DNA methylation. Herein, we evaluated the association of particulate matter (PM with aerodynamic diameters of less than 10 mm) exposure and adherence to Mediterranean Diet (MD) with LINE-1 methylation. Healthy women (n = 299), aged 15 to 80 years, were enrolled in a cross-sectional study. Dietary data and adherence to MD were assessed by a Food Frequency Questionnaire (FFQ) and Mediterranean Diet Score (MDS). PM10 levels during 1-month before recruitment were recorded by monitoring stations and assigned to each woman based on their residential address and day of recruitment. LINE-1 methylation in blood samples was assessed by pyrosequencing and reported as percentage of 5-methylcytosine (5mC). The Mann–Whitney U test, Spearman’s rank correlation test and linear regression models were applied. Our results demonstrated, for the first time, an inverse association between adherence to MD and exposure to PM10 with LINE-1 methylation: while higher monthly PM10 exposure decreases LINE-1 methylation level (β = −0.121; p = 0.037), the adherence to MD increases it (β = 0.691; p < 0.001). MDS seemed to interact with PM10 levels (p = 0.002) on LINE-1 methylation, as such we confirmed that the effect of MD decreased with increasing PM10 levels (β = 0.657; p < 0.001 in the first tertile; β = 0.573; p < 0.001 in the second tertile; β = 0.551; p < 0.001 in the third tertile). Thus, we suggest that LINE-1 methylation is a possible mechanism underpinning environment-related health effects, and encourage further research to evaluate whether the adherence to the MD could counteract the negative effect of PM10 exposure.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Germana Barone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Paolo Mazzoleni
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Alfio Catalfo
- Department of Chemical Science, Section of Photochemistry and Photobiology, University of Catania, Catania, Italy
| | - Guido De Guidi
- Department of Chemical Science, Section of Photochemistry and Photobiology, University of Catania, Catania, Italy.,Research Centre for the Analysis, the Monitoring and Methodology for Environmental Risk Assessment, University of Catania, Catania, Italy
| | | | - Nunzio Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
59
|
Orqueda AJ, Gatti CR, Ogara MF, Falzone TL. SOX-11 regulates LINE-1 retrotransposon activity during neuronal differentiation. FEBS Lett 2018; 592:3708-3719. [PMID: 30276805 DOI: 10.1002/1873-3468.13260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/25/2023]
Abstract
Activity of the human long interspersed nuclear elements-1 (LINE-1) retrotransposon occurs mainly in early embryonic development and during hippocampal neurogenesis. SOX-11, a transcription factor relevant to neuronal development, has unknown functions in the control of LINE-1 retrotransposon activity during neuronal differentiation. To study the dependence of LINE-1 activity on SOX-11 during neuronal differentiation, we induced differentiation of human SH-SY5Y neuroblastoma cells and adult adipose mesenchymal stem cells (hASCs) to a neuronal fate and found increased LINE-1 activity. We also show that SOX-11 protein binding to the LINE-1 promoter is higher in differentiating neuroblastoma cells, while knock-down of SOX-11 inhibits the induction of LINE-1 transcription in differentiating conditions. These results suggest that activation of LINE-1 retrotransposition during neuronal differentiation is mediated by SOX-11.
Collapse
Affiliation(s)
- Andrés J Orqueda
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hospital Italiano de Buenos Aires e Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
| | - Cintia R Gatti
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hospital Italiano de Buenos Aires e Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
| | - María F Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), FCEN, UBA, Buenos Aires, Argentina
| | - Tomás L Falzone
- Instituto de Biología Celular y Neurociencias (IBCN-CONICET-UBA), Facultad de Medicina, UBA, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
60
|
Baba Y, Karube I, Yoshida W. Global DNA Methylation Level Monitoring by methyl-CpG Binding Domain-Fused Luciferase. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1494739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yuji Baba
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| | - Isao Karube
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
61
|
Single Nucleotide Polymorphisms in Vitamin D Receptor Gene Affect Birth Weight and the Risk of Preterm Birth: Results From the "Mamma & Bambino" Cohort and A Meta-Analysis. Nutrients 2018; 10:nu10091172. [PMID: 30150529 PMCID: PMC6164379 DOI: 10.3390/nu10091172] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/18/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022] Open
Abstract
The effect of vitamin D receptor gene (VDR) polymorphisms on adverse pregnancy outcomes—including preterm birth (PTB), low birth weight and small for gestational age—is currently under debate. We investigated 187 mother-child pairs from the Italian “Mamma & Bambino” cohort to evaluate the association of maternal VDR polymorphisms—BsmI, ApaI, FokI and TaqI—with neonatal anthropometric measures and the risk of PTB. To corroborate our results, we conducted a meta-analysis of observational studies. For the FokI polymorphism, we showed that gestational duration and birth weight decreased with increasing number of A allele (p = 0.040 and p = 0.010, respectively). Compared to the GG and GA genotypes, mothers who carried the AA genotype exhibited higher PTB risk (OR = 12.049; 95% CI = 2.606–55.709; p = 0.001) after adjusting for covariates. The meta-analysis confirmed this association under the recessive model (OR = 3.67, 95%CI 1.18–11.43), and also pointed out the protective effect of BsmI polymorphism against the risk of PTB under the allelic (A vs. G: OR = 0.74; 95%CI 0.59–0.93) and recessive (AA vs. GG + AG: OR = 0.62; 95%CI 0.43–0.89) models. Our results suggest the association between some maternal VDR polymorphisms with neonatal anthropometric measures and the risk of PTB.
Collapse
|
62
|
Lubecka K, Flower K, Beetch M, Qiu J, Kurzava L, Buvala H, Ruhayel A, Gawrieh S, Liangpunsakul S, Gonzalez T, McCabe G, Chalasani N, Flanagan JM, Stefanska B. Loci-specific differences in blood DNA methylation in HBV-negative populations at risk for hepatocellular carcinoma development. Epigenetics 2018; 13:605-626. [PMID: 29927686 PMCID: PMC6140905 DOI: 10.1080/15592294.2018.1481706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Late onset of clinical symptoms in hepatocellular carcinoma (HCC) results in late diagnosis and poor disease outcome. Approximately 85% of individuals with HCC have underlying liver cirrhosis. However, not all cirrhotic patients develop cancer. Reliable tools that would distinguish cirrhotic patients who will develop cancer from those who will not are urgently needed. We used the Illumina HumanMethylation450 BeadChip microarray to test whether white blood cell DNA, an easily accessible source of DNA, exhibits site-specific changes in DNA methylation in blood of diagnosed HCC patients (post-diagnostic, 24 cases, 24 controls) and in prospectively collected blood specimens of HCC patients who were cancer-free at blood collection (pre-diagnostic, 21 cases, 21 controls). Out of 22 differentially methylated loci selected for validation by pyrosequencing, 19 loci with neighbouring CpG sites (probes) were confirmed in the pre-diagnostic study group and subjected to verification in a prospective cirrhotic cohort (13 cases, 23 controls). We established for the first time 9 probes that could distinguish HBV-negative cirrhotic patients who subsequently developed HCC from those who stayed cancer-free. These probes were identified within regulatory regions of BARD1, MAGEB3, BRUNOL5, FXYD6, TET1, TSPAN5, DPPA5, KIAA1210, and LSP1. Methylation levels within DPPA5, KIAA1210, and LSP1 were higher in prospective samples from HCC cases vs. cirrhotic controls. The remaining probes were hypomethylated in cases compared with controls. Using blood as a minimally invasive material and pyrosequencing as a straightforward quantitative method, the established probes have potential to be developed into a routine clinical test after validation in larger cohorts.
Collapse
Affiliation(s)
- Katarzyna Lubecka
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Kirsty Flower
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Megan Beetch
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jay Qiu
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Lucinda Kurzava
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Hannah Buvala
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Adam Ruhayel
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy Gonzalez
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - George McCabe
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James M Flanagan
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Barbara Stefanska
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
63
|
Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Basile G, Agodi A. Resveratrol Modulates SIRT1 and DNMT Functions and Restores LINE-1 Methylation Levels in ARPE-19 Cells under Oxidative Stress and Inflammation. Int J Mol Sci 2018; 19:E2118. [PMID: 30037017 PMCID: PMC6073744 DOI: 10.3390/ijms19072118] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
The role of epigenetic alterations in the pathogenesis of retinal degenerative diseases, including age-related macular degeneration (AMD), has been pending so far. Our study investigated the effect of oxidative stress and inflammation on DNA methyltransferases (DNMTs) and Sirtuin 1 (SIRT1) functions, as well as on long interspersed nuclear element-1 (LINE-1) methylation, in human retinal pigment epithelial (ARPE-19) cells. Therefore, we evaluated whether treatment with resveratrol may modulate DNMT and SIRT1 functions and restore changes in LINE-1 methylation. Cells were treated with 25 mU/mL glucose oxidase (GOx) or 10 µg/mL lipopolysaccharide (LPS) to mimic oxidative or inflammatory conditions, respectively. Oxidative stress decreased DNMT1, DNMT3a, DNMT3b, and SIRT1 expression (p-values < 0.05), as well as total DNMTs (-28.5%; p < 0.0001) and SIRT1 (-29.0%; p < 0.0001) activities. Similarly, inflammatory condition decreased DNMT1 and SIRT1 expression (p-values < 0.05), as well as total DNMTs (-14.9%; p = 0.007) and SIRT1 (-20.1%; p < 0.002) activities. Interestingly, GOx- and LPS-treated cells exhibited lower LINE-1 methylation compared to controls (p-values < 0.001). We also demonstrated that treatment with 10 μM resveratrol for 24 h counteracted the detrimental effect on DNMT and SIRT1 functions, and LINE-1 methylation, in cells under oxidative and inflammatory conditions. However, further studies should explore the perspectives of resveratrol as a suitable strategy for the prevention and/or treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Maria Grazia Mazzone
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy.
| | - Francesco Giuliano
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy.
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Plebiscito, 628, 95124 Catania, Italy.
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| |
Collapse
|
64
|
Curcumin Modulates DNA Methyltransferase Functions in a Cellular Model of Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5407482. [PMID: 30057682 PMCID: PMC6051042 DOI: 10.1155/2018/5407482] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Hyperglycaemia-induced oxidative stress appears to be involved in the aetiology of diabetic retinopathy (DR), a major public health issue, via altering DNA methylation process. We investigated the effect of hyperglycaemia on retinal DNA methyltransferase (DNMT) expression in diabetic mice, using Gene Expression Omnibus datasets. We also evaluated the effect of curcumin both on high glucose-induced reactive oxygen species (ROS) production and altered DNMT functions, in a cellular model of DR. We observed that three months of hyperglycaemia, in insulin-deficient Ins2Akita mice, decrease DNMT1 and DNMT3a expression levels. In retinal pigment epithelium (RPE) cells, we also demonstrated that high glucose-induced ROS production precedes upregulation of DNMT expression and activity, suggesting that changes in DNMT function could be mediated by oxidative stress via a potential dual effect. The early effect results in decreased DNMT activity, accompanied by the highest ROS production, while long-term oxidative stress increases DNMT activity and DNMT1 expression. Interestingly, treatment with 25 μM curcumin for 6 hours restores ROS production, as well as DNMT functions, altered by the exposure of RPE to acute and chronic high glucose concentration. Our study suggests that curcumin may represent an effective antioxidant compound against DR, via restoring oxidative stress and DNMT functions, though further studies are recommended.
Collapse
|
65
|
Boyne DJ, King WD, Brenner DR, McIntyre JB, Courneya KS, Friedenreich CM. Aerobic exercise and DNA methylation in postmenopausal women: An ancillary analysis of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial. PLoS One 2018; 13:e0198641. [PMID: 29953441 PMCID: PMC6023230 DOI: 10.1371/journal.pone.0198641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Physical activity is associated with a lower risk of breast, colon, and endometrial cancer. Epigenetic mechanisms such as changes in DNA methylation may help to explain these protective effects. We assessed the impact of a one year aerobic exercise intervention on DNA methylation biomarkers believed to play a role in carcinogenesis. The Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial was a two-armed randomized controlled trial in 320 healthy, inactive, postmenopausal women with no history of cancer. In an ancillary analysis, frozen blood samples (n = 256) were reassessed for levels of DNA methylation within LINE-1 and Alu repeats as well as within the promoter regions of APC, BRCA1, RASSF1, and hTERT genes. Differences between the exercise and control arm at 12-months, after adjusting for baseline values, were estimated within an intent-to-treat and per-protocol analysis using linear regression. No significant differences in DNA methylation between the exercise and control arms were observed. In an exploratory analysis, we found that the prospective change in estimated VO2max was negatively associated with RASSF1 methylation in a dose-response manner (p-trend = 0.04). A year-long aerobic exercise intervention does not affect LINE-1, Alu, APC, BRCA1, RASSF1, or hTERT methylation in healthy, inactive, postmenopausal women. Changes in DNA methylation within these genomic regions may not mediate the association between physical activity and cancer in healthy postmenopausal women. Additional research is needed to validate our findings with RASSF1 methylation. Trial Registration: ClinicalTrials.gov NCT00522262.
Collapse
Affiliation(s)
- Devon J. Boyne
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Will D. King
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Darren R. Brenner
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John B. McIntyre
- Translational Laboratory, Tom Baker Cancer Centre, Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kerry S. Courneya
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Christine M. Friedenreich
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
66
|
Gogna P, O'Sullivan DE, King WD. The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation. Epigenomics 2018; 10:785-796. [PMID: 29888958 DOI: 10.2217/epi-2017-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the relationship between inflammation-related lifestyle factors and long interspersed nuclear element-1 (LINE-1) DNA methylation, and test for interaction by gene variants involved in one-carbon metabolism. PATIENTS & METHODS The study population consisted of 280 individuals undergoing colonoscopy screening. Multivariable linear regression was employed to examine associations of physical activity, BMI and NSAID use with LINE-1 DNA methylation and interactions with MTR and MTHFR gene variants. RESULTS The highest quartile of physical activity compared with the lowest was associated with higher LINE-1 DNA methylation (p = 0.005). Long-term NSAID use and a normal BMI were associated with increased LINE-1 DNA methylation among individuals with the variant MTR allele (p = 0.02; p = 0.03). CONCLUSION This study provides evidence that inflammation-related exposures may influence LINE-1 DNA methylation.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
67
|
Lu S, Niu Z, Chen Y, Tu Q, Zhang Y, Chen W, Tong W, Zhang Z. Repetitive Element DNA Methylation is Associated with Menopausal Age. Aging Dis 2018; 9:435-443. [PMID: 29896431 PMCID: PMC5988598 DOI: 10.14336/ad.2017.0810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
To investigate associations between the age of menopause and the DNA methylation levels of two repetitive elements, Alu and LINE-1, we performed plasma DNA extraction on 161 subjects and serum cell-free DNA extraction on 120 subjects. We grouped women by menopausal age as follows: ≤ 48 years (earlier menopause), ≥ 52 years (later menopause), and 48-52 years (control). The DNA methylation levels of Alu and LINE-1 were measured by MethyLight PCR. The results showed that the DNA methylation levels of both Alu and LINE-1 were inversely correlated with menopausal age in the plasma DNA cohort (r = 0.079, P < 0.001 for Alu; r = 0.045, P = 0.007 for LINE-1) as well as in the serum DNA cohort (r = 0.087, P = 0.001 for Alu; r = 0.041, P = 0.026 for LINE-1). Alu methylation levels in both the plasma and serum DNA cohorts and LINE-1 methylation levels in the plasma cohort were remarkably higher in the earlier menopause group than in the later menopause and control groups (P < 0.01 and P < 0.05, respectively). In the serum DNA cohort, the LINE-1 methylation levels in the later menopause group were significantly lower than that in the earlier menopause group and control group (P < 0.05). Therefore, methylation levels of Alu and LINE-1 were significantly associated with menopausal age. Women with earlier menopause showed hypermethylation in both repetitive elements, while women with later menopause showed hypomethylation. These findings suggest that altered DNA methylation in leukocytes and serum cell-free DNA may represent a biomarker of menopausal age.
Collapse
Affiliation(s)
- Sha Lu
- 1Department of Obstetrics and Gynecology, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China.,2Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Zheng Niu
- 1Department of Obstetrics and Gynecology, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Yueming Chen
- 3Laboratory of Gene Diagnosis, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Qiaofeng Tu
- 3Laboratory of Gene Diagnosis, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Yue Zhang
- 2Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Wenli Chen
- 4Department of Obstetrics and Gynecology, the Second People's Hospital of Tonglu, Hangzhou, China
| | - Wenjuan Tong
- 3Laboratory of Gene Diagnosis, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China
| | - Zhifen Zhang
- 1Department of Obstetrics and Gynecology, the Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou, China.,2Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
68
|
Kuan TC, Lin PC, Yang SH, Lin CC, Lan YT, Lin HH, Liang WY, Chen WS, Lin JK, Jiang JK, Chang SC. Impact of LINE-1 hypomethylation on the clinicopathological and molecular features of colorectal cancer patients. PLoS One 2018; 13:e0197681. [PMID: 29795620 PMCID: PMC5993106 DOI: 10.1371/journal.pone.0197681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies suggest that aberrant DNA methylation might occur early and commonly in colorectal tumorigenesis. In 111 normal subjects, the mean LINE-1 methylation level of peripheral blood was 81.0 ± 5.7%. Of 143 colorectal cancer (CRC) patients, the mean level of LINE-1 methylation was 60.5 ± 12.5%. We defined below 60% as cut-off value of LINE-1 hypomethylation, and 93 cases (65.0%) had LINE-1 hypomethylation in the tumor tissue. LINE-1 hypomethylation was not associated with any other clinical features. There was a trend that LINE-1 hypomethylation tumors were associated with advanced disease, but it did not reach statistical significance. There was no significant association between mutations of 12 genes, MSI-high, EMAST, and LINE-1 hypomethylation level. The median follow-up was 61.2 months. Five-year disease-free survival (DFS) and overall survival curves of patients with LINE-1 hypomethylation tumors were significantly lower than those of patients with normal LINE-1 methylation tumors (p = 0.032 and 0.001, respectively). Multivariate analysis showed that only TNM staging was an independent prognostic factor for CRC patients including DFS and overall survival (OS). LINE-1 did not impact patients' outcomes in multivariate analysis including DFS and OS. In conclusion, LINE-1 hypomethylation is marginally related to advanced stage CRC and impacts patients' outcomes in univariate analysis.
Collapse
Affiliation(s)
- Tai-Chuan Kuan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
| | - Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Health and Welfare, University of Taipei, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
| | - Hung-Hsin Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
- * E-mail: (SCC); (JKJ)
| | - Shih-Ching Chang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University,Taipei, Taiwan
- * E-mail: (SCC); (JKJ)
| |
Collapse
|
69
|
Barchitta M, Maugeri A, Quattrocchi A, Agrifoglio O, Scalisi A, Agodi A. The Association of Dietary Patterns with High-Risk Human Papillomavirus Infection and Cervical Cancer: A Cross-Sectional Study in Italy. Nutrients 2018; 10:nu10040469. [PMID: 29641467 PMCID: PMC5946254 DOI: 10.3390/nu10040469] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Specific foods and nutrients help prevent the progression of persistent high-risk human papillomavirus (hrHPV) infection to cervical cancer (CC). The aim of this study was to investigate dietary patterns which may be associated with hrHPV status and the risk of high-grade cervical intraepithelial neoplasia (CIN2+). Overall, 539 eligible women, including 127 with CIN2+, were enrolled in a cross-sectional study, and tested for hrHPV infection. Food intake was estimated using a food frequency questionnaire. Logistic regression models were applied. Using the Mediterranean Diet Score, we demonstrated that, among 252 women with a normal cervical epithelium, medium adherence to the Mediterranean diet decreased the odds of hrHPV infection when compared to low adherence (adjOR = 0.40, 95%CI = 0.22-0.73). Using the principal component analysis, we also identified two dietary patterns which explained 14.31% of the variance in food groups intake. Women in the third and fourth quartiles of the "Western pattern" had higher odds of hrHPV infection when compared with first quartile (adjOR = 1.77, 95% CI = 1.04-3.54 and adjOR = 1.97, 95%CI = 1.14-4.18, respectively). Adjusting for hrHPV status and age, women in the third quartile of the "prudent pattern" had lower odds of CIN2+ when compared with those in the first quartile (OR = 0.50, 95%CI = 0.26-0.98). Our study is the first to demonstrate the association of dietary patterns with hrHPV infection and CC and discourages unhealthy habits in favour of a Mediterranean-like diet.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Ottavia Agrifoglio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Aurora Scalisi
- Unità Operativa di Screening Ginecologico, Azienda Sanitaria Provinciale di Catania, 95126 Catania, Italy.
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| |
Collapse
|
70
|
Zhang C, Li J, Huang T, Duan S, Dai D, Jiang D, Sui X, Li D, Chen Y, Ding F, Huang C, Chen G, Wang K. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget 2018; 7:81255-81267. [PMID: 27835605 PMCID: PMC5348390 DOI: 10.18632/oncotarget.13221] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is an epigenetic mechanism in the pathogenesis of hepatocellular carcinoma (HCC). Here, we conducted a systematic meta-analysis to evaluate the contribution of DNA methylation to the risk of HCC. A total of 2109 publications were initially retrieved from PubMed, Web of Science, Cochrane Library, Embase, CNKI and Wanfang literature database. After a four-step filtration, we harvested 144 case-control articles in the meta-analysis. Our results revealed that 24 genes (carcinoma tissues vs adjacent tissues), 17 genes (carcinoma tissues vs normal tissues) and six genes (carcinoma serums vs normal serums) were significantly hypermethylated in HCC. Subgroup meta-analysis by geographical populations showed that six genes (carcinoma tissues vs adjacent tissues) and four genes (carcinoma tissues vs normal tissues) were significantly hypermethylated in HCC. Our meta-analysis identified the correlations between a number of aberrant methylated genes (p16, RASSF1A, GSTP1, p14, CDH1, APC, RUNX3, SOCS1, p15, MGMT, SFRP1, WIF1, PRDM2, DAPK1, RARβ, hMLH1, p73, DLC1, p53, SPINT2, OPCML and WT1) and HCC. Aberrant DNA methylation might become useful biomarkers for the prediction and diagnosis of HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jinyun Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Danjie Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidan Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fei Ding
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Changxin Huang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Gongying Chen
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Kaifeng Wang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
71
|
de Sá Pereira BM, Montalvão-de-Azevedo R, Faria PA, de Paula Silva N, Nicolau-Neto P, Maschietto M, de Camargo B, Soares Lima SC. Association between long interspersed nuclear element-1 methylation levels and relapse in Wilms tumors. Clin Epigenetics 2017; 9:128. [PMID: 29255497 PMCID: PMC5728012 DOI: 10.1186/s13148-017-0431-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background Wilms tumor (WT) is a curable pediatric renal malignancy, but there is a need for new molecular biomarkers to improve relapse risk-directed therapy. Somatic alterations occur at relatively low frequencies whereas epigenetic changes at 11p15 are the most common aberration. We analyzed long interspersed element-1 (LINE-1) methylation levels in the blastemal component of WT and normal kidney samples to explore their prognostic significance. Results WT samples presented a hypomethylated pattern at all five CpG sites compared to matched normal kidney samples; therefore, the averaged methylation levels of the five CpG sites were used for further analyses. WT presented a hypomethylation profile (median 65.0%, 47.4–73.2%) compared to normal kidney samples (median 71.8%, 51.5–77.5%; p < 0.0001). No significant associations were found between LINE-1 methylation levels and clinical–pathological characteristics. We observed that LINE-1 methylation levels were lower in tumor samples from patients with relapse (median methylation 60.5%) compared to patients without relapse (median methylation 66.5%; p = 0.0005), and a receiving operating characteristic curve analysis was applied to verify the ability of LINE-1 methylation levels to discriminate WT samples from these patients. Using a cut-off value of 62.71% for LINE-1 methylation levels, the area under the curve was 0.808, with a sensitivity of 76.5% and a specificity of 83.3%. Having identified differences in LINE-1 methylation between WT samples from patients with and without relapse in this cohort, we evaluated other prognostic factors using a logistic regression model. This analysis showed that in risk stratification, LINE-1 methylation level was an independent variable for relapse risk: the lower the methylation levels, the higher the risk of relapse. The logistic regression model indicated a relapse risk increase of 30% per decreased unit of methylation (odds ratio 1.30; 95% confidence interval 1.07–1.57). Conclusion Our results reinforce previous data showing a global hypomethylation profile in WT. LINE-1 methylation levels can be suggested as a marker of relapse after chemotherapy treatment in addition to risk classification, helping to guide new treatment approaches. Electronic supplementary material The online version of this article (10.1186/s13148-017-0431-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruna M de Sá Pereira
- Post Graduate Program of Instituto Nacional do Cancer (INCA), Rio de Janeiro, Brazil.,Pediatric Hematology-Oncology Research Program, Research Center (CPQ), Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37, Centro, Rio de Janeiro, 20231-050 Brazil
| | - Rafaela Montalvão-de-Azevedo
- Post Graduate Program of Instituto Nacional do Cancer (INCA), Rio de Janeiro, Brazil.,Pediatric Hematology-Oncology Research Program, Research Center (CPQ), Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37, Centro, Rio de Janeiro, 20231-050 Brazil
| | - Paulo Antônio Faria
- Pathology Division of Instituto Nacional do Câncer (DIPAT-INCA), Rua Cordeiro da Graça 156, Santo Cristo, Rio de Janeiro, 20220-400 Brazil
| | - Neimar de Paula Silva
- Post Graduate Program of Instituto Nacional do Cancer (INCA), Rio de Janeiro, Brazil.,Pediatric Hematology-Oncology Research Program, Research Center (CPQ), Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37, Centro, Rio de Janeiro, 20231-050 Brazil
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Research Center (CPQ), Instituto Nacional do Câncer (INCA), Rua André Cavalcanti 37, Centro, Rio de Janeiro, 20231-050 Brazil
| | - Mariana Maschietto
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Rua Giuseppe Máximo Scolfaro 10.000, Bosque das Palmeiras, Campinas, Sao Paulo 13083-970 Brazil
| | - Beatriz de Camargo
- Pediatric Hematology-Oncology Research Program, Research Center (CPQ), Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37, Centro, Rio de Janeiro, 20231-050 Brazil
| | - Sheila Coelho Soares Lima
- Molecular Carcinogenesis Program, Research Center (CPQ), Instituto Nacional do Câncer (INCA), Rua André Cavalcanti 37, Centro, Rio de Janeiro, 20231-050 Brazil
| |
Collapse
|
72
|
Zheng Y, Joyce BT, Liu L, Zhang Z, Kibbe WA, Zhang W, Hou L. Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res 2017; 45:8697-8711. [PMID: 28911103 PMCID: PMC5587781 DOI: 10.1093/nar/gkx587] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
DNA methylation in repetitive elements (RE) suppresses their mobility and maintains genomic stability, and decreases in it are frequently observed in tumor and/or surrogate tissues. Averaging methylation across RE in genome is widely used to quantify global methylation. However, methylation may vary in specific RE and play diverse roles in disease development, thus averaging methylation across RE may lose significant biological information. The ambiguous mapping of short reads by and high cost of current bisulfite sequencing platforms make them impractical for quantifying locus-specific RE methylation. Although microarray-based approaches (particularly Illumina's Infinium methylation arrays) provide cost-effective and robust genome-wide methylation quantification, the number of interrogated CpGs in RE remains limited. We report a random forest-based algorithm (and corresponding R package, REMP) that can accurately predict genome-wide locus-specific RE methylation based on Infinium array profiling data. We validated its prediction performance using alternative sequencing and microarray data. Testing its clinical utility with The Cancer Genome Atlas data demonstrated that our algorithm offers more comprehensively extended locus-specific RE methylation information that can be readily applied to large human studies in a cost-effective manner. Our work has the potential to improve our understanding of the role of global methylation in human diseases, especially cancer.
Collapse
Affiliation(s)
- Yinan Zheng
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian T Joyce
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lei Liu
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zhou Zhang
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Warren A Kibbe
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, MD 20850, USA
| | - Wei Zhang
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
73
|
Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet 2017; 13:e1007051. [PMID: 29028794 PMCID: PMC5656329 DOI: 10.1371/journal.pgen.1007051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) retrotransposons can mobilize (retrotranspose) within the human genome, and mutagenic de novo L1 insertions can lead to human diseases, including cancers. As a result, cells are actively engaged in preventing L1 retrotransposition. This work reveals that the human Condensin II complex restricts L1 retrotransposition in both non-transformed and transformed cell lines through inhibition of L1 transcription and translation. Condensin II subunits, CAP-D3 and CAP-H2, interact with members of the Gamma-Interferon Activated Inhibitor of Translation (GAIT) complex including the glutamyl-prolyl-tRNA synthetase (EPRS), the ribosomal protein L13a, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and NS1 associated protein 1 (NSAP1). GAIT has been shown to inhibit translation of mRNAs encoding inflammatory proteins in myeloid cells by preventing the binding of the translation initiation complex, in response to Interferon gamma (IFN-γ). Excitingly, our data show that Condensin II promotes complexation of GAIT subunits. Furthermore, RNA-Immunoprecipitation experiments in epithelial cells demonstrate that Condensin II and GAIT subunits associate with L1 RNA in a co-dependent manner, independent of IFN-γ. These findings suggest that cooperation between the Condensin II and GAIT complexes may facilitate a novel mechanism of L1 repression, thus contributing to the maintenance of genome stability in somatic cells.
Collapse
|
74
|
Han Y, Xu J, Kim J, Wu X, Gu J. Methylation of subtelomeric repeat D4Z4 in peripheral blood leukocytes is associated with biochemical recurrence in localized prostate cancer patients. Carcinogenesis 2017; 38:821-826. [PMID: 28854562 DOI: 10.1093/carcin/bgx064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
Global DNA methylation may affect chromosome structure and genomic stability and is involved in carcinogenesis. In this study, we aimed to investigate whether methylation of pericentromeric repeat NBL2 and subtelomeric repeat D4Z4 in peripheral blood was associated with the aggressiveness of prostate cancer (PCa). We measured the methylation status of different CpG sites of NBL2 and D4Z4 in 795 PCa patients and compared their methylation levels among patients with different Gleason Score at diagnosis. We then analyzed the association of the NBL2 and D4Z4 methylation with the risk of biochemical recurrence (BCR) in patients receiving radical prostatectomy or radiotherapy using a multivariate Cox proportional hazards model. In addition, we used the Kaplan-Meier survival function and log-rank tests to assess BCR-free survival associated with D4Z4 methylation. There was no significant difference in methylation level of NBL2 and D4Z4 between clinically defined aggressive and non-aggressive PCa at diagnosis. However, the methylation of D4Z4 was associated with BCR, while the methylation of NBL2 was not. In tertile analysis, patients in the highest tertile of D4Z4 methylation had an increased risk of BCR (HR = 2.17, 95% CI 1.36-3.48) compared to patients in the lower tertiles after adjustment of age, body mass index, smoking status, pack year, D'Amico risk groups and treatments. Among the four CpG sites in this region, the association was mostly attributable to the methylation of the second CpG site of D4Z4. These data suggest that higher methylation in D4Z4 was associated with worse prognosis of localized PCa patients.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junfeng Xu
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeri Kim
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xifeng Wu
- Department of Epidemiology and Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian Gu
- To whom correspondence should be addressed. Tel: +713 7928016; Fax: +713 7922145;
| |
Collapse
|
75
|
Han Y, Xu J, Kim J, Wu X, Gu J. LINE-1 methylation in peripheral blood leukocytes and clinical characteristics and prognosis of prostate cancer patients. Oncotarget 2017; 8:94020-94027. [PMID: 29212206 PMCID: PMC5706852 DOI: 10.18632/oncotarget.21511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Global DNA methylation of long interspersed nucleotide elements (LINE-1) in leukocytes has been suggested to be a risk factor for a few cancers. There has been no report of LINE-1 methylation in leukocytes as a risk factor for aggressive prostate cancer at diagnosis and prognosis after treatments. In this study, we measured the leukocyte DNA methylation of LINE-1 in 795 PCa patients and compared the methylation levels across different clinical subgroups. We then determined the association of LINE-1 methylation in leukocytes with clinicopathological variables at diagnosis using logistic regression analysis and biochemical recurrence in patients receiving active treatments (prostatectomy and radiotherapy) using Cox proportional hazard model after adjusting for age, BMI, smoking status, pack year, D’Amico risk groups, and treatments. Overall, the DNA methylation of LINE-1 was not associated with the risk of being diagnosed with high-risk prostate cancer or the risk of biochemical recurrence upon active treatments. Future studies are warranted to investigate other types of repetitive element methylation and longitudinal changes of global methylation in relation to prostate cancer risk and prognosis.
Collapse
Affiliation(s)
- Yuyan Han
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
76
|
Barchitta M, Quattrocchi A, Maugeri A, Canto C, La Rosa N, Cantarella MA, Spampinato G, Scalisi A, Agodi A. LINE-1 hypermethylation in white blood cell DNA is associated with high-grade cervical intraepithelial neoplasia. BMC Cancer 2017; 17:601. [PMID: 28854904 PMCID: PMC5577847 DOI: 10.1186/s12885-017-3582-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Background Long Interspersed Nuclear Elements-1 (LINEs-1) methylation from white blood cells (WBCs) DNA has been proposed as biomarker associated with different types of cancer. The aim of the present study was to investigate the degree of WBCs LINE-1 methylation, according to high-risk Human Papilloma Virus (hrHPV) status in a healthy population, and the association with high-grade Cervical Intraepithelial Neoplasia (CIN2+) in hrHPV positive women. Methods Women with abnormal cervical cells were enrolled and classified by histological diagnosis and hrHPV infection. A structured questionnaire was used to obtain information on socio-demographic variables and lifestyle factors. LINE-1 methylation level in WBCs was measured by pyrosequencing-based methylation analysis after bisulfite conversion. Results Among 252 women diagnosed with normal cervical epithelium, with regard to LINE-1 methylation level no significant difference was observed between hrHPV positive and hrHPV negative women, also adjusting for known risk factors of infection. The association between WBCs LINE-1 methylation and CIN2+ status was analyzed in hrHPV positive women. The median value of LINE-1 methylation levels was higher in cases (CIN2+) than in controls (75.00% versus 73.17%; p = 0.002). For a one-unit increase in LINE-1 methylation level, the odds of being diagnosed with CIN2+ increased by 10%, adjusting for known factors related to LINE-1 methylation (adjOR: 1.10; 95% CI:1.01–1.20; p = 0.032). The Receiver-Operating Characteristic (ROC) curve analysis identified the cut-off value of 73.8% as the best threshold to separate cases from controls (sensitivity: 63.4% and specificity: 61.8%). Conclusions LINE-1 methylation status in WBCs DNA may represent a cost-effective and tissue-accessible biomarker for high-grade CIN in hrHPV positive women. However, LINE-1 hypermethylation cannot be considered specific for cervical cancer (CC) and a model based solely on LINE-1 methylation levels has limited performance. Further investigations are necessary to propose and validate a novel methylation biomarker panel, based on LINE-1 methylation and other differentially methylated regions, for the screening of women at risk of CC.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy
| | | | - Nadia La Rosa
- Unità Operativa di Screening Ginecologico, Azienda Sanitaria Provinciale 3, Catania, Italy
| | | | - Giuseppa Spampinato
- Unità Operativa di Screening Ginecologico, Azienda Sanitaria Provinciale 3, Catania, Italy
| | - Aurora Scalisi
- Unità Operativa di Screening Ginecologico, Azienda Sanitaria Provinciale 3, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95121, Catania, Italy.
| |
Collapse
|
77
|
Magnet U, Urbanek C, Gaisberger D, Tomeva E, Dum E, Pointner A, Haslberger A. Topical equol preparation improves structural and molecular skin parameters. Int J Cosmet Sci 2017; 39:535-542. [DOI: 10.1111/ics.12408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Affiliation(s)
- U. Magnet
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - C. Urbanek
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - D. Gaisberger
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - E. Tomeva
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - E. Dum
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A. Pointner
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A.G. Haslberger
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| |
Collapse
|
78
|
Gianfrancesco O, Bubb VJ, Quinn JP. SVA retrotransposons as potential modulators of neuropeptide gene expression. Neuropeptides 2017; 64:3-7. [PMID: 27743609 PMCID: PMC5529292 DOI: 10.1016/j.npep.2016.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
Many facets of human behaviour are likely to have developed in part due to evolutionary changes in the regulation of neuropeptide and other brain-related genes. This has allowed species-specific expression patterns and unique epigenetic modulation in response to our environment, regulating response not only at the molecular level, but also contributing to differences in behaviour between individuals. As such, genetic variants or epigenetic changes that may alter neuropeptide gene expression are predicted to play a role in behavioural conditions and psychiatric illness. It is therefore of interest to identify regulatory elements that have the potential to drive differential gene expression. Retrotransposons are mobile genetic elements that are known to be drivers of genomic diversity, with the ability to alter expression of nearby genes. In particular, the SINE-VNTR-Alu (SVA) class of retrotransposons is specific to hominids, and its appearance and expansion across the genome has been associated with the evolution of numerous behavioural traits, presumably through their ability to confer unique regulatory properties at the site of their insertion. We review the evidence for SVAs as regulatory elements, exploring how polymorphic variation within these repetitive sequences can drive allele specific gene expression, which would be associated with changes in behaviour and disease risk through the alteration of molecular pathways that are central to healthy brain function.
Collapse
Affiliation(s)
- Olympia Gianfrancesco
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, L69 3BX, UK
| | - Vivien J Bubb
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, L69 3BX, UK
| | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
79
|
Lo Re O, Panebianco C, Porto S, Cervi C, Rappa F, Di Biase S, Caraglia M, Pazienza V, Vinciguerra M. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells. J Cell Physiol 2017; 233:1202-1212. [PMID: 28471474 DOI: 10.1002/jcp.25987] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use.
Collapse
Affiliation(s)
- Oriana Lo Re
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Department of Biology, Masaryk University, Brno, Czech Republic
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Carlo Cervi
- Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Di Biase
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), California
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, UK
| |
Collapse
|
80
|
LINE-1 hypomethylation is not a common event in preneoplastic stages of gastric carcinogenesis. Sci Rep 2017; 7:4828. [PMID: 28684753 PMCID: PMC5500474 DOI: 10.1038/s41598-017-05143-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
LINE-1 hypomethylation is widely accepted as marker for global genomic DNA hypomethylation, which is a frequent event in cancer. The aim of the study was to evaluate LINE-1 methylation status at different stages of gastric carcinogenesis and evaluate its prognostic potential in clinical settings. LINE-1 methylation was analyzed in 267 tissue samples by bisulfite pyrosequencing including primary colorectal cancer tissues (T-CRC) with corresponding adjacent colon mucosa (N-CRC), gastric cancer tissues (T-GC) with corresponding gastric mucosa (N-GC), normal gastric tissues (N), chronic non-atrophic and atrophic gastritis (CG). LINE-1 methylation level was lower in both T-GC and T-CRC when compared to paired adjacent tissues. No difference was observed for LINE-1 methylation status between patients with normal gastric mucosa, CG and N-GC. LINE-1 methylation in T-GC but not N-GC tended to correlate with age. Subgroup stratification analysis did not reveal significant differences in LINE-1 methylation status according to tumor stage, anatomical location, histological subtype, differentiation grade. We observed similar overall survival data between patients with high or low LINE-1 levels. In summary, LINE-1 hypomethylation is a characteristic feature in GC but not very common in early preneoplastic stages of gastric carcinogenesis. Prognostic role of LINE-1 hypomethylation in GC patients could not be confirmed in this cohort.
Collapse
|
81
|
Danese E, Montagnana M. Epigenetics of colorectal cancer: emerging circulating diagnostic and prognostic biomarkers. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:279. [PMID: 28758105 DOI: 10.21037/atm.2017.04.45] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and the second leading cause of cancer-related mortality in western countries. Despite the high incidence, treatment options for advanced CRC remain limited and unsuccessful, resulting in a poor prognosis. Therefore, novel accurate diagnostic, prognostic and predictive biomarkers are clearly and urgently needed to detect advanced colon polyps and early stage CRC and to identify the most effective treatments for specific CRC patients. CRC is known to develop from early premalignant lesions to full blown cancer via a multi-step process involving a series of genetic mutations that accumulate over time. Recent improvement of our understanding of CRC biology and advances in genomic technologies has led to the identification of a variety of epigenetic alterations strongly involved in cancer initiation and progression. Among the epigenetic marks implicated in CRC the most widely studied are the global DNA hypomethylation, the promoter hypermethylation and the miRNAs dysregulations. Many evidence exist that such tumour associated alterations may serve as new potential biomarkers. Moreover, due the non-invasive, objective, and potential reproducible assessment, circulating epigenetic biomarkers have reached increasing attentions in the last few years. In this review, we attempt to analyze the existing most recent literature on the role of circulating DNA methylations and miRNAs alterations in CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Elisa Danese
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| | - Martina Montagnana
- Clinical Biochemistry Section, University Hospital of Verona, Verona, Italy
| |
Collapse
|
82
|
Min J, Choi B, Han TS, Lee HJ, Kong SH, Suh YS, Kim TH, Choe HN, Kim WH, Hur K, Yang HK. Methylation Levels of LINE-1 As a Useful Marker for Venous Invasion in Both FFPE and Frozen Tumor Tissues of Gastric Cancer. Mol Cells 2017; 40:346-354. [PMID: 28535662 PMCID: PMC5463043 DOI: 10.14348/molcells.2017.0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1) is a retrotransposon that contains a CpG island in its 5'-untranslated region. The CpG island of LINE-1 is often heavily methylated in normal somatic cells, which is associated with poor prognosis in various cancers. DNA methylation can differ between formalin-fixed paraffin-embedded (FFPE) and frozen tissues. Therefore, this study aimed to compare the LINE-1 methylation status between the two tissue-storage conditions in gastric cancer (GC) clinical samples and to evaluate whether LINE-1 can be used as an independent prognostic marker for each tissue-storage type. We analyzed four CpG sites of LINE-1 and examined the methylation levels at these sites in 25 FFPE and 41 frozen GC tissues by quantitative bisulfite pyrosequencing. The LINE-1 methylation status was significantly different between the FFPE and frozen GC tissues (p < 0.001). We further analyzed the clinicopathological features in the two groups separately. In the frozen GC tissues, LINE-1 was significantly hypomethylated in GC tissues compared to their corresponding normal gastric mucosa tissues (p < 0.001), and its methylation status was associated with gender, differentiation state, and lymphatic and venous invasion of GC. In the FFPE GC tissues, the methylation levels of LINE-1 differed according to tumor location and venous invasion of GC. In conclusion, LINE-1 can be used as a useful methylation marker for venous invasion in both FFPE and frozen tumor tissues of GC.
Collapse
Affiliation(s)
- Jimin Min
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Boram Choi
- Department of Life Science, Ewha Womans University, Seoul 03760,
Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Division of Biomedical Science, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141,
Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Tae-Han Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Hwi-Nyeong Choe
- Department of Nursing, Seoul National University Hospital, Seoul 03080,
Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944,
Korea
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080,
Korea
| |
Collapse
|
83
|
Alexander M, Koutros S, Bonner MR, Barry KH, Alavanja MC, Andreotti G, Byun HM, Chen L, Beane Freeman LE, Hofmann JN, Kamel F, Moore LE, Baccarelli A, Rusiecki J. Pesticide use and LINE-1 methylation among male private pesticide applicators in the Agricultural Health Study. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx005. [PMID: 29492307 PMCID: PMC5804545 DOI: 10.1093/eep/dvx005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 05/05/2023]
Abstract
Cancer risk may be associated with DNA methylation (DNAm) levels in Long Interspersed Nucleotide Element 1 (LINE-1), a surrogate for global DNAm. Exposure to certain pesticides may increase risk of particular cancers, perhaps mediated in part through global DNAm alterations. To date, human data on pesticide exposure and global DNAm alterations are limited. The goal of this study was to evaluate alterations of LINE-1 DNAm by pesticides in a variety of classes. Data from 596 cancer-free male participants enrolled in the Agricultural Health Study (AHS) were used to examine associations between use of 57 pesticides and LINE-1 DNAm measured via Pyrosequencing in peripheral blood leucocytes. Participants provided information on pesticide use at three contacts between 1993 and 2010. Associations of ever/never pesticide use and lifetime days of application (years of use × days per year) and LINE-1 DNAm level were assessed using linear regression, adjusting for potential confounders (race, age at blood draw, and frequency of drinking alcohol) and other moderately correlated pesticides. After adjustment, ever application of 10 pesticides was positively associated and ever application of eight pesticides was negatively associated with LINE-1 DNAm. In dose-response analyses, increases in five pesticides (imazethapyr, fenthion, EPTC, butylate, and heptachlor) were associated with increasing LINE-1 DNAm (ptrend < 0.05) and increases in three pesticides (carbaryl, chlordane, and paraquat) were associated with decreasing LINE-1 DNAm (ptrend < 0.05). This study provides some mechanistic insight into the pesticide-cancer relationship, which may be mediated in part by epigenetics.
Collapse
Affiliation(s)
- Melannie Alexander
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew R. Bonner
- Department of Epidemiology and Environmental Health, State University of New York, Buffalo, NY, USA
| | - Kathryn Hughes Barry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Michael C.R. Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyang-Min Byun
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Ligong Chen
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Laura E. Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lee E. Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jennifer Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA
- Correspondence address. Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA. Tel: 301-295-3712; Fax: 301-295-1933; E-mail:
| |
Collapse
|
84
|
Wang S, He Z, Li D, Zhang B, Li M, Li W, Zhu W, Xing X, Zeng X, Wang Q, Dong G, Xiao Y, Chen W, Chen L. Aberrant methylation of RUNX3 is present in Aflatoxin B 1-induced transformation of the L02R cell line. Toxicology 2017; 385:1-9. [PMID: 28458013 DOI: 10.1016/j.tox.2017.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/22/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022]
Abstract
Chronic exposure to aflatoxin B1 (AFB1) is linked to the development of hepatocellular carcinoma (HCC). To identify differentially methylated genes involved in AFB1-induced cell transformation, we analyzed DNA methylation patterns in immortal human hepatocyte L02 cells expressing an oncogenic H-Ras allele (L02R cells) and AFB1-transformed L02R (L02RT-AFB1) cells by performing genome-wide methylation profiling. We treated L02R cells with 0.3μM AFB1 weekly and observed a transformed phenotype at the 17th week post-treatment. The transformed cells (L02RT-AFB1) could grow in an anchorage independent fashion and form tumors in immunodeficient mice. qRT-PCR was performed to examine whether gene methylation led to a reduction in gene expression of methylated candidate genes. As a result, the expression of the following seven genes including JUNB, RUNX3, NAV1, CXCR4, RARRES1, INTS1, and POLL was down-regulated in transformed L02RT-AFB1 cells. The reduction of gene expression of these genes could be reversed by treatment of 5-azadeoxycytidine. The methylated CpG sites of RUNX3 genes were verified using bisulfite sequencing PCR (BSP) assay. Furthermore, a dynamic change in RUNX3 methylation was observed over the course of AFB1-induced cell transformation, which was corresponded to the alteration of gene expression and the extent of DNA damage. In vitro study showed that methylation of RUNX3 tended to abate in L02R cells treated with AFB1 for a short-term period of time. Notably, hypermethylation of RUNX3 appeared in 70% (14/20) of human hepatocellular carcinomas. Moreover, LINE-1 hypomethylation and dynamic changes of DNMTs, TETs and MeCP2 expression were also observed during AFB1-induced transformation. Taken together, these observations suggest that aberrant methylation of RUNX3 and LINE-1 might be involved in AFB1-induced carcinogenesis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhini He
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Miao Li
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Departmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Zhu
- Departmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiumei Xing
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
85
|
Barchitta M, Quattrocchi A, Maugeri A, Barone G, Mazzoleni P, Catalfo A, De Guidi G, Iemmolo M, Crimi N, Agodi A. Integrated approach of nutritional and molecular epidemiology, mineralogical and chemical pollutant characterisation: the protocol of a cross-sectional study in women. BMJ Open 2017; 7:e014756. [PMID: 28377395 PMCID: PMC5387935 DOI: 10.1136/bmjopen-2016-014756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Environmentally-related health and disease are the result of the exposome, the totality of a person's environmental exposures, from all sources and routes, across their lifespan. Epigenetic phenomena, including DNA methylation, can be potentially modified by environmental and lifestyle factors, and result in environmental reprogramming of the genome for exposed individuals and for future generations of offspring. OBJECTIVE The objective of the project is to evaluate the risk of DNA hypomethylation due to air pollution, Mediterranean diet adherence, folate intake, and demographic and socioeconomic factors, in healthy women living in the metropolitan area of Catania, Italy. METHODS AND ANALYSIS Non-pregnant healthy women will be enrolled in a cross-sectional study. Sociodemographic, lifestyle and dietary intake information will be collected. LINE-1 methylation will be measured by pyrosequencing. The participants' home addresses will be geocoded and each woman will be assigned to the closest monitoring station for particulate matter (PM) exposure assessment. Mineralogical-chemical characterisation of PM and cellular model assays will be performed. An integrated approach will be designed to estimate the combined possible effect of air pollution, Mediterranean diet adherence, folate intake and other lifestyle characteristics on LINE-1 methylation levels. ETHICS AND DISSEMINATION The project has been approved by the ethics committees of the involved institution and funded by the University of Catania (Finanziamento della Ricerca, FIR 2014). All participants will be fully informed of the purpose and procedures of the study, and signed written consents will be obtained. All the data collected will be treated confidentially and analysed in an aggregate and anonymous way. The results will be published in peer-reviewed journals and communicated to local public health agencies, in order to provide essential information for timely and effective public health action.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
- LaPoSS, Laboratory of Policies and Social Services, University of Catania, Catania, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Germana Barone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Paolo Mazzoleni
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Alfio Catalfo
- Department of Chemical Science, Section of Photochemistry and Photobiology, University of Catania, Catania, Italy
| | - Guido De Guidi
- Department of Chemical Science, Section of Photochemistry and Photobiology, University of Catania, Catania, Italy
- Research Centre for the analysis, the monitoring and methodology for environmental risk assessment (CRAM3RA), University of Catania, Catania, Italy
| | - Maria Iemmolo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nunzio Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
- LaPoSS, Laboratory of Policies and Social Services, University of Catania, Catania, Italy
| |
Collapse
|
86
|
Ardeljan D, Taylor MS, Ting DT, Burns KH. The Human Long Interspersed Element-1 Retrotransposon: An Emerging Biomarker of Neoplasia. Clin Chem 2017; 63:816-822. [PMID: 28188229 DOI: 10.1373/clinchem.2016.257444] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND A large portion of intronic and intergenic space in our genome consists of repeated sequences. One of the most prevalent is the long interspersed element-1 (LINE-1, L1) mobile DNA. LINE-1 is rightly receiving increasing interest as a cancer biomarker. CONTENT Intact LINE-1 elements are self-propagating. They code for RNA and proteins that function to make more copies of the genomic element. Our current understanding is that this process is repressed in most normal cells, but that LINE-1 expression is a hallmark of many types of malignancy. Here, we will consider features of cancer cells when cellular defense mechanisms repressing LINE-1 go awry. We will review evidence that genomic LINE-1 methylation, LINE-1-encoded RNAs, and LINE-1 ORF1p (open reading frame 1 protein) may be useful in cancer diagnosis. SUMMARY The repetitive and variable nature of LINE-1 DNA sequences poses unique challenges to studying them, but recent advances in reagents and next generation sequencing present opportunities to characterize LINE-1 expression and activity in cancers and to identify clinical applications.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick-Nathans Institute of Genetic Medicine (IGM) and.,Medical Scientist Training Program (MSTP), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - David T Ting
- Department of Medicine and the Massachusetts General Hospital Cancer Center, Boston, MA
| | - Kathleen H Burns
- McKusick-Nathans Institute of Genetic Medicine (IGM) and .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
87
|
Rusiecki JA, Beane Freeman LE, Bonner MR, Alexander M, Chen L, Andreotti G, Barry KH, Moore LE, Byun HM, Kamel F, Alavanja M, Hoppin JA, Baccarelli A. High pesticide exposure events and DNA methylation among pesticide applicators in the agricultural health study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:19-29. [PMID: 27996157 PMCID: PMC5416937 DOI: 10.1002/em.22067] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
Pesticide exposure has been associated with acute and chronic adverse health effects. DNA methylation (DNAm) may mediate these effects. We evaluated the association between experiencing unusually high pesticide exposure events (HPEEs) and DNAm among pesticide applicators in the Agricultural Health Study (AHS), a prospective study of applicators from Iowa and North Carolina. DNA was extracted from whole blood from male AHS pesticide applicators (n = 695). Questionnaire data were used to ascertain the occurrence of HPEEs over the participant's lifetime. Pyrosequencing was used to quantify DNAm in CDH1, GSTp1, and MGMT promoters, and in the repetitive element, LINE-1. Linear and robust regression analyses evaluated adjusted associations between HPEE and DNAm. Ever having an HPEE (n = 142; 24%) was associated with elevated DNAm in the GSTp1 promoter at CpG7 (chr11:67,351,134; P < 0.01) and for the mean across the CpGs measured in the GSTp1 promoter (P < 0.01). In stratified analyses, elevated GSTP1 promoter DNAm associated with HPEE was more pronounced among applicators >59 years and those with plasma folate levels ≤16.56 ng/mL (p-interaction <0.01); HPEE was associated with reduced MGMT promoter DNAm at CpG2 (chr10:131,265,803; P = 0.03), CpG3 (chr10:131,265,810; P = 0.05), and the mean across CpGs measured in the MGMT promoter (P = 0.03) among applicators >59 years and reduced LINE-1 DNAm (P = 0.05) among applicators with ≤16.56 ng/mL plasma folate. Non-specific HPEEs may contribute to increased DNAm in GSTp1, and in some groups, reduced DNAm in MGMT and LINE-1. The impacts of these alterations on disease development are unclear, but elevated GSTp1 promoter DNAm and subsequent gene inactivation has been consistently associated with prostate cancer. Environ. Mol. Mutagen. 58:19-29, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Department of Preventive Medicine, Uniformed Services University, Bethesda, Maryland
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, State University of New York, Buffalo, New York
| | - Melannie Alexander
- Department of Preventive Medicine, Uniformed Services University, Bethesda, Maryland
| | - Ligong Chen
- Department of Preventive Medicine, Uniformed Services University, Bethesda, Maryland
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Kathryn H Barry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Hyang-Min Byun
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Michael Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Jane A Hoppin
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina
| | - Andrea Baccarelli
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| |
Collapse
|
88
|
Tumor LINE-1 Methylation Level in Association with Survival of Patients with Stage II Colon Cancer. Int J Mol Sci 2016; 18:ijms18010036. [PMID: 28035987 PMCID: PMC5297671 DOI: 10.3390/ijms18010036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Genome-wide DNA hypomethylation is associated with a worse prognosis in early-stage colorectal cancer. To measure genome-wide DNA methylation levels, long interspersed nucleotide element (LINE-1) repeats are used as a surrogate marker. Cohort studies on the clinical impact of genome-wide DNA methylation level in patients with only early-stage colon cancer, are currently lacking. This study aimed to investigate the prognostic value of LINE-1 methylation in a stage II colon cancer cohort (n = 164). Manual needle microdissection of tumor areas was performed on formalin-fixed paraffin-embedded tumor tissue sections followed by DNA extraction. Bisulfite converted DNA was used to assess tumor LINE-1 methylation level by qPCR. Patients with LINE-1 hypomethylated tumors had a significantly worse overall survival compared to patients with a higher level of LINE-1 tumor DNA methylation (HR 1.68, 95% CI 1.03–2.75; p = 0.04). This effect was more prominent in patients aged over 65 years (HR 2.00, 95% CI 1.13–3.52; p = 0.02), although the test for age interaction was not significant. No significant effect on recurrence-free survival was observed. Based on these results, tumor LINE-1 hypomethylation is associated with a worse overall survival in stage II colon cancer. Whether the origin of this causation is cancer-specific or age-related can be debated.
Collapse
|
89
|
Babaian A, Mager DL. Endogenous retroviral promoter exaptation in human cancer. Mob DNA 2016; 7:24. [PMID: 27980689 PMCID: PMC5134097 DOI: 10.1186/s13100-016-0080-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs) with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs) provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.
Collapse
Affiliation(s)
- Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
90
|
Shiratori H, Feinweber C, Knothe C, Lötsch J, Thomas D, Geisslinger G, Parnham MJ, Resch E. High-Throughput Analysis of Global DNA Methylation Using Methyl-Sensitive Digestion. PLoS One 2016; 11:e0163184. [PMID: 27749902 PMCID: PMC5066982 DOI: 10.1371/journal.pone.0163184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022] Open
Abstract
DNA methylation is a major regulatory process of gene transcription, and aberrant DNA methylation is associated with various diseases including cancer. Many compounds have been reported to modify DNA methylation states. Despite increasing interest in the clinical application of drugs with epigenetic effects, and the use of diagnostic markers for genome-wide hypomethylation in cancer, large-scale screening systems to measure the effects of drugs on DNA methylation are limited. In this study, we improved the previously established fluorescence polarization-based global DNA methylation assay so that it is more suitable for application to human genomic DNA. Our methyl-sensitive fluorescence polarization (MSFP) assay was highly repeatable (inter-assay coefficient of variation = 1.5%) and accurate (r2 = 0.99). According to signal linearity, only 50–80 ng human genomic DNA per reaction was necessary for the 384-well format. MSFP is a simple, rapid approach as all biochemical reactions and final detection can be performed in one well in a 384-well plate without purification steps in less than 3.5 hours. Furthermore, we demonstrated a significant correlation between MSFP and the LINE-1 pyrosequencing assay, a widely used global DNA methylation assay. MSFP can be applied for the pre-screening of compounds that influence global DNA methylation states and also for the diagnosis of certain types of cancer.
Collapse
Affiliation(s)
- Hiromi Shiratori
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- * E-mail:
| | - Carmen Feinweber
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Claudia Knothe
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Jörn Lötsch
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - Michael J. Parnham
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Eduard Resch
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| |
Collapse
|
91
|
Abstract
DNA methylation alterations are common in urothelial carcinoma, a prevalent cancer worldwide caused predominantly by chemical carcinogens. Recent studies have proposed sets of hypermethylated genes as promising diagnostic and prognostic biomarkers from urine or tissue samples, which require validation. Other studies have revealed intriguing links between specific carcinogens and DNA methylation alterations in cancer tissues or blood that might clarify carcinogenesis mechanisms and aid prevention. Like DNA methylation alterations, mutations in chromatin regulators are frequent, underlining the importance of epigenetic changes. However, the relations between the two changes and their functions in urothelial carcinogenesis remain unclear. Transcription factor genes with altered methylation deserve particular interest. Elucidating the functional impact of methylation changes is a prerequisite for their therapeutic targeting.
Collapse
Affiliation(s)
- Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Wolfgang Goering
- Department of Pathology, Medical Faculty, Heinrich Heine University Duesseldorf, Germany
| |
Collapse
|
92
|
Huen K, Calafat AM, Bradman A, Yousefi P, Eskenazi B, Holland N. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1 and Alu repetitive elements in Mexican-American children. ENVIRONMENTAL RESEARCH 2016; 148:55-62. [PMID: 27019040 PMCID: PMC4874877 DOI: 10.1016/j.envres.2016.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 05/21/2023]
Abstract
Phthalates are frequently used in personal care products and plasticizers and phthalate exposure is ubiquitous in the US population. Exposure to phthalates during critical periods in utero has been associated with a variety of adverse health outcomes but the biological mechanisms linking these exposures with disease are not well characterized. In this study, we examined the relationship of in utero phthalate exposure with repetitive element DNA methylation, an epigenetic marker of genome instability, in children from the longitudinal birth cohort CHAMACOS. Methylation of Alu and long interspersed nucleotide elements (LINE-1) was determined using pyrosequencing of bisulfite-treated DNA isolated from whole blood samples collected from newborns and 9 year old children (n=355). Concentrations of eleven phthalate metabolites were measured in urine collected from pregnant mothers at 13 and 26 weeks gestation. We found a consistent inverse association between prenatal concentrations of monoethyl phthalate, the most frequently detected urinary metabolite, with cord blood methylation of Alu repeats (β(95%CI): -0.14 (-0.28,0.00) and -0.16 (-0.31, -0.02)) for early and late pregnancy, respectively, and a similar but weaker association with LINE-1 methylation. Additionally, increases in urinary concentrations of di-(2-ethylhexyl) phthalate metabolites during late pregnancy were associated with lower levels of methylation of Alu repeats in 9 year old blood (significant p-values ranged from 0.003 to 0.03). Our findings suggest that prenatal exposure to some phthalates may influence differences in repetitive element methylation, highlighting epigenetics as a plausible biological mechanism through which phthalates may affect health.
Collapse
Affiliation(s)
- Karen Huen
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA.
| | - Asa Bradman
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Paul Yousefi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Brenda Eskenazi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Nina Holland
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| |
Collapse
|
93
|
Joyce BT, Gao T, Zheng Y, Liu L, Zhang W, Dai Q, Shrubsole MJ, Hibler EA, Cristofanilli M, Zhang H, Yang H, Vokonas P, Cantone L, Schwartz J, Baccarelli A, Hou L. Prospective changes in global DNA methylation and cancer incidence and mortality. Br J Cancer 2016; 115:465-72. [PMID: 27351216 PMCID: PMC4985350 DOI: 10.1038/bjc.2016.205] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Methylation of repetitive elements Alu and LINE-1 in humans is considered a surrogate for global DNA methylation. Previous studies of blood-measured Alu/LINE-1 and cancer risk are inconsistent. METHODS We studied 1259 prospective methylation measurements from blood drawn 1-4 times from 583 participants from 1999 to 2012. We used Cox regression to evaluate time-dependent methylation as a biomarker for cancer risk and mortality, and linear regression to compare mean differences in methylation over time by cancer status and analyse associations between rate of methylation change and cancer. RESULTS Time-dependent LINE-1 methylation was associated with prostate cancer incidence (HR: 1.38, 95% CI: 1.01-1.88) and all-cancer mortality (HR: 1.41, 95% CI: 1.03-1.92). The first measurement of Alu methylation (HR: 1.39, 95% CI: 1.08-1.79) was associated with all-cancer mortality. Participants who ultimately developed cancer had lower mean LINE-1 methylation than cancer-free participants 10+ years pre-diagnosis (P<0.01). Rate of Alu methylation change was associated with all-cancer incidence (HR: 3.62, 95% CI: 1.09-12.10). CONCLUSIONS Our results add longitudinal data on blood Alu and LINE-1 methylation and cancer, and potentially contribute to their use as early-detection biomarkers. Future larger studies are needed and should account for the interval between blood sample collection and cancer diagnosis.
Collapse
Affiliation(s)
- Brian T Joyce
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Division of Epidemiology/Biostatistics, School of Public Health, University of Illinois-Chicago, 1603 W. Taylor Street, Chicago, IL 60612, USA
| | - Tao Gao
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Lei Liu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Qi Dai
- Vanderbilt University Medical Center, 2525 West End Avenue, Suite 319, Nashville, TN 37203, USA
| | - Martha J Shrubsole
- Vanderbilt University Medical Center, 2525 West End Avenue, Suite 319, Nashville, TN 37203, USA
| | - Elizabeth A Hibler
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Massimo Cristofanilli
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, 8th Floor, Chicago, IL 60611, USA
| | - Hu Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Hushan Yang
- Department of Medical Oncology, Division of Population Science, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 314, Philadelphia, PA 19107, USA
| | - Pantel Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laura Cantone
- Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, San Barnaba 8, Milan 20122, Italy
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Andrea Baccarelli
- Department of Environmental Health, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Olson Pavilion 8350, Chicago, IL 60611, USA
| |
Collapse
|
94
|
Detection of OSR2, VAV3, and PPFIA3 Methylation in the Serum of Patients with Gastric Cancer. DISEASE MARKERS 2016; 2016:5780538. [PMID: 27143812 PMCID: PMC4838789 DOI: 10.1155/2016/5780538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/15/2022]
Abstract
Aim. This study was to evaluate the diagnostic value of OSR2, VAV3, and PPFIA3 hypermethylation in gastric cancer (GC) patients. Patients and Methods. By using methylation-specific polymerase chain reaction (MSP), we detected the methylation status in tissue and serum samples from 48 gastric cancer (GC) patients and 25 normal individuals. Results. We found that OSR2, VAV3, and PPFIA3 were methylated in 70.8% (34/48), 54.2% (26/48), and 60.4% (29/48) of GC tissue, respectively. On the contrary, those genes were barely methylated in their paired paracancerous histological normal tissues (PCHNTs) (all P values < 0.01). We next analyzed the methylated OSR2, VAV3, and PPFIA3 in serum DNA. Compared with 25 normal individuals, those three genes were significantly hypermethylated in GC patients serum samples (all P values < 0.01). Regarding their diagnostic value in serum samples, the combined sensitivity of at least one positive among the three markers in serum was 83.3%, with a specificity of 88%. Conclusion. Our test suggested that methylation of OSR2, VAV3, and PPFIA3 genes in serum sample may offer a good alternative in a simple, promising, and noninvasive detection of GC.
Collapse
|
95
|
Pramio DT, Pennacchi PC, Maria-Engler SS, Campos AHJFM, Duprat JP, Carraro DM, Krepischi ACV. LINE-1 hypomethylation and mutational status in cutaneous melanomas. J Investig Med 2016; 64:899-904. [PMID: 26965315 DOI: 10.1136/jim-2016-000066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/04/2022]
Abstract
Epigenetic dysregulation is an important emerging hallmark of cutaneous melanoma development. The global loss of DNA methylation in gene-poor regions and transposable DNA elements of cancer cells contributes to increased genomic instability. Long interspersed element-1 (LINE-1) sequences are the most abundant repetitive sequence of the genome and can be evaluated as a surrogate marker of the global level of DNA methylation. In this work, LINE-1 methylation levels were evaluated in cutaneous melanomas and normal melanocyte primary cell cultures to investigate their possible association with both distinct clinicopathological characteristics and tumor mutational profile. A set of driver mutations frequently identified in cutaneous melanoma was assessed by sequencing (actionable mutations in BRAF, NRAS, and KIT genes, and mutations affecting the TER T promoter) or multiplex ligation-dependent probe amplification (MLPA) (CDKN2A deletions). Pyrosequencing was performed to investigate the methylation level of LINE-1 and CDKN2A promoter sequences. The qualitative analysis showed a trend toward an association between LINE-1 hypomethylation and CDKN2A inactivation (p=0.05). In a quantitative approach, primary tumors, mainly the thicker ones (>4 mm), exhibited a trend toward LINE-1 hypomethylation when compared with control melanocytes. To date, this is the first study reporting in cutaneous melanomas a possible link between the dysregulation of LINE-1 methylation and the presence of driver mutations.
Collapse
Affiliation(s)
- Dimitrius T Pramio
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Paula C Pennacchi
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvya S Maria-Engler
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - João P Duprat
- Skin Cancer Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Dirce M Carraro
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
96
|
Hypomethylation of repetitive elements in blood leukocyte DNA and risk of gastric lesions in a Chinese population. Cancer Epidemiol 2016; 41:122-8. [PMID: 26943853 DOI: 10.1016/j.canep.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND To explore the association between hypomethylation of repetitive elements (LINE-1, Sat2, and ALU) in blood leukocyte DNA and risks of gastric lesions, and development of gastric cancer (GC), a population-based study was conducted in a high-risk area of GC in China. MATERIALS Methylation levels were determined by MethyLight in 902 subjects with various gastric lesions from two cohort studies at baseline and 276 subjects with long-term follow-up data. RESULTS The frequency of LINE-1 or Sat2 hypomethylation was significantly increased in subjects with dysplasia (DYS) compared with superficial gastritis/chronic atrophic gastritis. The odds ratios (ORs) were 2.22 [95% confidence interval (CI): 1.45-3.40] for LINE-1 and 1.58 (95% CI: 1.14-2.21) for Sat2. A dose-response pattern was found for the risk of DYS and LINE-1 hypomethylation (P-trend<0.001). Further stratified analysis indicated that the frequency of LINE-1 or Sat2 hypomethylation was higher in subjects with Helicobacter pylori infection. The ORs were 1.83 (95% CI: 1.12-2.99) for LINE-1 and 1.44 (95% CI: 1.01-2.05) for Sat2. The follow-up data indicated that the risk of progression to GC was increased in intestinal metaplasia (IM) subjects with LINE-1 hypomethylation (OR=2.82; 95% CI: 1.17-6.77) or Sat2 hypomethylation (OR=2.78; 95% CI: 1.15-6.74). The risk of progression to GC was also increased in DYS subjects with Sat2 hypomethylation (OR=5.24; 95% CI: 2.00-13.74). CONCLUSIONS These findings suggest that hypomethylation of repetitive elements in blood leukocytes is associated with the risks of advanced gastric lesions and development of GC.
Collapse
|
97
|
Vilahur N, Vahter M, Broberg K. The Epigenetic Effects of Prenatal Cadmium Exposure. Curr Environ Health Rep 2016; 2:195-203. [PMID: 25960943 PMCID: PMC4417128 DOI: 10.1007/s40572-015-0049-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prenatal exposure to the highly toxic and common pollutant cadmium has been associated with adverse effects on child health and development. However, the underlying biological mechanisms of cadmium toxicity remain partially unsolved. Epigenetic disruption due to early cadmium exposure has gained attention as a plausible mode of action, since epigenetic signatures respond to environmental stimuli and the fetus undergoes drastic epigenomic rearrangements during embryogenesis. In the current review, we provide a critical examination of the literature addressing prenatal cadmium exposure and epigenetic effects in human, animal, and in vitro studies. We conducted a PubMed search and obtained eight recent studies addressing this topic, focusing almost exclusively on DNA methylation. These studies provide evidence that cadmium alters epigenetic signatures in the DNA of the placenta and of the newborns, and some studies indicated marked sexual differences for cadmium-related DNA methylation changes. Associations between early cadmium exposure and DNA methylation might reflect interference with de novo DNA methyltransferases. More studies, especially those including environmentally relevant doses, are needed to confirm the toxicoepigenomic effects of prenatal cadmium exposure and how that relates to the observed health effects of cadmium in childhood and later life.
Collapse
Affiliation(s)
- Nadia Vilahur
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Nobels väg 13, Box 210, SE-171 77 Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Nobels väg 13, Box 210, SE-171 77 Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Nobels väg 13, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
98
|
Kim B, Bae H, Lee H, Lee S, Park JC, Kim KR, Kim SJ. Proton Beams Inhibit Proliferation of Breast Cancer Cells by Altering DNA Methylation Status. J Cancer 2016; 7:344-52. [PMID: 26918048 PMCID: PMC4747889 DOI: 10.7150/jca.13396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/15/2015] [Indexed: 12/04/2022] Open
Abstract
Proton beam therapy has been gaining popularity in the management of a wide spectrum of cancers. However, little is known about the effect of proton beams on epigenetic alterations. In this study, the effects of proton beams on DNA methylation were evaluated in the breast cell lines MCF-10A and MCF-7. Pyrosequencing analysis of the long interspersed element 1 (LINE1) gene indicated that a few specific CpG sites were induced to be hypermethylated by proton beam treatment from 64.5 to 76.5% and from 57.7 to 60.0% (p < 0.05) in MCF-10A and MCF-7, respectively. Genome-wide methylation analysis identified “Developmental Disorder, Hereditary Disorder, Metabolic Disease” as the top network in the MCF-7 cell line. The proliferation rate significantly decreased in proton beam-treated cells, as judged by colony formation and cell proliferation assay. Upon treatment with the proton beam, expression of selected genes (MDH2, STYXL1, CPE, FAM91A1, and GPR37) was significantly changed in accordance with the changes of methylation level. Taken together, the findings demonstrate that proton beam-induced physiological changes of cancer cells via methylation modification assists in establishing the epigenetic basis of proton beam therapy for cancer.
Collapse
Affiliation(s)
- Byungtak Kim
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hansol Bae
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hyunkyung Lee
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Seungyeon Lee
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Jeong Chan Park
- 2. Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, Korea
| | - Kye Ryung Kim
- 2. Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, Korea
| | - Sun Jung Kim
- 1. Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
99
|
Kemp JR, Longworth MS. Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer. Front Chem 2015; 3:68. [PMID: 26734601 PMCID: PMC4679865 DOI: 10.3389/fchem.2015.00068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.
Collapse
Affiliation(s)
- Jacqueline R Kemp
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| | - Michelle S Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| |
Collapse
|
100
|
Tang JT, Wang ZH, Fang JY. Assessing the potential value of long interspersed element-1 hypomethylation in colorectal cancer: evidence from retrospective studies. Onco Targets Ther 2015; 8:3265-76. [PMID: 26604793 PMCID: PMC4640227 DOI: 10.2147/ott.s91941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS Long interspersed element-1 (LINE-1) hypomethylation may play an important role in colorectal cancer (CRC). Studies were identified that investigated LINE-1 methylation levels in CRC compared with normal controls. METHODS The random-effects model was used to estimate standardized mean difference with 95% confidence intervals according to the heterogeneity between the studies. We explored the relationship between LINE-1 hypomethylation and microsatellite instability (MSI) status, clinical features, and molecular features in CRC patients using a fixed-effects model. RESULTS A total of 7396 CRC patients were included in the meta-analysis. LINE-1 methylation was significantly lower in CRC patients than in controls (P=0.000). Mean LINE-1 methylation was significantly lower in non-MSI-high than in MSI-high tumors (P=0.000). LINE-1 hypomethylation was found more frequently in patients with a family history compared with those without family history (P=0.002). Patients with left colon cancer had lower LINE-1 methylation than those with right colon cancer (P=0.001). LINE-1 methylation was not associated with body mass index or patient sex. LINE-1 hypomethylation was found in p21 lost tumors (P=0.000). LINE-1 methylation levels were not associated with KRAS or PIK3CA-mutation status. CONCLUSION LINE-1 hypomethylation is a potential biomarker for risk of CRC and associated with various clinical and molecular features of CRC.
Collapse
Affiliation(s)
- Jie-Ting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhen-Hua Wang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China ; Shanghai Institute of Digestive Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|