51
|
Li J, Xiang S, Zhang Q, Wu J, Tang Q, Zhou J, Yang L, Chen Z, Hann SS. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C. J Exp Clin Cancer Res 2015; 34:46. [PMID: 25971429 PMCID: PMC4446835 DOI: 10.1186/s13046-015-0168-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/08/2015] [Indexed: 11/17/2022] Open
Abstract
Background Prostate cancer is one of the most common malignancies in men. The mucin 1 (MUC1) heterodimeric oncoprotein is overexpressed in human prostate cancers with aggressive pathologic and clinical features, resulting in a poor outcome. However, the functional role for MUC1 C-terminal domain (MUC1-C) in androgen-independent prostate cancer occurrence and development has remained unclear. Methods Cell viability was measured by MTT assays. Western blot analysis was performed to measure the phosphorylation and protein expression of SAPK/JNK and ERK1/2, and MUC1-C, NF-κB subunit p65 and p50. Exogenous expression of MUC1-C, NF-κB subunit p65 was carried out by transient and electroporated transfection assays. Results We showed that curcumin inhibited the growth of androgen-independent prostate cancer cells and a synergy was observed in the presence of curcumin and bicalutamide, the androgen receptor antagonist. To further explore the potential mechanism underlining this, we found that curcumin increased the phosphorylation of ERK1/2 and SAPK/JNK, which was enhanced by bicalutamide. In addition, curcumin reduced the protein expression of MUC1-C and NF-κB subunit p65, which were abrogated in the presence of the inhibitors of MEK/ERK1/2 (PD98059) and SAPK/JNK (SP60015). A further reduction was observed in the combination of curcumin with bicalutamide. Moreover, while exogenous expression of MUC1-C had little effect on curcumin-reduced p65, the overexpression of p65 reversed the effect of curcumin on MUC1-C protein expression suggesting that p65 is upstream of MUC1-C. Intriguingly, we showed that exogenous expression of MUC1-C feedback diminished the effect of curcumin on phosphorylation of ERK1/2 and SAPK/JNK, and antagonized the effect of curcumin on cell growth. Conclusion Our results show that curcumin inhibits the growth of androgen-independent prostate cancer cells through ERK1/2- and SAPK/JNK-mediated inhibition of p65, followed by reducing expression of MUC1-C protein. More importantly, there are synergistic effects of curcumin and bicalutamide. The negative feedback regulatory loop of MUC1-C to ERK1/2 and SAPK/JNK further demonstrates the role of MUC1-C that contributes to the overall responses of curcumin. This study unveils the potential molecular mechanism by which combination of curcumin with bicalutamide enhances the growth inhibition of androgen-independent prostate cancer cells.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - SongTao Xiang
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - QiouHong Zhang
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - JianFu Zhou
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - ZhiQiang Chen
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China. .,Higher Education Mega Center, Panyu District, Guangdong Provincial Hospital of Chinese Medicine, No. 55, Neihuan West Road, Guangzhou, Guangdong Province, 510006, People's Republic of China.
| |
Collapse
|
52
|
Nazareth L, Tello Velasquez J, Lineburg KE, Chehrehasa F, St John JA, Ekberg JAK. Differing phagocytic capacities of accessory and main olfactory ensheathing cells and the implication for olfactory glia transplantation therapies. Mol Cell Neurosci 2015; 65:92-101. [PMID: 25752729 DOI: 10.1016/j.mcn.2015.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/06/2015] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
The rodent olfactory systems comprise the main olfactory system for the detection of odours and the accessory olfactory system which detects pheromones. In both systems, olfactory axon fascicles are ensheathed by olfactory glia, termed olfactory ensheathing cells (OECs), which are crucial for the growth and maintenance of the olfactory nerve. The growth-promoting and phagocytic characteristics of OECs make them potential candidates for neural repair therapies such as transplantation to repair the injured spinal cord. However, transplanting mixed populations of glia with unknown properties may lead to variations in outcomes for neural repair. As the phagocytic capacity of the accessory OECs has not yet been determined, we compared the phagocytic capacity of accessory and main OECs in vivo and in vitro. In normal healthy animals, the accessory OECs accumulated considerably less axon debris than main OECs in vivo. Analysis of freshly dissected OECs showed that accessory OECs contained 20% less fluorescent axon debris than main OECs. However, when assayed in vitro with exogenous axon debris added to the culture, the accessory OECs phagocytosed almost 20% more debris than main OECs. After surgical removal of one olfactory bulb which induced the degradation of main and accessory olfactory sensory axons, the accessory OECs responded by phagocytosing the axon debris. We conclude that while accessory OECs have the capacity to phagocytose axon debris, there are distinct differences in their phagocytic capacity compared to main OECs. These distinct differences may be of importance when preparing OECs for neural transplant repair therapies.
Collapse
Affiliation(s)
- Lynnmaria Nazareth
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000 Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia
| | - Johana Tello Velasquez
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia
| | - Katie E Lineburg
- QIMR-Berghofer Medical Research Institute, Herston, 4006 Queensland, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000 Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia.
| | - Jenny A K Ekberg
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000 Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111 Queensland, Australia.
| |
Collapse
|