51
|
Pokutnaya D, Molaei G, Weinberger DM, Vossbrinck CR, Diaz AJ. Prevalence of Infection and Co-Infection and Presence of Rickettsial Endosymbionts in Ixodes Scapularis (Acari: Ixodidae) in Connecticut, USA. J Parasitol 2020. [PMID: 31971489 DOI: 10.1645/19-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ixodes scapularis is currently known to transmit 7 pathogens responsible for Lyme disease, anaplasmosis, babesiosis, tick-borne relapsing fever, ehrlichiosis, and Powassan encephalitis. Ixodes scapularis can also be colonized by endosymbiotic bacteria including those in the genus of Rickettsia. We screened 459 I. scapularis ticks submitted to the Connecticut Agricultural Experiment Station Tick Testing Laboratory with the objectives to (1) examine differences in infection prevalence of Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti, and Borrelia miyamotoi, (2) evaluate whether prevalence of co-infections occur at the same frequency that would be expected based on single infection, and (3) determine the presence of rickettsial endosymbionts in I. scapularis. The prevalence of infection in I. scapularis was highest with Bo. burgdorferi sensu lato (nymph = 45.8%; female = 47.0%), followed by A. phagocytophilum (nymph = 4.0%; female = 6.9%), Ba. microti (nymph = 5.7%; female = 4.7%), and Bo. miyamotoi (nymph = 0%; female = 7.3%). We also identified rickettsial endosymbionts in 93.3% of I. scapularis. Nymphs were significantly more likely to be infected with Bo. burgdorferi if they were infected with Ba. microti, whereas adult females were significantly more likely to be infected with Bo. burgdorferi if they were infected with A. phagocytophilum. Our study suggests that the infection prevalence of Bo. burgdorferi is not independent of other co-circulating pathogens and that there is a substantially higher infection of Bo. miyamotoi in I. scapularis females compared with nymphs in this study. High prevalence of infection and co-infection with multiple pathogens in I. scapularis highlights the public health consequences in Connecticut, a state endemic for Lyme and other tick-borne diseases.
Collapse
Affiliation(s)
- Darya Pokutnaya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, P.O. Box 208034, New Haven, Connecticut 06520-8034
| | - Goudarz Molaei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, P.O. Box 208034, New Haven, Connecticut 06520-8034.,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511.,Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, P.O. Box 208034, New Haven, Connecticut 06520-8034
| | - Charles R Vossbrinck
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
| | - Alexander J Diaz
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
| |
Collapse
|
52
|
Parveen N, Bhanot P. Babesia microti- Borrelia Burgdorferi Coinfection. Pathogens 2019; 8:E117. [PMID: 31370180 PMCID: PMC6789475 DOI: 10.3390/pathogens8030117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The incidence and geographic distribution of human babesiosis is growing in the U.S. Its major causative agent is the protozoan parasite, Babesia microti. B. microti is transmitted to humans primarily through the bite of Ixodes scapularis ticks, which are vectors for a number of other pathogens. Other routes of B. microti transmission are blood transfusion and in rare cases of mother-to-foetus transmission, through the placenta. This review discusses the current literature on mammalian coinfection with B. microti and Borrelia burgdorferi, the causative agent Lyme disease.
Collapse
Affiliation(s)
- Nikhat Parveen
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA.
| | - Purnima Bhanot
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA.
| |
Collapse
|
53
|
Djokic V, Akoolo L, Primus S, Schlachter S, Kelly K, Bhanot P, Parveen N. Protozoan Parasite Babesia microti Subverts Adaptive Immunity and Enhances Lyme Disease Severity. Front Microbiol 2019; 10:1596. [PMID: 31354683 PMCID: PMC6635642 DOI: 10.3389/fmicb.2019.01596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Lyme disease is the most prominent tick-borne disease in the United States. Co-infections with the tick-transmitted pathogens Babesia microti and Borrelia burgdorferi sensu stricto are becoming a serious health problem. B. burgdorferi is an extracellular spirochete that causes Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Testing of donated blood for Babesia species is not currently mandatory due to unavailability of an FDA approved test. Transmission of this protozoan by blood transfusion often results in high morbidity and mortality in recipients. Infection of C3H/HeJ mice with B. burgdorferi and B. microti individually results in inflammatory Lyme disease and display of human babesiosis-like symptoms, respectively. Here we use this mouse model to provide a detailed investigation of the reciprocal influence of the two pathogens on each other during co-infection. We show that B. burgdorferi infection attenuates parasitemia in mice while B. microti subverts the splenic immune response, such that a marked decrease in splenic B and T cells, reduction in antibody levels and diminished functional humoral immunity, as determined by spirochete opsonophagocytosis, are observed in co-infected mice compared to only B. burgdorferi infected mice. Furthermore, immunosuppression by B. microti in co-infected mice showed an association with enhanced Lyme disease manifestations. This study demonstrates the effect of only simultaneous infection by B. burgdorferi and B. microti on each pathogen, immune response and on disease manifestations with respect to infection by the spirochete and the parasite. In our future studies, we will examine the overall effects of sequential infection by these pathogens on host immune responses and disease outcomes.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Samantha Schlachter
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Kathleen Kelly
- Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
54
|
Edwards MJ, Russell JC, Davidson EN, Yanushefski TJ, Fleischman BL, Heist RO, Leep-Lazar JG, Stuppi SL, Esposito RA, Suppan LM. A 4-Yr Survey of the Range of Ticks and Tick-Borne Pathogens in the Lehigh Valley Region of Eastern Pennsylvania. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1122-1134. [PMID: 31009533 PMCID: PMC6595528 DOI: 10.1093/jme/tjz043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 06/01/2023]
Abstract
Questing ticks were surveyed by dragging in forested habitats within the Lehigh Valley region of eastern Pennsylvania for four consecutive summers (2015-2018). A high level of inter-annual variation was found in the density of blacklegged tick nymphs, Ixodes scapularis Say, with a high density of host-seeking nymphs (DON) in summer 2015 and 2017 and a relatively low DON in summer 2016 and 2018. Very few American dog ticks (Dermacentor variabilis Say) and Ixodes cookei Packard were collected. Lone star ticks (Amblyomma americanum L.) and longhorned ticks (Haemaphysalis longicornis Neumann) were not represented among the 6,398 ticks collected. For tick-borne pathogen surveillance, DNA samples from 1,721 I. scapularis nymphs were prepared from specimens collected in summers 2015-2017 and screened using qPCR, high resolution melting analysis, and DNA sequencing when necessary. The overall 3-yr nymphal infection prevalence of Borrelia burgdorferi was 24.8%, Borrelia miyamotoi was 0.3%, Anaplasma phagocytophilum variant-ha was 0.8%, and Babesia microti was 2.8%. Prevalence of coinfection with B. burgdorferi and B. microti as well as B. burgdorferi and A. phagocytophilum variant-ha were significantly higher than would be expected by independent infection. B. burgdorferi nymphal infection prevalence is similar to what other studies have found in the Hudson Valley region of New York, but levels of B. microti and A. phagocytophilum variant-ha nymphal infection prevalence are relatively lower. This study reinforces the urgent need for continued tick and pathogen surveillance in the Lehigh Valley region.
Collapse
Affiliation(s)
| | - James C Russell
- Mathematics and Computer Science Department, Muhlenberg College, Allentown, PA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hakimi H, Sarani A, Takeda M, Kaneko O, Asada M. Epidemiology, risk factors, and co-infection of vector-borne pathogens in goats from Sistan and Baluchestan province, Iran. PLoS One 2019; 14:e0218609. [PMID: 31220153 PMCID: PMC6586321 DOI: 10.1371/journal.pone.0218609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022] Open
Abstract
Several vector-borne pathogens restrict livestock farming and have significant economic impact worldwide. In endemic areas livestock are exposed to different tick species carrying various pathogens which could result in co-infection with several tick-borne pathogens in a single host. Although the co-infection of and the interaction among pathogens are critical factors to determine the disease outcome, pathogen interactions in the vector and the host are poorly understood. In this study, we surveyed the presence of Babesia ovis, Theileria ovis, Theileria lestoquardi, Anaplasma ovis, Anaplasma phagocytophilum, and Anaplasma marginale in 200 goats from 3 different districts in Sistan and Baluchestan province, Iran. Species-specific diagnostic PCRs and sequence analysis revealed that 1.5%, 12.5%, and 80% of samples were positive for T. lestoquardi, T. ovis, and A. ovis, respectively. Co-infections of goats with up to 3 pathogens were seen in 22% of the samples. We detected a significant association between T. ovis infection and age, T. ovis infection and location (Zabol), and A. ovis infection and location (Sarbaz) by multivariate logistic regression analysis. In addition, by analyzing the data with respect to Plasmodium caprae infection in these goats, a negative correlation was found between P. caprae and A. ovis infection. This study contributes to understanding the epidemiology of vector-borne pathogens and their interplay in goats.
Collapse
Affiliation(s)
- Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Ali Sarani
- Department of Clinical Science, University of Zabol, Veterinary Faculty, Zabol, Iran
| | - Mika Takeda
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
56
|
Wang Y, Li S, Wang Z, Zhang L, Cai Y, Liu Q. Prevalence and Identification of Borrelia burgdorferi Sensu Lato Genospecies in Ticks from Northeastern China. Vector Borne Zoonotic Dis 2019; 19:309-315. [PMID: 30907702 DOI: 10.1089/vbz.2018.2316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lyme disease is considered as one of important tick-transmitted zoonosis in northeastern China, where the causative agents, the Borrelia burgdorferi sensu lato (s.l.) complex, remain poorly characterized. The purpose of the present study was to determine the prevalence and genospecies of B. burgdorferi s.l. in ticks in northeastern China. In May, 2015, a total of 2785 unfed adult ticks were collected in the Jilin and Heilongjiang provinces of northeastern China, with the predominant tick species of Ixodes persulcatus (59.9%), followed by Haemaphysalis concinna (14.8%), Haemaphysalis longicornis (8.9%), Dermacentor nuttalli (9.4%), and Dermacentor silvarum (7.0%). Only I. persulcatus was tested positive for Borrelia spirochetes DNA by PCR, targeting the 5S-23S rRNA intergenic spacer and 16S rRNA genes, with a prevalence of 1.9%. Phylogenetic analysis based on the partial 5S-23S rRNA intergenic spacer and 16S rRNA genes showed that these positive samples were grouped into four pathogenic genospecies for humans, including Borrelia garinii (2.8%), Borrelia afzelii (0.2%), Borrelia bavariensis (0.1%), and Borrelia bissettii (0.1%). These results showed that B. garinii is the predominant genospecies and I. persulcatus is the main tick host and carrier in northeastern China. To our knowledge, B. bissettii were detected for the first time in China.
Collapse
Affiliation(s)
- Yanchun Wang
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Shuang Li
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Zedong Wang
- 2 Department of Animal Medicine, College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Li Zhang
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yanan Cai
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Quan Liu
- 2 Department of Animal Medicine, College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
57
|
Pawełczyk A, Bednarska M, Kowalska JD, Uszyńska-Kałuża B, Radkowski M, Welc-Falęciak R. Seroprevalence of six pathogens transmitted by the Ixodes ricinus ticks in asymptomatic individuals with HIV infection and in blood donors. Sci Rep 2019; 9:2117. [PMID: 30765826 PMCID: PMC6376038 DOI: 10.1038/s41598-019-38755-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/07/2019] [Indexed: 11/24/2022] Open
Abstract
The objective of our study was to estimate the seroprevalence of six pathogens transmitted by ticks in HIV-infected persons and blood donors in Poland (B. burgdorferi s.l., A. phagocytophilum, Ehrlichia spp., Babesia spp., Rickettsia spp. Bartonella henselae) to assess the frequency of exposure to such microorganisms in immunocompetent and immunocompromised individuals in endemic regions for I. ricinus ticks. Serum samples were collected from 227 HIV-infected patients and 199 blood donors. All samples were analyzed for antibodies against six tick-borne pathogens and seroprevalence rates were statistically compared between two tested group as well as age, sex and lymphocyte T CD4+ level in HIV infected patients. The seroprevalence of tick-borne infections in HIV-infected patients is higher than that of the healthy population in Poland, although no association between serological status of patients and lymphocyte CD4+ T cell level has been observed. The frequency of tick-borne coinfections and doubtful results of serological tests were significantly higher in HIV-positive individuals. In Poland, the possibility of tick-borne diseases transmission with blood is rather negligible.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland.,AmerLab Ltd. Diagnostic Laboratory of Parasitic Diseases and Zoonotic Infections, Biological and Chemical Research Centre, 101 Żwirki and Wigury Street, 02-089, Warsaw, Poland
| | - Małgorzata Bednarska
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.,AmerLab Ltd. Diagnostic Laboratory of Parasitic Diseases and Zoonotic Infections, Biological and Chemical Research Centre, 101 Żwirki and Wigury Street, 02-089, Warsaw, Poland
| | - Justyna D Kowalska
- Department of Adults' Infectious Diseases, Medical University of Warsaw, 37 Wolska Street, 01-201, Warsaw, Poland
| | - Beata Uszyńska-Kałuża
- Blood Center of the Ministry of Internal Affairs and Administration, 137 Wołoska Street, 02-507, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland. .,AmerLab Ltd. Diagnostic Laboratory of Parasitic Diseases and Zoonotic Infections, Biological and Chemical Research Centre, 101 Żwirki and Wigury Street, 02-089, Warsaw, Poland.
| |
Collapse
|
58
|
Liu HH, Cushinotto L, Giger O, Daum G, McBride P, Negron EA, Vandegrift K, Kapelusznik L. Increasing Babesiosis in Southeastern Pennsylvania, 2008-2017. Open Forum Infect Dis 2019; 6:ofz066. [PMID: 30895205 PMCID: PMC6419987 DOI: 10.1093/ofid/ofz066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 11/30/2022] Open
Abstract
Tick-borne illnesses are increasing but are often underreported. Few cases of babesiosis have been reported from Pennsylvania. Our 4-hospital system in southeastern Pennsylvania saw a rise in cases from 7 or fewer yearly in 2008–2014 to 26 cases in 2015. There appear to be multiple potential causes of this increase in frequency.
Collapse
Affiliation(s)
- Hans H Liu
- Department of Medicine, Main Line Health System, Bryn Mawr, Pennsylvania
| | - Lisa Cushinotto
- Department of Pharmacy, Main Line Health System, Bryn Mawr, Pennsylvania
| | - Olarae Giger
- Department of Microbiology, Main Line Health System, Bryn Mawr, Pennsylvania
| | - Gary Daum
- Department of Pathology, Main Line Health System, Bryn Mawr, Pennsylvania
| | - Patricia McBride
- Department of Infection Prevention, Main Line Health System, Bryn Mawr, Pennsylvania
| | | | - Kurt Vandegrift
- Department of Biology, Pennsylvania State University, State College, Pennsylvania
| | | |
Collapse
|
59
|
Krause PJ. Human babesiosis. Int J Parasitol 2019; 49:165-174. [PMID: 30690090 DOI: 10.1016/j.ijpara.2018.11.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
Babesiosis is a worldwide emerging tick-borne disease that is increasing in frequency and geographic range. It imposes a significant health burden, especially on those who are immunocompromised and those who acquire the infection through blood transfusion. Death from babesiosis occurs in up to 20 percent of these groups. Diagnosis is confirmed with identification of typical intraerythrocytic parasites on a thin blood smear or Babesia DNA using PCR. Treatment consists of atovaquone and azithromycin or clindamycin and quinine, and exchange transfusion in severe cases. Personal and communal protective measures can limit the burden of infection but it is important to recognize that none of these measures are likely to prevent the continued expansion of Babesia into non-endemic areas.
Collapse
Affiliation(s)
- Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
60
|
Abstract
Babesiosis, caused by piroplasmid protozoans in the genus Babesia, is arguably the most important vector-borne disease of livestock and companion animals and is growing in importance as a zoonosis. Ixodid ticks were identified as vectors more than a hundred years ago, but the particular tick species transmitting some significant pathogens are still unknown. Moreover, it is only recently that the complexity of the pathogen-tick relationship has been revealed as a result of studies enabled by gene expression and RNA interference methodology. In this article, we provide details of demonstrated and incriminated vectors, maps of the current knowledge of vector distribution, a summary of established features of the pathogen life cycle in the vector, and an outline of molecular research on pathogen-tick relationships. The article concludes with a discussion of vector ecology and disease epidemiology in a global-change context and with suggestions for future research.
Collapse
Affiliation(s)
- Jeremy S Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland;
| | | | - Annetta Zintl
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
61
|
White A, Schaefer E, Thompson CW, Kribs CM, Gaff H. Dynamics of two pathogens in a single tick population. LETTERS IN BIOMATHEMATICS 2019; 6:50-66. [PMID: 33015353 PMCID: PMC7531760 DOI: 10.1080/23737867.2019.1682473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A mathematical model for a two-pathogen, one-tick, one-host system is presented and explored. The model system is based on the dynamics of Amblyomma americanum, Rickettsia parkeri, and Rickettsia amblyommatis. The goal of this model is to determine how long an invading pathogen, R. parkeri, persists within a tick population, A. americanum, in which a resident pathogen, R. amblyommatis, is already established. The numerical simulations of the model demonstrate the parameter ranges that allow for coexistence of the two pathogens. Sensitivity analysis highlights the importance of vector-borne, tick-to-host, transmission rates on the invasion reproductive number and persistence of the pathogens over time. The model is then applied to a case study based on a reclaimed swampland field site in south-eastern Virginia using field and laboratory data. The results pinpoint the thresholds required for persistence of both pathogens in the local tick population. However, R. parkeri, is not predicted to persist beyond 3 years. Understanding the persistence and coexistence of tick-borne pathogens will allow public health officials increased insight into tick-borne disease dynamics.
Collapse
Affiliation(s)
- Alexis White
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Elsa Schaefer
- Department of Mathematics, Marymount University, Arlington, Virginia, USA
| | | | - Christopher M. Kribs
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas, USA
| | - Holly Gaff
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa
| |
Collapse
|
62
|
Djokic V, Primus S, Akoolo L, Chakraborti M, Parveen N. Age-Related Differential Stimulation of Immune Response by Babesia microti and Borrelia burgdorferi During Acute Phase of Infection Affects Disease Severity. Front Immunol 2018; 9:2891. [PMID: 30619263 PMCID: PMC6300717 DOI: 10.3389/fimmu.2018.02891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Lyme disease is the most prominent tick-borne disease with 300,000 cases estimated by CDC every year while ~2,000 cases of babesiosis occur per year in the United States. Simultaneous infection with Babesia microti and Borrelia burgdorferi are now the most common tick-transmitted coinfections in the U.S.A., and they are a serious health problem because coinfected patients show more intense and persisting disease symptoms. B. burgdorferi is an extracellular spirochete responsible for systemic Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Immune status and spleen health are important for resolution of babesiosis, which is more severe and even fatal in the elderly and splenectomized patients. Therefore, we investigated the effect of each pathogen on host immune response and consequently on severity of disease manifestations in both young, and 30 weeks old C3H mice. At the acute stage of infection, Th1 polarization in young mice spleen was associated with increased IFN-γ and TNF-α producing T cells and a high Tregs/Th17 ratio. Together, these changes could help in the resolution of both infections in young mice and also prevent fatality by B. microti infection as observed with WA-1 strain of Babesia. In older mature mice, Th2 polarization at acute phase of B. burgdorferi infection could play a more effective role in preventing Lyme disease symptoms. As a result, enhanced B. burgdorferi survival and increased tissue colonization results in severe Lyme arthritis only in young coinfected mice. At 3 weeks post-infection, diminished pathogen-specific antibody production in coinfected young, but not older mice, as compared to mice infected with each pathogen individually may also contribute to increased inflammation observed due to B. burgdorferi infection, thus causing persistent Lyme disease observed in coinfected mice and reported in patients. Thus, higher combined proinflammatory response to B. burgdorferi due to Th1 and Th17 cells likely reduced B. microti parasitemia significantly only in young mice later in infection, while the presence of B. microti reduced humoral immunity later in infection and enhanced tissue colonization by Lyme spirochetes in these mice even at the acute stage, thereby increasing inflammatory arthritis.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Monideep Chakraborti
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
63
|
Svensson J, Hunfeld KP, Persson KEM. High seroprevalence of Babesia antibodies among Borrelia burgdorferi-infected humans in Sweden. Ticks Tick Borne Dis 2018; 10:186-190. [PMID: 30389326 DOI: 10.1016/j.ttbdis.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
In northern Europe, tick-borne diseases such as Lyme borreliosis (LB) and tick-borne encephalitis (TBE) are well known. The actual incidence of Babesia infections, however, has remained elusive. In this study, the prevalence of antibodies against two Babesia spp. was investigated in a cohort of patients that were seropositive for Borrelia (B.) burgdorferi sensu lato (s.l.). Data were compared to a control group of healthy individuals. Sera were collected from 283 individuals residing in the southernmost region of Sweden, Skåne County. Almost one third of the sera were from patients with a confirmed seropositive reaction against B. burgdorferi s.l. All sera samples were assessed for IgG antibodies against Babesia (Ba.) microti and Ba. divergens by indirect fluorescent antibody (IFA) assays. Seropositive IgG titers for at least one of the Babesia spp. was significantly more common (p < 0.05) in individuals seropositive for Borrelia (16.3%) compared to the healthy control group (2.5%). Our findings suggest that Babesia infections may indeed be quite common among individuals who have been exposed to tick bites. Furthermore, the results indicate that human babesiosis should be considered in patients that show relevant symptoms; particularly for splenectomized and other immunocompromised individuals. Finally, the data challenges current blood transfusion procedures and highlights the current lack of awareness of the parasite in northern Europe.
Collapse
Affiliation(s)
- Joel Svensson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden
| | - Klaus-Peter Hunfeld
- Institute for Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Centre, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
64
|
Piedmonte NP, Shaw SB, Prusinski MA, Fierke MK. Landscape Features Associated With Blacklegged Tick (Acari: Ixodidae) Density and Tick-Borne Pathogen Prevalence at Multiple Spatial Scales in Central New York State. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1496-1508. [PMID: 30020499 DOI: 10.1093/jme/tjy111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) are the most commonly encountered and medically relevant tick species in New York State (NY) and have exhibited recent geographic range expansion. Forests and adjacent habitat are important determinants of I. scapularis density and may influence tick-borne pathogen prevalence. We examined how percent forest cover, dominant land cover type, and habitat type influenced I. scapularis nymph and adult density, and associated tick-borne pathogen prevalence, in an inland Lyme-emergent region of NY. I. scapularis nymphs and adults were collected from edge and wooded habitats using tick drags at 16 sites in Onondaga County, NY in 2015 and 2016. A subsample of ticks from each site was tested for the presence of Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti using a novel multiplex real-time polymerase chain reaction (PCR) assay, and deer tick virus using reverse transcription-PCR. Habitat type (wooded versus edge) was an important determinant of tick density; however, percent forest cover had little effect. B. burgdorferi was the most commonly detected pathogen and was present in ticks from all sites. Ba. microti and deer tick virus were not detected. Habitat type and dominant land cover type were not significantly related to B. burgdorferi presence or prevalence; however, ticks infected with A. phagocytophilum and B. miyamotoi were collected more often in urban environments. Similarity between B. burgdorferi prevalence in Onondaga County and hyperendemic areas of southeastern NY indicates a more rapid emergence than expected in a relatively naive region. Possible mechanistic processes underlying these observations are discussed.
Collapse
Affiliation(s)
- Nicholas P Piedmonte
- State University of New York College of Environmental Science and Forestry, Syracuse, NY
- Health Research Incorporated, Menands, NY
| | - Stephen B Shaw
- State University of New York College of Environmental Science and Forestry, Syracuse, NY
| | - Melissa A Prusinski
- New York State Department of Health, Bureau of Communicable Disease Control, Vector Ecology Laboratory, Wadsworth Center Biggs Laboratories, Empire State Plaza, Albany, NY
| | - Melissa K Fierke
- State University of New York College of Environmental Science and Forestry, Syracuse, NY
| |
Collapse
|
65
|
Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int J Parasitol 2018; 49:145-151. [PMID: 30367867 DOI: 10.1016/j.ijpara.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
Abstract
The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.
Collapse
|
66
|
Johnson TL, Graham CB, Maes SE, Hojgaard A, Fleshman A, Boegler KA, Delory MJ, Slater KS, Karpathy SE, Bjork JK, Neitzel DF, Schiffman EK, Eisen RJ. Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks Tick Borne Dis 2018; 9:1499-1507. [PMID: 30055987 DOI: 10.1016/j.ttbdis.2018.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
In the north-central United States, the blacklegged tick (Ixodes scapularis) is currently known to vector seven human pathogens. These include five bacteria (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum, Ehrlichia muris eauclairensis), one protozoan (Babesia microti) and one virus (Powassan). We sought to assess the prevalence and distribution of these pathogens in host-seeking nymphs collected throughout Minnesota, a state on the northwestern edge of the tick's expanding range, where reported cases of I. scapularis-borne diseases have increased in incidence and geographic range over the past decade. Among the 1240 host-seeking I. scapularis nymphs that we screened from 64 sites, we detected all seven pathogens at varying frequencies. Borrelia burgdorferi s.s. was the most prevalent and geographically widespread, found in 25.24% of all nymphs tested. Anaplasma phagocytophilum and Babesia microti were also geographically widespread, but they were less prevalent than Bo. burgdorferi s.s. (detected in 6.29% and 4.68% of ticks, respectively). Spatial clusters of sites with high prevalence for these three pathogens were identified in the north-central region of the state. Prevalence was less than 1.29% for each of the remaining pathogens. Two or more pathogens were detected in 90 nymphs (7.26%); coinfections with Bo. burgdorferi s.s. and either A. phagocytophilum (51 nymphs, 4.11%) or Ba. microti (43 nymphs, 3.47%) were the most common combinations. The distribution and density of infected ticks mirrors the distribution of notifiable tick-borne diseases in Minnesota and provides information on the distribution and prevalence of recently described human pathogens.
Collapse
Affiliation(s)
- Tammi L Johnson
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Christine B Graham
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Sarah E Maes
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Andrias Hojgaard
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Amy Fleshman
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Karen A Boegler
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Mark J Delory
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States
| | - Kimetha S Slater
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4027, United States
| | - Sandor E Karpathy
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4027, United States
| | - Jenna K Bjork
- Minnesota Department of Health, 625 Robert St N, St. Paul, MN 55164, United States
| | - David F Neitzel
- Minnesota Department of Health, 625 Robert St N, St. Paul, MN 55164, United States
| | | | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd., Fort Collins, CO 80521, United States.
| |
Collapse
|
67
|
Antony S. Mosquito and Tick-borne Illnesses in the United States. Guidelines for the Recognition and Empiric Treatment of Zoonotic Diseases in the Wilderness. Infect Disord Drug Targets 2018; 19:238-257. [PMID: 29943705 DOI: 10.2174/1871526518666180626123340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the United States, tick-borne illnesses account for a significant number of patients that have been seen and treated by health care facilities. This in turn, has resulted in a significant morbidity and mortality and economic costs to the country. METHODS The distribution of these illnesses is geographically variable and is related to the climate as well. Many of these illnesses can be diagnosed and treated successfully, if recognized and started on appropriate antimicrobial therapy early in the disease process. Patient with illnesses such as Lyme disease, Wet Nile illness can result in chronic debilitating diseases if not recognized early and treated. CONCLUSION This paper covers illnesses such as Lyme disease, West Nile illness, Rocky Mountain Spotted fever, Ehrlichia, Tularemia, typhus, mosquito borne illnesses such as enteroviruses, arboviruses as well as arthropod and rodent borne virus infections as well. It covers the epidemiology, clinical features and diagnostic tools needed to make the diagnosis and treat these patients as well.
Collapse
Affiliation(s)
- Suresh Antony
- Texas Tech University Health Sciences Center, Department of Infectious Diseases, and Center for Infectious Diseases and Travel Medicine, El Paso, Texas, United States
| |
Collapse
|
68
|
Efficient detection of symptomatic and asymptomatic patient samples for Babesia microti and Borrelia burgdorferi infection by multiplex qPCR. PLoS One 2018; 13:e0196748. [PMID: 29746483 PMCID: PMC5945202 DOI: 10.1371/journal.pone.0196748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Tick-borne infections have been increasing steadily over the years, with co-infections with Borrelia burgdorferi and Babesia microti/divergens emerging as a serious health problem. B. burgdorferi is a spirochetal bacterium that causes Lyme disease while protozoan pathogens belonging to Babesia species are responsible for babesiosis. Currently used serological tests do not always detect acute Lyme disease or babesiosis, and fail to differentiate cured patients from those who get re-infected. This is a major problem for proper diagnosis particularly in regions endemic for tick-borne diseases. Microscopy based evaluation of babesiosis is confirmatory but is labor intensive and insensitive such that many asymptomatic patients remain undetected and donate blood resulting in transfusion transmitted babesiosis. RESULTS We conducted multiplex qPCR for simultaneous diagnosis of active Lyme disease and babesiosis in 192 blood samples collected from a region endemic for both diseases. We document qPCR results obtained from testing of each sample three times to detect infection with each pathogen separately or together. Results for Lyme disease by qPCR were also compared with serological tests currently used for Lyme disease when available. Considering at least two out of three test results for consistency, 18.2% of patients tested positive for Lyme disease, 18.7% for co-infection with B. burgdorferi and B. microti and 6.3% showed only babesiosis. CONCLUSIONS With an 80% sensitivity for detection of Lyme disease, and ability to detect co-infection with B. microti, multiplex qPCR can be employed for diagnosis of these diseases to start appropriate treatment in a timely manner.
Collapse
|
69
|
Tufts DM, Diuk-Wasser MA. Transplacental transmission of tick-borne Babesia microti in its natural host Peromyscus leucopus. Parasit Vectors 2018; 11:286. [PMID: 29728129 PMCID: PMC5935994 DOI: 10.1186/s13071-018-2875-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022] Open
Abstract
Background Babesia microti is an emerging tick-borne pathogen and the causative agent of human babesiosis. Mathematical modeling of the reproductive rate of B. microti indicates that it cannot persist in nature by horizontal tick-host transmission alone. We hypothesized that transplacental transmission in the reservoir population contributes to B. microti persistence and emergence in North American rodent populations. Methods Peromyscus leucopus were collected from Connecticut and Block Island, Rhode Island and analyzed using a highly specific quantitative PCR (qPCR) assay for infection with B. microti. Results In April, 100% (n = 103) of mice were infected with B. microti. Females exhibited significantly higher parasitemia than their offspring (P < 0.0001) and transplacental transmission was observed in 74.2% of embryos (n = 89). Transplacental transmission of B. microti is thus a viable and potentially important infectious pathway in naturally infected rodent species and should be considered in future theoretical and empirical studies. Conclusions To our knowledge, this study is the first to report transplacental transmission of B. microti occurring in its natural reservoir host, P. leucopus, in the United States and the only study that provides a quantitative estimate of parasitemia. This vector-independent pathway could contribute to the increased geographic range of B. microti or increase its abundance in endemic areas. Electronic supplementary material The online version of this article (10.1186/s13071-018-2875-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle M Tufts
- Ecology, Evolution, and Environmental Biology Department, Columbia University, New York, NY, 10027, USA.
| | - Maria A Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
70
|
Eisen RJ, Eisen L. The Blacklegged Tick, Ixodes scapularis: An Increasing Public Health Concern. Trends Parasitol 2018; 34:295-309. [PMID: 29336985 PMCID: PMC5879012 DOI: 10.1016/j.pt.2017.12.006] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022]
Abstract
In the United States, the blacklegged tick, Ixodes scapularis, is a vector of seven human pathogens, including those causing Lyme disease, anaplasmosis, babesiosis, Borrelia miyamotoi disease, Powassan virus disease, and ehrlichiosis associated with Ehrlichia muris eauclarensis. In addition to an accelerated rate of discovery of I. scapularis-borne pathogens over the past two decades, the geographic range of the tick, and incidence and range of I. scapularis-borne disease cases, have increased. Despite knowledge of when and where humans are most at risk of exposure to infected ticks, control of I. scapularis-borne diseases remains a challenge. Human vaccines are not available, and we lack solid evidence for other prevention and control methods to reduce human disease. The way forward is discussed.
Collapse
Affiliation(s)
- Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
71
|
Saetre K, Godhwani N, Maria M, Patel D, Wang G, Li KI, Wormser GP, Nolan SM. Congenital Babesiosis After Maternal Infection With Borrelia burgdorferi and Babesia microti. J Pediatric Infect Dis Soc 2018; 7:e1-e5. [PMID: 28992325 DOI: 10.1093/jpids/pix074] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 02/02/2023]
Abstract
We describe the cases of 2 infants with congenital babesiosis born to mothers with prepartum Lyme disease and subclinical Babesia microti infection. The infants both developed anemia, neutropenia, and thrombocytopenia, and 1 infant required red blood cell transfusion. Both infants recovered with treatment. Additional studies are warranted to define the optimal management strategy for pregnant women with early Lyme disease in geographic areas in which B microti infection is endemic.
Collapse
Affiliation(s)
- Kirsten Saetre
- Division of Emergency Medicine, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - Neetu Godhwani
- Division of Allergy and Immunology, Louisiana State University Health Science Center, Shreveport
| | - Mazen Maria
- Department of Pediatrics, New York Medical College, Valhall
| | - Darshan Patel
- Division of Emergency Medicine, Department of Pediatrics, New York Medical College, Valhalla
| | - Guiqing Wang
- Department of Pathology, and Division of Infectious Diseases, New York Medical College, Valhalla
| | - Karl I Li
- Departments of Pediatrics, New York Medical College, Valhalla
| | - Gary P Wormser
- Departments of Medicine, New York Medical College, Valhalla
| | - Sheila M Nolan
- Departments of Pediatrics, New York Medical College, Valhalla
| |
Collapse
|
72
|
Djokic V, Akoolo L, Parveen N. Babesia microti Infection Changes Host Spleen Architecture and Is Cleared by a Th1 Immune Response. Front Microbiol 2018; 9:85. [PMID: 29445365 PMCID: PMC5797759 DOI: 10.3389/fmicb.2018.00085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Babesia microti is a malaria-like parasite, which infects ∼2000 people annually, such that babesiosis is now a notifiable disease in the United States. Immunocompetent individuals often remain asymptomatic and are tested only after they feel ill. Susceptible C3H/HeJ mice show several human-like disease manifestations and are ideal to study pathogenesis of Babesia species. In this study, we examined parasitemia of B. microti at different time points and assessed its impact on hemoglobin levels in blood, on spleen pathology and overall immune response in C3H/HeJ mice. Peak parasitemia of 42.5% was immediately followed by diminished hemoglobin level. Parasitemia at 21 days of infection was barely detectable by microscopy presented 5.7 × 108 to 5.9 × 109B. microti DNA copies confirming the sensitivity of our qPCR. We hypothesize that qPCR detects DNA released from recently lysed parasites or from extracellular B. microti in blood, which are not easily detected in blood smears and might result in under-diagnosis of babesiosis in patients. Splenectomized patients have been reported to show increased babesiosis severity and result in high morbidity and mortality. These results emphasize the importance of splenic immunity in resolution of B. microti infection. Splenomegaly in infected mice associated with destruction of marginal zone with lysed erythrocytes and released B. microti life forms in our experiments support this premise. At conclusion of the experiment at 21 days post-infection, significant splenic B and T cells depletion and increase in macrophages levels were observed in B. microti infected mice suggesting a role of macrophage in disease resolution. Infected mice also showed significantly higher plasmatic concentration of CD4 Th1 cells secreted cytokines such as IL-2 and IFN-γ while cytokines such as IL-4, IL-5, and IL-13 secreted by Th2 cells increase was not always significant. Thus, Th1 cells-mediated immunity appears to be important in clearance of this intracellular pathogen. Significant increase in IL-6 that promotes differentiation of Th17 cells was observed but it resulted in only moderate change in IL-17A, IL-17F, IL-21, and IL-22, all secreted by Th17 cells. A similar immune response to Trypanosoma infection has been reported to influence the clearance of this protozoan, and co-infecting pathogen(s).
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
73
|
Stahl P, Poinsignon Y, Pouedras P, Ciubotaru V, Berry L, Emu B, Krause PJ, Ben Mamoun C, Cornillot E. Case report of the patient source of the Babesia microti R1 reference strain and implications for travelers. J Travel Med 2018; 25:4696553. [PMID: 29394381 PMCID: PMC6927858 DOI: 10.1093/jtm/tax073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/14/2017] [Indexed: 11/13/2022]
Abstract
BACKGROUND In 2002, a previously healthy 69-year-old man travelled to France from the United States and presented to our hospital with a febrile illness that subsequently was determined to be babesiosis. The blood isolated from this patient served as a source for propagation of the Babesia microti R1 strain with subsequent sequencing and annotation of the parasite genome. METHODS Upon admission, we obtained a medical history, performed a physical examination, and examined his blood for the presence of a blood borne pathogen by microscopy, PCR and indirect immunofluorescence antibody testing. Once the diagnosis of babesiosis was made, we reviewed the literature to assess the distribution of B. microti-associated babesiosis cases in immunocompetent patients from outside the USA. RESULTS The patient recalled a tick bite during the previous month on Cape Cod, Massachusetts. The diagnosis was confirmed by identification of Babesia-infected red blood cells on blood smears, amplification of B. microti DNA in blood by PCR and the presence of B. microti antibody in the serum. This strain was the first isolate of B. microti to be fully sequenced and its annotated genome serves as a reference for molecular and cell biology studies aimed at understanding B. microti pathophysiology and developing diagnostic tests and therapies. A review of babesiosis cases demonstrates a worldwide distribution of B. microti and identifies potential emerging endemic areas where travelers may be at risk of contracting B. microti infection. CONCLUSION This case provides clinical information about the patient infected with the R1 isolate and a review of travel risk, diagnosis and treatment of babesiosis in endemic and non-endemic areas.
Collapse
Affiliation(s)
- Philipp Stahl
- Institute of Virology, Parasitology Unit, University of Marburg, Marburg, Germany.,Department of Internal Medicine, Section of Gastroenterology and Infectious Diseases, University Hospital Gießen and Marburg, Marburg, Germany
| | - Yves Poinsignon
- Internal Medicine Department, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Pascal Pouedras
- Microbiology Department, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Vasilica Ciubotaru
- Internal Medicine Department, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Brinda Emu
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, CT 06520, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut régional du Cancer Montpellier (ICM) & Université de Montpellier, France
| |
Collapse
|
74
|
Moon KL, Chown SL, Loh SM, Oskam CL, Fraser CI. Australian penguin ticks screened for novel Borrelia species. Ticks Tick Borne Dis 2017; 9:410-414. [PMID: 29275874 DOI: 10.1016/j.ttbdis.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Lyme borreliosis (or Lyme Disease) is an emerging threat to human health in the Northern Hemisphere caused by tick-borne bacteria from the Borrelia burgdorferi sensu lato (Bbsl) complex. Seabirds are important reservoir hosts of some members of the Bbsl complex in the Northern Hemisphere, and some evidence suggests this may be true of penguins in the Southern Hemisphere. While the Bbsl complex has not been detected in Australia, a novel Borrelia species ('Candidatus Borrelia tachyglossi') was recently sequenced from native ticks (Ixodes holocyclus and Bothriocroton concolor) parasitising echidnas (Tachyglossus aculeatus), suggesting unidentified borreliae may be circulating amongst native wildlife and their ticks. In the present study, we investigated whether ticks parasitising little penguins (Eudyptula novaehollandiae) harbour native or introduced Borrelia bacteria. We chose this penguin species because it is heavily exploited by ticks during the breeding season, lives in close proximity to other potential reservoir hosts (including native wildlife and migratory seabirds), and is known to be infected with other tick-borne pathogens (Babesia). We screened over 230 penguin ticks (Ixodes spp.) from colonies in south-eastern Australia, and found no evidence of Borrelia DNA. The apparent absence or rarity of the bacterium in south-eastern Australia has important implications for identifying potential tick-borne pathogens in an understudied region.
Collapse
Affiliation(s)
- Katherine L Moon
- Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Siew-May Loh
- Vector & Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Charlotte L Oskam
- Vector & Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Ceridwen I Fraser
- Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
75
|
Primus S, Akoolo L, Schlachter S, Parveen N. Screening of patient blood samples for babesiosis using enzymatic assays. Ticks Tick Borne Dis 2017; 9:302-306. [PMID: 29150323 DOI: 10.1016/j.ttbdis.2017.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023]
Abstract
Human babesiosis is an emerging tick-borne disease in the United States and Europe. Transmitted by Ixodes ticks, the causative agent Babesia microti is an intraerythrocytic parasite that causes mild to deadly disease. Transmission of B. microti can also occur by transfusion of infected blood and blood products resulting in transfusion-transmitted babesiosis (TTB), which carries a high risk of fatality. To effectively manage this rise in B. microti infections, better screening tools are needed, which require minimal manipulation of the samples before testing. To this end, we tested two enzymatic assays, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), for efficacy in diagnosis of babesiosis. The results show that AST and ALT activity is significantly higher in the plasma of B. microti-infected patients. Moreover, statistical analysis revealed that these assays have high sensitivity and positive predictive values, which highlights their usefulness as diagnostics for babesiosis. These standardized enzymatic assays can be used to perform high-throughput, large-scale screens of blood and blood products before they are certified safe for transfusion.
Collapse
Affiliation(s)
- Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07013, USA
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07013, USA
| | - Samantha Schlachter
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07013, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07013, USA.
| |
Collapse
|
76
|
Heylen D, Fonville M, Docters van Leeuwen A, Stroo A, Duisterwinkel M, van Wieren S, Diuk-Wasser M, de Bruin A, Sprong H. Pathogen communities of songbird-derived ticks in Europe's low countries. Parasit Vectors 2017; 10:497. [PMID: 29047399 PMCID: PMC5648423 DOI: 10.1186/s13071-017-2423-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Birds play a major role in the maintenance of enzootic cycles of pathogens transmitted by ticks. Due to their mobility, they affect the spatial distribution and abundance of both ticks and pathogens. In the present study, we aim to identify members of a pathogen community [Borrelia burgdorferi (s.l.), B. miyamotoi, 'Ca. Neoehrlichia mikurensis', Anaplasma phagocytophilum and Rickettsia helvetica] in songbird-derived ticks from 11 locations in the Netherlands and Belgium (2012-2014). RESULTS Overall, 375 infested songbird individuals were captured, belonging to 35 species. Thrushes (Turdus iliacus, T. merula and T. philomelos) were trapped most often and had the highest mean infestation intensity for both Ixodes ricinus and I. frontalis. Of the 671 bird-derived ticks, 51% contained DNA of at least one pathogenic agent and 13% showed co-infections with two or more pathogens. Borrelia burgdorferi (s.l.) DNA was found in 34% of the ticks of which majority belong to so-called avian Borrelia species (distribution in Borrelia-infected ticks: 47% B. garinii, 34% B. valaisiana, 3% B. turdi), but also the mammal-associated B. afzelii (16%) was detected. The occurrence of B. miyamotoi was low (1%). Prevalence of R. helvetica in ticks was high (22%), while A. phagocytophilum and 'Ca. N. mikurensis' prevalences were 5% and 4%, respectively. The occurrence of B. burgdorferi (s.l.) was positively correlated with the occurrence of 'Ca. N. mikurensis', reflecting variation in susceptibility among birds and/or suggesting transmission facilitation due to interactions between pathogens. CONCLUSIONS Our findings highlight the contribution of European songbirds to co-infections in tick individuals and consequently to the exposure of humans to multiple pathogens during a tick bite. Although poorly studied, exposure to and possibly also infection with multiple tick-borne pathogens in humans seems to be the rule rather than the exception.
Collapse
Affiliation(s)
- Dieter Heylen
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium.
| | - Manoj Fonville
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Arieke Docters van Leeuwen
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Ministry of Economic Affairs, Wageningen, The Netherlands
| | | | - Sip van Wieren
- Resource Ecology Group, Wageningen University, Wageningen, The Netherlands
| | | | - Arnout de Bruin
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hein Sprong
- Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
77
|
Kendig AE, Borer ET, Mitchell CE, Power AG, Seabloom EW. Characteristics and drivers of plant virus community spatial patterns in US west coast grasslands. OIKOS 2017. [DOI: 10.1111/oik.04178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amy E. Kendig
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
| | - Elizabeth T. Borer
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
| | - Charles E. Mitchell
- Curriculum for the Environment and Ecology and Dept of Biology; Univ. of North Carolina at Chapel Hill; Chapel Hill NC USA
| | - Alison G. Power
- Dept of Ecology and Evolutionary Biology; Cornell Univ.; Ithaca NY USA
| | - Eric W. Seabloom
- Dept of Ecology; Evolution and Behavior, Univ. of Minnesota; St. Paul MN 55108 USA
| |
Collapse
|
78
|
Stone BL, Tourand Y, Brissette CA. Brave New Worlds: The Expanding Universe of Lyme Disease. Vector Borne Zoonotic Dis 2017; 17:619-629. [PMID: 28727515 DOI: 10.1089/vbz.2017.2127] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Projections around the globe suggest an increase in tick-vectored disease incidence and distribution, and the potential for emergence of novel tick-borne pathogens. Lyme disease is the most common reported tick-borne illness in the Unites States and is prevalent throughout much of central Europe. In recent years, the worldwide burden of Lyme disease has increased and extended into regions and countries where the disease was not previously reported. In this review, we discuss the trends for increasing Lyme disease, and examine the factors driving Lyme disease expansion, including the effect of climate change on the spread of vector Ixodid ticks and reservoir hosts; and the impacts of increased awareness on disease reporting and diagnosis. To understand the growing threat of Lyme disease, we need to study the interplay between vector, reservoir, and pathogen. In addition, we need to understand the contributions of climate conditions to changes in disease risk.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota
| | - Yvonne Tourand
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota
| | - Catherine A Brissette
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota
| |
Collapse
|
79
|
Rynkiewicz EC, Brown J, Tufts DM, Huang CI, Kampen H, Bent SJ, Fish D, Diuk-Wasser MA. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasit Vectors 2017; 10:64. [PMID: 28166814 PMCID: PMC5292797 DOI: 10.1186/s13071-016-1964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread. Methods In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model. Results Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain. Conclusions This asymmetric competitive interaction suggests that strain identity and the biotic context of co-infection is important to predict strain dynamics and persistence. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1964-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Julia Brown
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Danielle M Tufts
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Ching-I Huang
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Germany
| | - Stephen J Bent
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Durland Fish
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
80
|
Akoolo L, Schlachter S, Khan R, Alter L, Rojtman AD, Gedroic K, Bhanot P, Parveen N. A novel quantitative PCR detects Babesia infection in patients not identified by currently available non-nucleic acid amplification tests. BMC Microbiol 2017; 17:16. [PMID: 28088177 PMCID: PMC5237571 DOI: 10.1186/s12866-017-0929-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022] Open
Abstract
Background Ticks transmit Babesia microti, the causative agents of babesiosis in North America and Europe. Babesiosis is now endemic in Northeastern USA and affects people of all ages. Babesia species infect erythrocytes and can be transmitted through blood transfusion. Whole blood and blood products, which are not tested for Babesia, can cause transfusion-transmitted babesiosis (TTB) resulting in severe consequences in the immuno-compromised patients. The purpose of this study was epidemiological evaluation of babesiosis in a tick-infested state. Results We examined blood samples from 192 patients who visited clinics during the active tick-borne diseases season, using a newly developed qPCR assay that uses the specific molecular beacon probe. Due to the absence of clear symptomology, clinical laboratories did not test 131 samples by IFA, FISH or microscopic examination of Giemsa-stained blood smears. Babesia infection was detected in all age groups by FISH and microscopy; notably patients >40 years of age represented 64% of tested samples and 13% were younger patients. We tested all samples using qPCR and found that 38% were positive for Babesia. Of 28 samples that were positive by FISH, 27 (96%) were also positive by qPCR indicating high congruency between nucleic acid based tests. Interestingly, of 78 asymptomatic samples not tested by FISH, 22 were positive by our qPCR. Direct detection of Babesia relies upon microscopic examination of patient blood smears, which is labor intensive, difficult to scale up, requires specific expertise and is hence, often not performed. In fact, a clinical laboratory examined only 23 of 86 blood samples obtained from two different counties by microscopy. By considering individuals positive for Babesia infection when results from currently available microscopy, FISH or serological tests were positive, we found that our qPCR is highly sensitive (96.2%) and showed a specificity of 70.5% for Babesia. Conclusion Robust qPCR using specific probes can be highly useful for efficient and appropriate diagnosis of babesiosis in patients in conjunction with conventional diagnostics, or as a stand-alone test, especially for donated blood screening. The use of a nucleic acid amplification test based screening of blood and blood products could prevent TTB. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0929-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Rasel Khan
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Laura Alter
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Albert D Rojtman
- Meridian Health, Jersey Shore University Medical Center, Neptune, NJ, USA
| | | | | | | |
Collapse
|
81
|
Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent. Epidemics 2016; 19:33-42. [PMID: 28089780 PMCID: PMC5474356 DOI: 10.1016/j.epidem.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/18/2016] [Accepted: 12/18/2016] [Indexed: 01/08/2023] Open
Abstract
Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding – such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.
Collapse
|
82
|
Carpi G, Walter KS, Mamoun CB, Krause PJ, Kitchen A, Lepore TJ, Dwivedi A, Cornillot E, Caccone A, Diuk-Wasser MA. Babesia microti from humans and ticks hold a genomic signature of strong population structure in the United States. BMC Genomics 2016; 17:888. [PMID: 27821055 PMCID: PMC5100190 DOI: 10.1186/s12864-016-3225-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/27/2016] [Indexed: 11/16/2022] Open
Abstract
Background Babesia microti is an emerging tick-borne apicomplexan parasite with increasing geographic range and incidence in the United States. The rapid expansion of B. microti into its current distribution in the northeastern USA has been due to the range expansion of the tick vector, Ixodes scapularis, upon which the causative agent is dependent for transmission to humans. Results To reconstruct the history of B. microti in the continental USA and clarify the evolutionary origin of human strains, we used multiplexed hybrid capture of 25 B. microti isolates obtained from I. scapularis and human blood. Despite low genomic variation compared with other Apicomplexa, B. microti was strongly structured into three highly differentiated genetic clusters in the northeastern USA. Bayesian analyses of the apicoplast genomes suggest that the origin of the current diversity of B. microti in northeastern USA dates back 46 thousand years with a signature of recent population expansion in the last 1000 years. Human-derived samples belonged to two rarely intermixing clusters, raising the possibility of highly divergent infectious phenotypes in humans. Conclusions Our results validate the multiplexed hybrid capture strategy for characterizing genome-wide diversity and relatedness of B. microti from ticks and humans. We find strong population structure in B. microti samples from the Northeast indicating potential barriers to gene flow. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3225-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giovanna Carpi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Katharine S Walter
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA.,Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Ankit Dwivedi
- Institut de Biologie Computationnelle, University de Montpellier, 34095, Montpellier, Cedex 5, France
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle, University de Montpellier, 34095, Montpellier, Cedex 5, France
| | - Adalgisa Caccone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Maria A Diuk-Wasser
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA. .,Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
83
|
Curcio SR, Tria LP, Gucwa AL. Seroprevalence of Babesia microti in Individuals with Lyme Disease. Vector Borne Zoonotic Dis 2016; 16:737-743. [PMID: 27911694 DOI: 10.1089/vbz.2016.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Babesiosis is an emerging tick-borne disease (TBD) caused by Babesia microti, an intracellular parasite of red blood cells. Currently, it is the highest ranked pathogen transmitted by blood transfusion. Most healthy individuals infected with B. microti are asymptomatic, but may be at risk for chronic infection. Similar to Lyme disease transmitted by Borrelia burgdorferi, B. microti is spread by Ixodes scapularis ticks. The rate of coinfection with these TBDs in humans is unclear as most studies have focused their prevalence in ticks or rodent reservoirs. MATERIALS AND METHODS In this study, we aimed to determine the seroprevalence of B. microti infection in individuals who tested positive for Lyme disease. Serum samples obtained from 130 subjects in New York were tested by immunofluorescence assay (IFA) for the presence of IgM and IgG antibodies against B. microti. RESULTS Overall, 26.9% of the serum samples tested were positive for IgM and IgG antibodies against B. microti, suggesting exposure to TBD. Individuals who tested positive for Lyme disease as determined by two-tiered serological testing and the presence of both IgM and IgG antibodies directed against B. burgdorferi, were significantly increased for antibodies directed against B. microti (28.6%; p < 0.05), suggesting the possibility of coinfection with both TBDs. In contrast, the Lyme disease-negative control group had only 6.7% of samples seropositive for B. microti. CONCLUSIONS These findings suggest the need for more extensive studies investigating infection rates with multiple TBDs in areas where they are endemic and further support for the need to implement an FDA-approved screening test for blood products to help prevent transfusion-transmitted babesiosis.
Collapse
Affiliation(s)
- Sabino R Curcio
- 1 Department of Biomedical Sciences, Long Island University , Post Campus, Brookville, New York
| | - Laurel P Tria
- 2 Northwell Health Laboratories , Lake Success, New York
| | - Azad L Gucwa
- 1 Department of Biomedical Sciences, Long Island University , Post Campus, Brookville, New York
| |
Collapse
|
84
|
Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity. PLoS Pathog 2016; 12:e1005759. [PMID: 27414806 PMCID: PMC4944968 DOI: 10.1371/journal.ppat.1005759] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/18/2016] [Indexed: 01/13/2023] Open
Abstract
Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles. Lyme disease, caused by a bacteria carried by deer ticks, is the most common vector-borne disease in North America and over 30,000 cases are reported each year in the United States. Ticks may be infected with multiple strains of the Lyme disease bacteria, which differ in transmissibility and the harm they pose to humans. In this study, we collected 98 infected deer ticks from across the United States and southern Canada. We used genetic techniques to investigate the diversity of the Lyme disease bacteria infecting each individual tick. We find that 70% of ticks are infected with multiple strains of the Lyme disease bacteria, indicating that humans may be exposed to and infected with multiple bacterial strains from a single tick bite. We also find evidence that the Lyme disease bacteria is evolving in response to the immune defenses of its natural hosts (including rodents and birds). Our study shows that individual ticks and other disease vectors can be studied as epidemiological sentinels, which reveal the extensive diversity of pathogens circulating in natural disease cycles and how they are evolving.
Collapse
|
85
|
Walter KS, Pepin KM, Webb CT, Gaff HD, Krause PJ, Pitzer VE, Diuk-Wasser MA. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes. Proc Biol Sci 2016; 283:20160834. [PMID: 27252022 PMCID: PMC4920326 DOI: 10.1098/rspb.2016.0834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 11/12/2022] Open
Abstract
Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach-occupancy modelling-to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease.
Collapse
Affiliation(s)
- Katharine S Walter
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Kim M Pepin
- United States Department of Agriculture Animal and Plant Health Inspection Service, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colleen T Webb
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Holly D Gaff
- Department of Biological Sciences, Old Dominion University, 302a Mills Godwin Building, Norfolk, VA 23529, USA
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria A Diuk-Wasser
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
86
|
Abstract
Babesiosis is caused by intraerythrocytic protozoan parasites that are transmitted by ticks, or less commonly through blood transfusion or transplacentally. Human babesiosis was first recognized in a splenectomized patient in Europe but most cases have been reported from the northeastern and upper midwestern United States in people with an intact spleen and no history of immune impairment. Cases are reported in Asia, Africa, Australia, Europe, and South America. Babesiosis shares many clinical features with malaria and can be fatal, particularly in the elderly and the immunocompromised.
Collapse
Affiliation(s)
- Edouard G Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street Box #041, Boston, MA 02111, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Yale School of Medicine, 15 York Street, New Haven, CT 06520, USA
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA; Departments of Internal Medicine and Pediatrics, Yale School of Medicine, 15 York Street, New Haven, CT 06520, USA.
| |
Collapse
|
87
|
|
88
|
Diuk-Wasser MA, Vannier E, Krause PJ. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitol 2015; 32:30-42. [PMID: 26613664 DOI: 10.1016/j.pt.2015.09.008] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Ixodes ticks maintain a large and diverse array of human pathogens in the enzootic cycle, including Borrelia burgdorferi and Babesia microti. Despite the poor ecological fitness of B. microti, babesiosis has recently emerged in areas endemic for Lyme disease. Studies in ticks, reservoir hosts, and humans indicate that coinfection with B. burgdorferi and B. microti is common, promotes transmission and emergence of B. microti in the enzootic cycle, and causes greater disease severity and duration in humans. These interdisciplinary studies may serve as a paradigm for the study of other vector-borne coinfections. Identifying ecological drivers of pathogen emergence and host factors that fuel disease severity in coinfected individuals will help guide the design of effective preventative and therapeutic strategies.
Collapse
Affiliation(s)
| | - Edouard Vannier
- Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
89
|
Zolnik CP, Falco RC, Kolokotronis SO, Daniels TJ. No Observed Effect of Landscape Fragmentation on Pathogen Infection Prevalence in Blacklegged Ticks (Ixodes scapularis) in the Northeastern United States. PLoS One 2015; 10:e0139473. [PMID: 26430734 PMCID: PMC4591970 DOI: 10.1371/journal.pone.0139473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Abstract
Pathogen prevalence within blacklegged ticks (Ixodes scapularis Say, 1821) tends to vary across sites and geographic regions, but the underlying causes of this variation are not well understood. Efforts to understand the ecology of Lyme disease have led to the proposition that sites with higher host diversity will result in lower disease risk due to an increase in the abundance of inefficient reservoir species relative to the abundance of species that are highly competent reservoirs. Although the Lyme disease transmission cycle is often cited as a model for this “dilution effect hypothesis”, little empirical evidence exists to support that claim. Here we tested the dilution effect hypothesis for two pathogens transmitted by the blacklegged tick along an urban-to-rural gradient in the northeastern United States using landscape fragmentation as a proxy for host biodiversity. Percent impervious surface and habitat fragment size around each site were determined to assess the effect of landscape fragmentation on nymphal blacklegged tick infection with Borrelia burgdorferi and Anaplasma phagocytophilum. Our results do not support the dilution effect hypothesis for either pathogen and are in agreement with the few studies to date that have tested this idea using either a landscape proxy or direct measures of host biodiversity.
Collapse
Affiliation(s)
- Christine P. Zolnik
- Department of Biological Sciences, Fordham University, Bronx, New York, United States of America
- Vector Ecology Laboratory, Louis Calder Center-Biological Field Station, Fordham University, Armonk, New York, United States of America
| | - Richard C. Falco
- New York State Department of Health, Louis Calder Center, Armonk, New York, United States of America
| | | | - Thomas J. Daniels
- Vector Ecology Laboratory, Louis Calder Center-Biological Field Station, Fordham University, Armonk, New York, United States of America
- * E-mail:
| |
Collapse
|
90
|
O'Brien SF, Delage G, Scalia V, Lindsay R, Bernier F, Dubuc S, Germain M, Pilot G, Yi QL, Fearon MA. Seroprevalence of Babesia microti infection in Canadian blood donors. Transfusion 2015; 56:237-43. [PMID: 26426217 DOI: 10.1111/trf.13339] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human babesiosis, caused by the intraerythrocytic protozoan parasite Babesia microti, is primarily transmitted by tick bites and is also transmitted by transfusion. Infections have been identified in U.S. blood donors close to Canadian borders. We aimed to assess the risk of transfusion-transmitted babesiosis in Canada by examining infections in ticks and seroprevalence in blood donors. STUDY DESIGN AND METHODS Passive surveillance (receipt of ticks submitted by the public) was used to identify regions for tick drag sampling (active surveillance, 2009-2014). All ticks were tested for B. microti using an indirect immunofluorescent antibody assay (Imugen, Inc.). Between July and December 2013, blood donations from selected sites (southern Manitoba, Ontario, Québec, New Brunswick, and Nova Scotia) near endemic U.S. regions were tested for antibody to B. microti. Donors completed a questionnaire about risk travel and possible tick exposure. RESULTS Of approximately 12,000 ticks submitted, 14 were B. microti positive (10 in Manitoba, one in Ontario, one in Québec, two in New Brunswick). From active tick surveillance, six of 361 ticks in Manitoba were positive (1.7%), three of 641 (0.5%) in Québec, and none elsewhere. There were 26,260 donors at the selected sites of whom 13,993 (53%) were tested. None were positive for antibody to B. microti. In 2013, 47% of donors visited forested areas in Canada, and 41% traveled to the United States. CONCLUSION The data do not suggest that laboratory-based testing is warranted at this time. However, there are indicators that B. microti may be advancing into Canada and ongoing monitoring of tick populations and donor seroprevalence is indicated.
Collapse
Affiliation(s)
| | | | - Vito Scalia
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Robbin Lindsay
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | | | | | - Gerry Pilot
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, Ontario, Canada
| | | |
Collapse
|