51
|
Deregulation of RNA Metabolism in Microsatellite Expansion Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:213-238. [PMID: 29916021 DOI: 10.1007/978-3-319-89689-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA metabolism impacts different steps of mRNA life cycle including splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. Growing evidence indicates that defects in any of these steps lead to devastating diseases in humans. This chapter reviews the various RNA metabolic mechanisms that are disrupted in Myotonic Dystrophy-a trinucleotide repeat expansion disease-due to dysregulation of RNA-Binding Proteins. We also compare Myotonic Dystrophy to other microsatellite expansion disorders and describe how some of these mechanisms commonly exert direct versus indirect effects toward disease pathologies.
Collapse
|
52
|
Sugiyama A, Sone D, Sato N, Kimura Y, Ota M, Maikusa N, Maekawa T, Enokizono M, Mori-Yoshimura M, Ohya Y, Kuwabara S, Matsuda H. Brain gray matter structural network in myotonic dystrophy type 1. PLoS One 2017; 12:e0187343. [PMID: 29095898 PMCID: PMC5667809 DOI: 10.1371/journal.pone.0187343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1) patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset), excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM) and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
- * E-mail:
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoko Maekawa
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mikako Enokizono
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Yasushi Ohya
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
53
|
Montagnese F, Mondello S, Wenninger S, Kress W, Schoser B. Assessing the influence of age and gender on the phenotype of myotonic dystrophy type 2. J Neurol 2017; 264:2472-2480. [PMID: 29086017 DOI: 10.1007/s00415-017-8653-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
Abstract
This study aims to provide a detailed clinical characterization of a large cohort of myotonic dystrophy type 2 (DM2) patients investigating the influence of age and gender as modifying factors of DM2 phenotype. A retrospective study was conducted on 307 patients with genetically confirmed DM2. The following data were analyzed: (1) demographics, (2) clinical features (first symptom, muscular complaints, and multisystemic involvement), (3) diagnostics (serological tests, electromyography, and muscle biopsy). In this cohort (186 females, 121 males), a proximal weakness was the leading symptom at onset (55.4%), followed by myalgia (35.5%) and myotonia (25.4%). Proximal weakness was more common in women than men (64.9 vs. 43.8%, p = 0.0006), whereas being male was associated with higher odds for developing myalgia [OR 2.94 (95% CI 1.53-5.67)]. Patients with muscle weakness at onset were older than those with myalgia and myotonia (p < 0.0001), while each additional disease year was associated with 10% decrease in the odds of developing myotonia [OR 0.9 (95% CI 0.87-0.93)] and 6% decrease of myalgia [OR 0.94 (95% CI 0.91-0.97)]. Cataract and thyroid diseases occurred more frequently in women (p = 0.002 and p = 0.002, respectively). Early onset of DM2 is an independent risk factor for the occurrence of multisystemic involvement [OR 0.94 (95% CI 0.90-0.98)]. In this updated clinical description of DM2 emerges a profound gender and age influence on the phenotype, emphasizing that female gender and ageing may be associated with a higher disease burden. These age- and gender-specific differences should be considered in diagnostics, management, and future clinical studies of DM2.
Collapse
Affiliation(s)
- Federica Montagnese
- Friedrich-Baur-Institute, Department of Neurology, University Clinics Ludwig-Maximilians-University of Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - Stefania Mondello
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stephan Wenninger
- Friedrich-Baur-Institute, Department of Neurology, University Clinics Ludwig-Maximilians-University of Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | | | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, University Clinics Ludwig-Maximilians-University of Munich, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
54
|
The cognitive profile of myotonic dystrophy type 1: A systematic review and meta-analysis. Cortex 2017; 95:143-155. [DOI: 10.1016/j.cortex.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/11/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
|
55
|
Okkersen K, Monckton DG, Le N, Tuladhar AM, Raaphorst J, van Engelen BGM. Brain imaging in myotonic dystrophy type 1: A systematic review. Neurology 2017; 89:960-969. [PMID: 28768849 DOI: 10.1212/wnl.0000000000004300] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To systematically review brain imaging studies in myotonic dystrophy type 1 (DM1). METHODS We searched Embase (index period 1974-2016) and MEDLINE (index period 1946-2016) for studies in patients with DM1 using MRI, magnetic resonance spectroscopy (MRS), functional MRI (fMRI), CT, ultrasound, PET, or SPECT. From 81 studies, we extracted clinical characteristics, primary outcomes, clinical-genetic correlations, and information on potential risk of bias. Results were summarized and pooled prevalence of imaging abnormalities was calculated, where possible. RESULTS In DM1, various imaging changes are widely dispersed throughout the brain, with apparently little anatomical specificity. We found general atrophy and widespread gray matter volume reductions in all 4 cortical lobes, the basal ganglia, and cerebellum. The pooled prevalence of white matter hyperintensities is 70% (95% CI 64-77), compared with 6% (95% CI 3-12) in unaffected controls. DTI shows increased mean diffusivity in all 4 lobes and reduced fractional anisotropy in virtually all major association, projection, and commissural white matter tracts. Functional studies demonstrate reduced glucose uptake and cerebral perfusion in frontal, parietal, and temporal lobes, and abnormal fMRI connectivity patterns that correlate with personality traits. There is significant between-study heterogeneity in terms of imaging methods, which together with the established clinical variability of DM1 may explain divergent results. Longitudinal studies are remarkably scarce. CONCLUSIONS DM1 brains show widespread white and gray matter involvement throughout the brain, which is supported by abnormal resting-state network, PET/SPECT, and MRS parameters. Longitudinal studies evaluating spatiotemporal imaging changes are essential.
Collapse
Affiliation(s)
- Kees Okkersen
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Darren G Monckton
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Nhu Le
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Anil M Tuladhar
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Joost Raaphorst
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Baziel G M van Engelen
- From the Department of Neurology (K.O., N.L., A.M.T., J.R., B.G.M.v.E.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; and Institute of Molecular, Cell and Systems Biology (D.G.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
56
|
Peric S, Brajkovic L, Belanovic B, Ilic V, Salak-Djokic B, Basta I, Rakocevic Stojanovic V. Brain positron emission tomography in patients with myotonic dystrophy type 1 and type 2. J Neurol Sci 2017; 378:187-192. [DOI: 10.1016/j.jns.2017.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
|
57
|
Jacobs D, Willekens D, de Die-Smulders C, Frijns JP, Steyaert J. Delusional and psychotic disorders in juvenile myotonic dystrophy type-1. Am J Med Genet B Neuropsychiatr Genet 2017; 174:359-366. [PMID: 28449271 DOI: 10.1002/ajmg.b.32524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022]
Abstract
We investigated the clinically derived hypothesis of a relatively high incidence of delusional and psychotic disorders in adolescents with juvenile Myotonic Dystrophy type-1 (DM1). Twenty-seven subjects of age 16-25 with juvenile DM1 and their parents were invited to have a clinical psychiatric interview, and to complete an ASEBA behavior checklist (YSR, ASR, CBCL, and ABCL). We diagnosed a Delusional Disorder in 19% of our patients and a Psychotic Disorder not otherwise specified in another 19%. These two groups of patients had a significantly worse level of clinically defined general functioning. It is clinically relevant to investigate in patients with juvenile DM the symptom of delusions and the presence of a delusional and psychotic disorder, and to consider the presence of juvenile DM in youngsters presenting with such a thought disorder. These disorders compromise the general functioning of the subjects and are often to some extent treatable. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Delphine Jacobs
- Centre for Human Genetics, University of Leuven, Leuven, Belgium
| | - Diane Willekens
- Centre for Human Genetics, University of Leuven, Leuven, Belgium
| | | | | | - Jean Steyaert
- Centre for Human Genetics, University of Leuven, Leuven, Belgium
| |
Collapse
|
58
|
Biomolecular diagnosis of myotonic dystrophy type 2: a challenging approach. J Neurol 2017; 264:1705-1714. [PMID: 28550479 DOI: 10.1007/s00415-017-8504-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023]
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are the most common adult form of muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. The onset and symptoms of the myotonic dystrophies are diverse, complicating their diagnoses and limiting a comprehensive approach to their clinical care. Diagnostic delay in DM2 is due not only to the heterogeneous phenotype and the aspecific onset but also to the unfamiliarity with the disorder by most clinicians. Moreover, the DM2 diagnostic odyssey is complicated by the difficulties to develop an accurate, robust, and cost-effective method for a routine molecular assay. The aim of this review is to underline by challenging approach the diagnostic limits and pitfalls that could results in failure to recognize the presence of DM2 disease. Understanding and preventing delays in DM2 diagnosis may facilitate family planning, improve symptom management in the short term, and facilitate more specific treatment in the long term.
Collapse
|
59
|
Gourdon G, Meola G. Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS. Front Cell Neurosci 2017; 11:101. [PMID: 28473756 PMCID: PMC5397409 DOI: 10.3389/fncel.2017.00101] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophies are multisystemic diseases characterized not only by muscle and heart dysfunction but also by CNS alteration. They are now recognized as brain diseases affecting newborns and children for myotonic dystrophy type 1 and adults for both myotonic dystrophy type 1 and type 2. In the past two decades, much progress has been made in understanding the mechanisms underlying the DM symptoms allowing development of new molecular therapeutic tools with the ultimate aim of curing the disease. This review describes the state of the art for the characterization of CNS related symptoms, the development of molecular strategies to target the CNS as well as the available tools for screening and testing new possible treatments.
Collapse
Affiliation(s)
- Genevieve Gourdon
- Institut National de la Santé et de la Recherche Médicale UMR1163Paris, France.,Laboratory CTGDM, Institut Imagine, Université Paris Descartes-Sorbonne Paris CitéParis, France
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Policlinico San Donato (IRCCS), University of MilanMilan, Italy
| |
Collapse
|
60
|
Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017; 38:535-546. [PMID: 28078562 DOI: 10.1007/s10072-016-2805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. To date, two distinct forms caused by similar mutations in two different genes have been identified: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of function has been suggested to cause the complex phenotype in DM1 and DM2. However, despite clinical and genetic similarities, DM1 and DM2 may be considered as distinct disorders. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Piazza E. Malan, 1, San Donato Mil., 20097, Milan, Italy. .,Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
61
|
Banach M, Antczak J, Rola R. Association of peripheral neuropathy with sleep-related breathing disorders in myotonic dystrophies. Neuropsychiatr Dis Treat 2017; 13:133-140. [PMID: 28138246 PMCID: PMC5238763 DOI: 10.2147/ndt.s123908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Myotonic dystrophy (DM) type 1 and type 2 are inherited diseases characterized by myotonia and myopathy. Additional symptoms include, among others, peripheral neuropathy and sleep-related breathing disorders (SRBDs). There is growing evidence for a complex association between DM1 and DM2, which was described in patients with diabetes mellitus and in the general population. In this study, we investigated whether there is an association between peripheral neuropathy and SRBDs also in the population of patients with DM. METHODS The study included 16 patients with DM1 (mean age, 37.9±14.1 years; 20-69 years) and eight patients with DM2 (mean age, 47.6±14.1 years; 20-65 years), who underwent a sensory and motor nerve conduction study (NCS) and diagnostic screening for SRBDs. In both groups, the NCS parameters were correlated with respiratory parameters. RESULTS In both groups, the amplitude of the ulnar sensory nerve action potential (SNAP) correlated with the mean arterial oxygen saturation (SaO2). In addition, in the DM2 group, the median SNAP correlated with the mean SaO2. In the DM1 group, the median SNAP and the distal motor latency (DML) of the ulnar nerve correlated with the apnea-hypopnea index, while the oxygen desaturation index correlated with the DML of the tibial nerve and with conduction velocity in the sural nerve. CONCLUSION Our results indicate a complex association between neuropathy and SRBDs in DM1 and DM2. Axonal degeneration may contribute to nocturnal hypoxemia and vice versa. Neuropathy may contribute to muscle weakness, which in turn may cause respiratory events.
Collapse
Affiliation(s)
| | | | - Rafał Rola
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
62
|
Peric S, Rakocevic Stojanovic V, Mandic Stojmenovic G, Ilic V, Kovacevic M, Parojcic A, Pesovic J, Mijajlovic M, Savic-Pavicevic D, Meola G. Clusters of cognitive impairment among different phenotypes of myotonic dystrophy type 1 and type 2. Neurol Sci 2016; 38:415-423. [DOI: 10.1007/s10072-016-2778-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
|
63
|
Winblad S, Samuelsson L, Lindberg C, Meola G. Cognition in myotonic dystrophy type 1: a 5-year follow-up study. Eur J Neurol 2016; 23:1471-6. [DOI: 10.1111/ene.13062] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/13/2016] [Indexed: 01/10/2023]
Affiliation(s)
- S. Winblad
- Department of Psychology; University of Gothenburg; Gothenburg Sweden
- Neuromuscular Centre; Department of Neurology; Sahlgrenska University Hospital; Gothenburg Sweden
| | - L. Samuelsson
- Department of Clinical Genetics; Sahlgrenska University Hospital; Gothenburg Sweden
| | - C. Lindberg
- Neuromuscular Centre; Department of Neurology; Sahlgrenska University Hospital; Gothenburg Sweden
- Department of Clinical Genetics; Sahlgrenska University Hospital; Gothenburg Sweden
| | - G. Meola
- Department of Biomedical Sciences for Health; IRCCS Policlinico San Donato; University of Milan; San Donato Milanese Italy
| |
Collapse
|
64
|
Baldanzi S, Cecchi P, Fabbri S, Pesaresi I, Simoncini C, Angelini C, Bonuccelli U, Cosottini M, Siciliano G. Relationship between neuropsychological impairment and grey and white matter changes in adult-onset myotonic dystrophy type 1. NEUROIMAGE-CLINICAL 2016; 12:190-7. [PMID: 27437180 PMCID: PMC4939389 DOI: 10.1016/j.nicl.2016.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) has a wide phenotypic spectrum and potentially may affect central nervous system with mild to severe involvement. Our aim was to investigate grey matter (GM) and white matter (WM) structural alterations in a sample of adult-onset DM1 patients and to evaluate relationship with clinical and cognitive variables. Thirty DM1 patients underwent neuropsychological investigation and 3T-MRI protocol. GM and WM changes were evaluated calculating brain parenchymal fraction (BPF), voxel-based morphometry (VBM), white matter lesion load (LL% and Fazekas scale) and tract based spatial statistical (TBSS). Patients showed main impairment in tests exploring executive and mnesic domains with visuo-spatial involvement, significantly related to BPF. VBM revealed clusters of widespread GM reduction and TBSS revealed areas of decreased fractional anisotropy (FA) and increased radial diffusivity (RD), mean diffusivity (MD) and axial diffusivity (AD) in patients compared to a group of matched healthy controls. Multiple regression analyses showed areas of significant negative relationship between left temporal atrophy and verbal memory, between RD and mnesic and visuo-spatial cognitive domains, and between AD and verbal memory. TBSS results indicate that the involvement of normal appearance WM, beyond the signal changes detected with conventional MR imaging (Fazekas scale and LL%), was associated with neuropsychological deficit. These data suggest that disrupted complex neuronal networks can underlie cognitive-behavioural dysfunctions in DM1. We performed VBM and TBSS analyses in a sample of adult-onset DM1 patients. The relationship between neuroimaging variables and cognitive profile was studied. Global atrophy correlated with executive and visuo-spatial abilities. TBSS revealed associations between DTI indexes and cognitive performances. Disrupted complex neuronal networks can underlie cognitive dysfunction in DM1.
Collapse
Affiliation(s)
- Sigrid Baldanzi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Paolo Cecchi
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy
| | - Serena Fabbri
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy
| | - Ilaria Pesaresi
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Corrado Angelini
- Fondazione Ospedale S.Camillo, IRCCS, Via Alberoni 70, 30126 Lido Venice, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, S.Chiara Hospital, via Roma 67, 56126 Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Savi 10, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi 10, 56126 Pisa, Italy
| |
Collapse
|
65
|
Zanigni S, Evangelisti S, Giannoccaro MP, Oppi F, Poda R, Giorgio A, Testa C, Manners DN, Avoni P, Gramegna LL, De Stefano N, Lodi R, Tonon C, Liguori R. Relationship of white and gray matter abnormalities to clinical and genetic features in myotonic dystrophy type 1. Neuroimage Clin 2016; 11:678-685. [PMID: 27330968 PMCID: PMC4900512 DOI: 10.1016/j.nicl.2016.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) represents a multisystemic disorder in which diffuse brain white and gray matter alterations related to clinical and genetic features have been described. We aimed to evaluate in the brain of adult patients with DM1 (i) white and gray matter differences, including cortical-subcortical gray matter volume and cortical thickness and (ii) their correlation with clinical disability, global neuropsychological performance and triplet expansion. METHODS We included 24 adult genetically-confirmed DM1 patients (14 males; age: 38.5 ± 11.8 years) and 25 age- and sex-matched healthy controls (14 males; age: 38.5 ± 11.3 years) who underwent an identical brain MR protocol including high-resolution 3D T1-weighted, axial T2 FLAIR and DTI sequences. All patients underwent an extensive clinical and neuropsychological evaluation. Voxel-wise analyses of white matter, performed by using Tract Based Spatial Statistics, and of gray matter, with Voxel-based Morphometry and Cortical Thickness, were carried out in order to test for differences between patients with DM1 and healthy controls (p < 0.05, corrected). The correlation between MRI measures and clinical-genetic features was also assessed. RESULTS Patients with DM1 showed widespread abnormalities of all DTI parameters in the white matter, which were associated with reduced gray matter volume in all brain lobes and thinning in parieto-temporo-occipital cortices, albeit with less extensive cortical alterations when congenital cases were removed from the analyses. White matter alterations correlated with clinical disability, global cognitive performance and triplet expansions. CONCLUSION In patients with DM1, the combined smaller overall gray matter volume and white matter alterations seem to be the main morpho-structural substrates of CNS involvement in this condition. The correlation of white matter differences with both clinical and genetic findings lends support to this notion.
Collapse
Affiliation(s)
- Stefano Zanigni
- Functional MR Unit, Policlinico S. Orsola - Malpighi, via Massarenti 9, 40138 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Stefania Evangelisti
- Functional MR Unit, Policlinico S. Orsola - Malpighi, via Massarenti 9, 40138 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Maria Pia Giannoccaro
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Federico Oppi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Roberto Poda
- IRCCS Istituto delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, v.le Bracci 2, 53100 Siena, Italy
| | - Claudia Testa
- Functional MR Unit, Policlinico S. Orsola - Malpighi, via Massarenti 9, 40138 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - David Neil Manners
- Functional MR Unit, Policlinico S. Orsola - Malpighi, via Massarenti 9, 40138 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Patrizia Avoni
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Laura Ludovica Gramegna
- Functional MR Unit, Policlinico S. Orsola - Malpighi, via Massarenti 9, 40138 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, v.le Bracci 2, 53100 Siena, Italy
| | - Raffaele Lodi
- Functional MR Unit, Policlinico S. Orsola - Malpighi, via Massarenti 9, 40138 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy.
| | - Caterina Tonon
- Functional MR Unit, Policlinico S. Orsola - Malpighi, via Massarenti 9, 40138 Bologna, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Ugo Foscolo 7, 40123 Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| |
Collapse
|
66
|
Cerebellar microstructural abnormalities in bipolar depression and unipolar depression: A diffusion kurtosis and perfusion imaging study. J Affect Disord 2016; 195:21-31. [PMID: 26852094 DOI: 10.1016/j.jad.2016.01.042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Depression in the context of bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatment and poor clinical outcomes. However, little is known about the similarities and differences in cerebellum between BD and UD. METHODS Patients with BD (n=35) and UD (n=30) during a depressive episode as well as 40 healthy controls underwent diffusional kurtosis imaging (DKI) and three dimensional arterial spin labeling (3D ASL). The DKI parameters including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr),fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da) and radial diffusivity (Dr) and 3D ASL parameters (i.e. cerebral blood flow) was measured by using regions-of-interest (ROIs) analysis in the superior cerebellar peduncles (SCP), middle cerebellar peduncles (MCP) and dentate nuclei (DN) of cerebellum. RESULTS Patients with UD exhibited significant differences from controls for DKI measures in bilateral SCP and MCP and cerebral blood flow (CBF) in bilateral SCP and left DN. Patients with BD exhibited significant differences from controls for DKI measures in the right MCP and left DN and CBF in the left DN. Patients with UD showed significantly lower MD values compared with patients with BD in the right SCP. Correlation analysis showed there were negative correlations between illness duration and MD and Dr values in the right SCP in UD. LIMITATIONS This study was cross-sectional and the sample size was not large. Parts of the patients included were under medication prior to MRI scanning. CONCLUSIONS Our findings provide new evidence of microstructural changes in cerebellum in BD and UD. The two disorders may have overlaps in microstructural abnormality in MCP and DN during the depressive period. Microstructural abnormality in SCP may be a key neurobiological feature of UD.
Collapse
|
67
|
Quality of life in patients with myotonic dystrophy type 2. J Neurol Sci 2016; 365:158-61. [PMID: 27206898 DOI: 10.1016/j.jns.2016.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
AIM To analyze quality of life (QoL) in a large cohort of myotonic dystrophy type 2 (DM2) patients in comparison to DM1 control group using both generic and disease specific questionnaires. In addition, we intended to identify different factors that might affect QoL of DM2 subjects. PATIENTS AND METHOD 49 DM2 patients were compared with 42 adult-onset DM1 patients. Patients completed SF-36 questionnaire and individualized neuromuscular quality of life questionnaire (INQoL). Following measures were also included: Medical Research Council 0-5 point scale for muscle strength, Addenbrooke's cognitive examination revised for cognitive status, Hamilton rating scale for depression, Krupp's fatigue severity scale and daytime sleepiness scale (DSS) RESULTS: SF-36 total score and physical composite score did not differ between DM1 and DM2 patients (p>0.05). However, role emotional and mental composite score were better in DM2 (p<0.05). INQoL total score was similar in both groups (p>0.05), although DM2 patients showed less impairment in independence (p<0.05) and body image domains (p<0.01). Regarding symptoms assessed by INQoL, DM2 patients showed less severe complaint of myotonia (p<0.01). Multiple linear regression analysis showed that significant predictors of worse QoL in DM2 patients were older age, worse muscle strength and higher level of fatigue. CONCLUSION QoL reports of DM2 patients with the most severe form of the disease are comparable to those of DM1 patients. Special attention of clinicians should be paid to DM2 patients with older age, more severe muscle weakness and higher level of fatigue since they may be at higher risk to have worse QoL.
Collapse
|
68
|
Krogias C, Walter U. Transcranial Sonography Findings in Depression in Association With Psychiatric and Neurologic Diseases: A Review. J Neuroimaging 2016; 26:257-63. [PMID: 27119431 DOI: 10.1111/jon.12328] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
The transcranial sonography (TCS) finding of reduced echogenicity of brainstem raphe (hypoechogenic BR) has been associated with depressive states. Here, we review the TCS studies in subjects with depressive disorders and with depression related to degenerative brain diseases, and compare the frequency and clinical correlates of hypoechogenic BR in these reports. Summarizing the data published so far, hypoechogenic BR is present in 67% (range, 37-95%) of depressed but only in 15% (5-36%) of nondepressed subjects without history of neurodegenerative disease. The finding of hypoechogenic BR in these subjects is associated with a relative risk of 3.03 (95% CI, 2.44-3.75; P < .001) of being diagnosed with depression. In patients with Parkinson's disease, hypoechogenic BR is present in 63% (35-92%) of depressed but only in 27% (10-62%) of nondepressed patients, resulting in a relative risk of 2.18 (95% CI, 1.80-2.66; P < .001) of being diagnosed with depression. Hypoechogenic BR is associated with depression in a number of neurological disorders such Huntington's disease, idiopathic Rapid Eye Movement (REM) sleep behavior disorder, myotonic dystrophies, and cerebral small vessel disease. Although some studies did not show any relationship between BR echogenicity and severity of depression, others suggest an association with higher severity of depression, or even with suicidal ideation. In one study BR hypoechogenicity was found to be associated with better responsivity to serotonin reuptake inhibitors. Further studies are warranted to compare the TCS findings of BR alteration with post-mortem histopathological findings, and with genetic variants related to cerebral serotonin metabolism.
Collapse
Affiliation(s)
- Christos Krogias
- Department of Neurology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Uwe Walter
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|