51
|
Geerts H, Spiros A, Roberts P, Carr R. Towards the virtual human patient. Quantitative Systems Pharmacology in Alzheimer's disease. Eur J Pharmacol 2017; 817:38-45. [PMID: 28583429 DOI: 10.1016/j.ejphar.2017.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 05/05/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022]
Abstract
Development of successful therapeutic interventions in Central Nervous Systems (CNS) disorders is a daunting challenge with a low success rate. Probable reasons include the lack of translation from preclinical animal models, the individual variability of many pathological processes converging upon the same clinical phenotype, the pharmacodynamical interaction of various comedications and last but not least the complexity of the human brain. This paper argues for a re-engineering of the pharmaceutical CNS Research & Development strategy using ideas focused on advanced computer modeling and simulation from adjacent engineering-based industries. We provide examples that such a Quantitative Systems Pharmacology approach based on computer simulation of biological processes and that combines the best of preclinical research with actual clinical outcomes can enhance translation to the clinical situation. We will expand upon (1) the need to go from Big Data to Smart Data and develop predictive and quantitative algorithms that are actionable for the pharma industry, (2) using this platform as a "knowledge machine" that captures community-wide expertise in an active hypothesis-testing approach, (3) learning from failed clinical trials and (4) the need to go beyond simple linear hypotheses and embrace complex non-linear hypotheses. We will propose a strategy for applying these concepts to the substantial individual variability of AD patient subgroups and the treatment of neuropsychiatric problems in AD. Quantitative Systems Pharmacology is a new 'humanized' tool for supporting drug discovery and development in general and CNS disorders in particular.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Lexington, MA, USA; Perelman School of Medicine, Univ. of Pennsylvania, Philadelphia, PA, USA.
| | | | - Patrick Roberts
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR, USA
| | | |
Collapse
|
52
|
Rivera-Rivera LA, Schubert T, Turski P, Johnson KM, Berman SE, Rowley HA, Carlsson CM, Johnson SC, Wieben O. Changes in intracranial venous blood flow and pulsatility in Alzheimer's disease: A 4D flow MRI study. J Cereb Blood Flow Metab 2017; 37:2149-2158. [PMID: 27492950 PMCID: PMC5464708 DOI: 10.1177/0271678x16661340] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/09/2023]
Abstract
Cerebral blood flow, arterial pulsation, and vasomotion may be important indicators of cerebrovascular health in aging and diseases of aging such as Alzheimer's disease. Noninvasive markers that assess these characteristics may be helpful in the study of co-occurrence of these diseases and potential additive and interacting effects. In this study, 4D flow MRI was used to measure intra-cranial flow features with cardiac-gated phase contrast MRI in cranial arteries and veins. Mean blood flow and pulsatility index as well as the transit time of the peak flow from the middle cerebral artery to the superior sagittal sinus were measured in a total of 104 subjects comprising of four groups: (a) subjects with Alzheimer's disease, (b) age-matched controls, (c) subjects with mild cognitive impairment, and (d) a group of late middle-aged with parental history of sporadic Alzheimer's disease. The Alzheimer's disease group exhibited: a significant decrease in mean blood flow in the superior sagittal sinus, transverse sinus, middle cerebral artery, and internal carotid arteries; a significant decrease of the peak and end diastolic blood flow in the middle cerebral artery and superior sagittal sinus; a faster transmission of peak flow from the middle cerebral artery to the superior sagittal sinus and increased pulsatility index along the carotid siphon.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Patrick Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sara E Berman
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Howard A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| |
Collapse
|
53
|
Venkat P, Chopp M, Chen J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med J 2017; 57:223-8. [PMID: 27374823 PMCID: PMC4937223 DOI: 10.3325/cmj.2016.57.223] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases.
Collapse
Affiliation(s)
| | | | - Jieli Chen
- Jieli Chen, Senior Staff Investigator, Henry Ford Hospital, Neurology Research, E&R Building, 3091, Detroit, MI, 48202, USA,
| |
Collapse
|
54
|
Malojcic B, Giannakopoulos P, Sorond FA, Azevedo E, Diomedi M, Oblak JP, Carraro N, Boban M, Olah L, Schreiber SJ, Pavlovic A, Garami Z, Bornstein NM, Rosengarten B. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer's disease. BMC Med 2017; 15:27. [PMID: 28178960 PMCID: PMC5299782 DOI: 10.1186/s12916-017-0799-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/21/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The vascular contributions to neurodegeneration and neuroinflammation may be assessed by magnetic resonance imaging (MRI) and ultrasonography (US). This review summarises the methodology for these widely available, safe and relatively low cost tools and analyses recent work highlighting their potential utility as biomarkers for differentiating subtypes of cognitive impairment and dementia, tracking disease progression and evaluating response to treatment in various neurocognitive disorders. METHODS At the 9th International Congress on Vascular Dementia (Ljubljana, Slovenia, October 2015) a writing group of experts was formed to review the evidence on the utility of US and arterial spin labelling (ASL) as neurophysiological markers of normal ageing, vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Original articles, systematic literature reviews, guidelines and expert opinions published until September 2016 were critically analysed to summarise existing evidence, indicate gaps in current knowledge and, when appropriate, suggest standards of use for the most widely used US and ASL applications. RESULTS Cerebral hypoperfusion has been linked to cognitive decline either as a risk or an aggravating factor. Hypoperfusion as a consequence of microangiopathy, macroangiopathy or cardiac dysfunction can promote or accelerate neurodegeneration, blood-brain barrier disruption and neuroinflammation. US can evaluate the cerebrovascular tree for pathological structure and functional changes contributing to cerebral hypoperfusion. Microvascular pathology and hypoperfusion at the level of capillaries and small arterioles can also be assessed by ASL, an MRI signal. Despite increasing evidence supporting the utility of these methods in detection of microvascular pathology, cerebral hypoperfusion, neurovascular unit dysfunction and, most importantly, disease progression, incomplete standardisation and missing validated cut-off values limit their use in daily routine. CONCLUSIONS US and ASL are promising tools with excellent temporal resolution, which will have a significant impact on our understanding of the vascular contributions to VCI and AD and may also be relevant for assessing future prevention and therapeutic strategies for these conditions. Our work provides recommendations regarding the use of non-invasive imaging techniques to investigate the functional consequences of vascular burden in dementia.
Collapse
Affiliation(s)
- Branko Malojcic
- Department of Neurology, University Hospital Center Zagreb, Zagreb School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia.
| | | | - Farzaneh A Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| | - Elsa Azevedo
- Department of Neurology, São João Hospital Center and Faculty of Medicine of University of Porto, Porto, Portugal
| | - Marina Diomedi
- Cerebrovascular Disease Center, Stroke Unit, University of Rome Tor Vergata, Rome, Italy
| | - Janja Pretnar Oblak
- Department of Vascular Neurology and Intensive Therapy, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Nicola Carraro
- Department of Medical Sciences, Clinical Neurology-Stroke Unit, University Hospital, University of Trieste, Trieste, Italy
| | - Marina Boban
- Department of Neurology, University Hospital Center Zagreb, Zagreb School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Laszlo Olah
- Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Stephan J Schreiber
- Department of Neurology, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Aleksandra Pavlovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zsolt Garami
- Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Nantan M Bornstein
- Neurology Department, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | | |
Collapse
|
55
|
Lloret‐Villas A, Varusai TM, Juty N, Laibe C, Le NovÈre N, Hermjakob H, Chelliah V. The Impact of Mathematical Modeling in Understanding the Mechanisms Underlying Neurodegeneration: Evolving Dimensions and Future Directions. CPT Pharmacometrics Syst Pharmacol 2017; 6:73-86. [PMID: 28063254 PMCID: PMC5321808 DOI: 10.1002/psp4.12155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/14/2016] [Accepted: 10/30/2016] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the progressive dysfunction and loss of neurons. Here, we distil and discuss the current state of modeling in the area of neurodegeneration, and objectively compare the gaps between existing clinical knowledge and the mechanistic understanding of the major pathological processes implicated in neurodegenerative disorders. We also discuss new directions in the field of neurodegeneration that hold potential for furthering therapeutic interventions and strategies.
Collapse
Affiliation(s)
- A Lloret‐Villas
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - TM Varusai
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - N Juty
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - C Laibe
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - N Le NovÈre
- Babraham Institute, Babraham Research CampusCambridgeUK
| | - H Hermjakob
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - V Chelliah
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| |
Collapse
|
56
|
Xia M, Yang L, Sun G, Qi S, Li B. Mechanism of depression as a risk factor in the development of Alzheimer's disease: the function of AQP4 and the glymphatic system. Psychopharmacology (Berl) 2017; 234:365-379. [PMID: 27837334 DOI: 10.1007/s00213-016-4473-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/23/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Many studies have indicated that a history of depression increases the risk of developing Alzheimer's disease (AD); however, the potential pathogenestic mechanism by which depression functions as a high risk factor for AD remains unknown. Recently, a "cerebral lymphatic system" referred to as "glymphatic system" has been demonstrated to be responsible for neuronal extracellular waste protein clearance via a paravascular pathway. However, the function of glymphatic pathway has not been determined in depressive disorders. METHODS The present study used an animal model of chronic unpredictable mild stress (CUMS) to determine the function of glymphatic pathway by using fluorescence tracers. Immunohistochemistry was used to assess the accumulation of endogenous mouse and exogenous human amyloid beta 42 (Aβ42) in CUMS-treated mice with or without treatment with antidepressant fluoxetine. FINDINGS Glymphatic pathway circulation was impaired in mice treated with CUMS; moreover, glymphatic pathway dysfunction suppressed Aβ42 metabolism, because the accumulation of endogenous and exogenous Aβ42 was increased in the brains of the CUMS-treated mice. However, treatment with fluoxetine reversed these destructive effects of CUMS on glymphatic system. In anhedonic mice, the expression of the water channel aquaporin 4 (AQP4), a factor in glymphatic pathway dysfunction, was down-regulated in cortex and hippocampus. CONCLUSION The dysfunction of glymphatic system suggested why a history of depression may be a strong risk factor for AD in anhedonic mice. We hope our study will contribute to an understanding of the risk mechanism of depressive disorder in the development of AD and the mechanisms of antidepressant therapies in AD.
Collapse
Affiliation(s)
- Maosheng Xia
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China.,Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Li Yang
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China
| | - Guangfeng Sun
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China.,Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuang Qi
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China.,Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China. .,Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
57
|
Nesse RM, Finch CE, Nunn CL. Does selection for short sleep duration explain human vulnerability to Alzheimer's disease? Evol Med Public Health 2017; 2017:39-46. [PMID: 28096295 PMCID: PMC5381352 DOI: 10.1093/emph/eow035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/15/2016] [Accepted: 12/29/2016] [Indexed: 01/17/2023] Open
Abstract
Compared with other primates, humans sleep less and have a much higher prevalence of Alzheimer 's disease (AD) pathology. This article reviews evidence relevant to the hypothesis that natural selection for shorter sleep time in humans has compromised the efficacy of physiological mechanisms that protect against AD during sleep. In particular, the glymphatic system drains interstitial fluid from the brain, removing extra-cellular amyloid beta (eAβ) twice as fast during sleep. In addition, melatonin - a peptide hormone that increases markedly during sleep - is an effective antioxidant that inhibits the polymerization of soluble eAβ into insoluble amyloid fibrils that are associated with AD. Sleep deprivation increases plaque formation and AD, which itself disrupts sleep, potentially creating a positive feedback cycle. These and other physiological benefits of sleep may be compromised by short sleep durations. Our hypothesis highlights possible long-term side effects of medications that reduce sleep, and may lead to potential new strategies for preventing and treating AD.
Collapse
Affiliation(s)
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Charles L Nunn
- Department of Evolutionary Anthropology and Duke Global Health Institute, Duke University, Durham, NC 27708
| |
Collapse
|
58
|
Calderón-Garcidueñas L, de la Monte SM. Apolipoprotein E4, Gender, Body Mass Index, Inflammation, Insulin Resistance, and Air Pollution Interactions: Recipe for Alzheimer's Disease Development in Mexico City Young Females. J Alzheimers Dis 2017; 58:613-630. [PMID: 28527212 PMCID: PMC9996388 DOI: 10.3233/jad-161299] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Given the epidemiological trends of increasing Alzheimer's disease (AD) and growing evidence that exposure and lifestyle factors contribute to AD risk and pathogenesis, attention should be paid to variables such as air pollution, in order to reduce rates of cognitive decline and dementia. Exposure to fine particulate matter (PM2.5) and ozone (O3) above the US EPA standards is associated with AD risk. Mexico City children experienced pre- and postnatal high exposures to PM2.5, O3, combustion-derived iron-rich nanoparticles, metals, polycyclic aromatic hydrocarbons, and endotoxins. Exposures are associated with early brain gene imbalance in oxidative stress, inflammation, innate and adaptive immune responses, along with epigenetic changes, accumulation of misfolded proteins, cognitive deficits, and brain structural and metabolic changes. The Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD, plays a key role in the response to air pollution in young girls. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2 SD from average IQ). This review focused on the relationships between gender, BMI, systemic and neural inflammation, insulin resistance, hyperleptinemia, dyslipidemia, vascular risk factors, and central nervous system involvement in APOE4 urbanites exposed to PM2.5 and magnetite combustion-derived iron-rich nanoparticles that can reach the brain. APOE4 young female heterozygous carriers constitute a high-risk group for a fatal disease: AD. Multidisciplinary intervention strategies could be critical for prevention or amelioration of cognitive deficits and long-term AD progression in young individuals at high risk.
Collapse
|
59
|
Pruzin JJ, Schneider JA, Capuano AW, Leurgans SE, Barnes LL, Ahima RS, Arnold SE, Bennett DA, Arvanitakis Z. Diabetes, Hemoglobin A1C, and Regional Alzheimer Disease and Infarct Pathology. Alzheimer Dis Assoc Disord 2017; 31:41-47. [PMID: 27755004 PMCID: PMC5321787 DOI: 10.1097/wad.0000000000000172] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We examined the relationship of diabetes and hemoglobin A1C (A1C) to 2 common causes of dementia. The study included 1228 subjects who underwent annual clinical evaluations and a brain autopsy at death, as part of a Rush longitudinal cohort study of aging. A total of 433 subjects had A1C data available. Neuropathologic evaluations documented the size and location of infarcts. Modified silver stain-based Alzheimer disease (AD) measures included global and regional scores. We used regression analyses to examine associations of diabetes and A1C with overall and regional neuropathology. Diabetes [odds ratio (OR)=0.94; 95% confidence interval (CI), 0.73-1.20) and A1C (OR=0.83; 95% CI, 0.62-1.10) were not associated with global AD pathology across the brain, nor with overall or individual measures of neuropathology in mesial temporal or neocortical regions separately (all P>0.05). Diabetes was associated with a higher odds of any infarct (OR=1.43; 95% CI, 1.07-1.90), and particularly with gross (OR=1.53; 95% CI, 1.14-2.06) but not microinfarcts (P=0.06), and subcortical (OR=1.79; 95% CI, 1.34-2.39) but not cortical infarcts (P=0.83). In summary, we found no relationship of diabetes or A1C with global or regional AD pathology, including in the mesial temporal lobe. Diabetes is associated with gross subcortical infarcts. Our results suggest that the diabetes-dementia link is based on subcortical vascular pathology and not on regional AD pathology.
Collapse
Affiliation(s)
- Jeremy J Pruzin
- *Rush Alzheimer's Disease Center Departments of †Neurological Sciences ‡Pathology §Behavioral Sciences, Rush University Medical Center, Chicago, IL ∥Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD ¶Department of Neurology, Harvard Medical School, Interdisciplinary Brain Center, Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's Disease? Trends Neurosci 2016; 39:552-566. [PMID: 27325209 PMCID: PMC4967375 DOI: 10.1016/j.tins.2016.05.002] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/13/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022]
Abstract
Sleep disruption appears to be a core component of Alzheimer's disease (AD) and its pathophysiology. Signature abnormalities of sleep emerge before clinical onset of AD. Moreover, insufficient sleep facilitates accumulation of amyloid-β (Aβ), potentially triggering earlier cognitive decline and conversion to AD. Building on such findings, this review has four goals: evaluating (i) associations and plausible mechanisms linking non-rapid-eye-movement (NREM) sleep disruption, Aβ, and AD; (ii) a role for NREM sleep disruption as a novel factor linking cortical Aβ to impaired hippocampus-dependent memory consolidation; (iii) the potential diagnostic utility of NREM sleep disruption as a new biomarker of AD; and (iv) the possibility of sleep as a new treatment target in aging, affording preventative and therapeutic benefits.
Collapse
Affiliation(s)
- Bryce A Mander
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA.
| | - Joseph R Winer
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA; Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
61
|
Naganawa S, Nakane T, Kawai H, Taoka T. Gd-based Contrast Enhancement of the Perivascular Spaces in the Basal Ganglia. Magn Reson Med Sci 2016; 16:61-65. [PMID: 27430361 PMCID: PMC5600045 DOI: 10.2463/mrms.mp.2016-0039] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose: In textbooks, the perivascular space (PVS) is described as non-enhancing after the intravenous administration of gadolinium-based contrast agent (IV-GBCA). We noticed that the PVS sometimes has high signal intensity (SI) on heavily T2-weighted 3D-FLAIR (hT2-FL) images obtained 4 h after IV-GBCA. The purpose of this study was to retrospectively evaluate the contrast enhancement of the PVS. Materials and Methods: In 8 healthy subjects and 19 patients with suspected endolymphatic hydrops, magnetic resonance cisternography (MRC) and hT2-FL images were obtained before and 4 h after a single dose of IV-GBCA. No subjects had renal insufficiency. On axial MRC at the level of the anterior commissure (AC)-posterior commissure (PC) line, 1 cm circular regions of interest (ROIs) were drawn centering on the PVS in the bilateral basal ganglia and thalami. Three-millimeter diameter ROIs were set in the cerebrospinal fluid (CSF) of the bilateral ambient cistern. The ROIs on MRC were copied onto the hT2-FL images and the SI was measured. The SI ratio (SIR) was defined as SIRPVS = SI of PVS/SI of the thalami, and SIRCSF = SI of CSF/SI of the thalami. The average of the bilateral values was used for the calculation. The SIRCSF, SIRPVS, and SI of the thalami were compared between before and 4 h after IV-GBCA. Results: The SIR was increased significantly from 1.02 ± 0.37 to 2.65 ± 0.82 in the CSF (P < 0.01) and from 1.20 ± 0.35 to 2.13 ± 1.23 in the PVS at 4 h after IV-GBCA (P < 0.01). The SI of the thalami showed no significant difference. Conclusion: The enhancement of the PVS at 4 h after IV-GBCA was confirmed even in subjects without renal insufficiency. It is possible that the GBCA in the blood vessels might have permeated into the cerebrospinal fluid (CSF) space and the PVS. This might be a first step in the imaging evaluation of the glymphatic system (waste clearance system) of the brain.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | | | | | | |
Collapse
|
62
|
Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Associations between Sleep, Cortisol Regulation, and Diet: Possible Implications for the Risk of Alzheimer Disease. Adv Nutr 2016; 7:679-89. [PMID: 27422503 PMCID: PMC4942871 DOI: 10.3945/an.115.011775] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Accumulation of proteinaceous amyloid β plaques and tau oligomers may occur several years before the onset of Alzheimer disease (AD). Under normal circumstances, misfolded proteins get cleared by proteasome degradation, autophagy, and the recently discovered brain glymphatic system, an astroglial-mediated interstitial fluid bulk flow. It has been shown that the activity of the glymphatic system is higher during sleep and disengaged or low during wakefulness. As a consequence, poor sleep quality, which is associated with dementia, might negatively affect glymphatic system activity, thus contributing to amyloid accumulation. The diet is another important factor to consider in the regulation of this complex network. Diets characterized by high intakes of refined sugars, salt, animal-derived proteins and fats and by low intakes of fruit and vegetables are associated with a higher risk of AD and can perturb the circadian modulation of cortisol secretion, which is associated with poor sleep quality. For this reason, diets and nutritional interventions aimed at restoring cortisol concentrations may ease sleep disorders and may facilitate brain clearance, consequentially reducing the risk of cognitive impairment and dementia. Here, we describe the associations that exist between sleep, cortisol regulation, and diet and their possible implications for the risk of cognitive impairment and AD.
Collapse
Affiliation(s)
- Francesca Pistollato
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain
| | - Sandra Sumalla Cano
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain;,International Ibero-American University (UNINI), Campeche, Mexico;,Ibero-American University Foundation (FUNIBER), Barcelona, Spain
| | - Iñaki Elio
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain;,International Ibero-American University (UNINI), Campeche, Mexico;,Ibero-American University Foundation (FUNIBER), Barcelona, Spain
| | - Manuel Masias Vergara
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain;,International Ibero-American University (UNINI), Puerto Rico; and
| | - Francesca Giampieri
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain; Department of Specialized Clinical Sciences and Dentistry, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Battino
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain; Department of Specialized Clinical Sciences and Dentistry, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
63
|
Hersh DS, Nguyen BA, Dancy JG, Adapa AR, Winkles JA, Woodworth GF, Kim AJ, Frenkel V. Pulsed ultrasound expands the extracellular and perivascular spaces of the brain. Brain Res 2016; 1646:543-550. [PMID: 27369449 DOI: 10.1016/j.brainres.2016.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Diffusion within the extracellular and perivascular spaces of the brain plays an important role in biological processes, therapeutic delivery, and clearance mechanisms within the central nervous system. Recently, ultrasound has been used to enhance the dispersion of locally administered molecules and particles within the brain, but ultrasound-mediated effects on the brain parenchyma remain poorly understood. We combined an electron microscopy-based ultrastructural analysis with high-resolution tracking of non-adhesive nanoparticles in order to probe changes in the extracellular and perivascular spaces of the brain following a non-destructive pulsed ultrasound regimen known to alter diffusivity in other tissues. Freshly obtained rat brain neocortical slices underwent sham treatment or pulsed, low intensity ultrasound for 5min at 1MHz. Transmission electron microscopy revealed intact cells and blood vessels and evidence of enlarged spaces, particularly adjacent to blood vessels, in ultrasound-treated brain slices. Additionally, ultrasound significantly increased the diffusion rate of 100nm, 200nm, and 500nm nanoparticles that were injected into the brain slices, while 2000nm particles were unaffected. In ultrasound-treated slices, 91.6% of the 100nm particles, 20.7% of the 200nm particles, 13.8% of the 500nm particles, and 0% of the 2000nm particles exhibited diffusive motion. Thus, pulsed ultrasound can have meaningful structural effects on the brain extracellular and perivascular spaces without evidence of tissue disruption.
Collapse
Affiliation(s)
- David S Hersh
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Ben A Nguyen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 419 W Redwood St Suite 110, Baltimore, MD 21201, USA
| | - Jimena G Dancy
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Arjun R Adapa
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, UMB BioPark, One Room 210, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S Greene St Suite 12D, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, HSFII Room 520, Baltimore, MD 21201, USA; Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St. Suite 104, Baltimore, MD 21201, USA.
| | - Victor Frenkel
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 419 W Redwood St Suite 110, Baltimore, MD 21201, USA.
| |
Collapse
|