51
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
52
|
Kolahi KS, Valent AM, Thornburg KL. Cytotrophoblast, Not Syncytiotrophoblast, Dominates Glycolysis and Oxidative Phosphorylation in Human Term Placenta. Sci Rep 2017; 7:42941. [PMID: 28230167 PMCID: PMC5322316 DOI: 10.1038/srep42941] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022] Open
Abstract
The syncytiotrophoblast (SCT) at the maternal-fetal interface has been presumed to be the primary driver of placental metabolism, and the underlying progenitor cytotrophoblast cells (CTB) an insignificant contributor to placental metabolic activity. However, we now show that the metabolic rate of CTB is much greater than the SCT. The oxygen consumption and extracellular acidification rate, a measure of glycolysis, are both greater in CTB than in SCT in vitro (CTB: 96 ± 16 vs SCT: 46 ± 14 pmol O2 × min−1 × 100 ng DNA−1, p < 0.001) and (CTB: 43 ± 6.7 vs SCT 1.4 ± 1.0 ∆mpH × min−1 × 100 ng DNA−1, p < 0.0001). Mitochondrial activity, as determined by using the mitochondrial activity-dependent dye Mitotracker CM-H2TMRosa, is higher in CTB than in SCT in culture and living explants. These data cast doubt on the previous supposition that the metabolic rate of the placenta is dominated by the SCT contribution. Moreover, differentiation into SCT leads to metabolic suppression. The normal suppression of metabolic activity during CTB differentiation to SCT is prevented with a p38 MAPK signaling inhibitor and epidermal growth factor co-treatment. We conclude that the undifferentiated CTB, in contrast to the SCT, is highly metabolically active, has a high level of fuel flexibility, and contributes substantially to global metabolism in the late gestation human placenta.
Collapse
Affiliation(s)
- Kevin S Kolahi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA.,Center for Developmental Health, Knight Cardiovascular Institute Oregon Health and Science University, Portland, OR 97239 USA
| | - Amy M Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Kent L Thornburg
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA.,Center for Developmental Health, Knight Cardiovascular Institute Oregon Health and Science University, Portland, OR 97239 USA.,Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| |
Collapse
|
53
|
Perazzolo S, Hirschmugl B, Wadsack C, Desoye G, Lewis RM, Sengers BG. The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res 2017; 58:443-454. [PMID: 27913585 PMCID: PMC5282960 DOI: 10.1194/jlr.p072355] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
The factors determining fatty acid transfer across the placenta are not fully understood. This study used a combined experimental and computational modeling approach to explore placental transfer of nonesterified fatty acids and identify the rate-determining processes. Isolated perfused human placenta was used to study the uptake and transfer of 13C-fatty acids and the release of endogenous fatty acids. Only 6.2 ± 0.8% of the maternal 13C-fatty acids taken up by the placenta was delivered to the fetal circulation. Of the unlabeled fatty acids released from endogenous lipid pools, 78 ± 5% was recovered in the maternal circulation and 22 ± 5% in the fetal circulation. Computational modeling indicated that fatty acid metabolism was necessary to explain the discrepancy between uptake and delivery of 13C-fatty acids. Without metabolism, the model overpredicts the fetal delivery of 13C-fatty acids 15-fold. Metabolic rate was predicted to be the main determinant of uptake from the maternal circulation. The microvillous membrane had a greater fatty acid transport capacity than the basal membrane. This study suggests that incorporation of fatty acids into placental lipid pools may modulate their transfer to the fetus. Future work needs to focus on the factors regulating fatty acid incorporation into lipid pools.
Collapse
Affiliation(s)
- Simone Perazzolo
- Faculty of Engineering and Environment, University of Southampton, SO17 1BJ, UK
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Rohan M Lewis
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
- Bioengineering Research Group, Faculty of Medicine, University of Southampton, SO17 1BJ, UK
| | - Bram G Sengers
- Faculty of Engineering and Environment, University of Southampton, SO17 1BJ, UK
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
54
|
Thornburg KL, Kolahi K, Pierce M, Valent A, Drake R, Louey S. Biological features of placental programming. Placenta 2016; 48 Suppl 1:S47-S53. [PMID: 27817870 DOI: 10.1016/j.placenta.2016.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023]
Abstract
The placenta is a key organ in programming the fetus for later disease. This review outlines nine of many structural and physiological features of the placenta which are associated with adult onset chronic disease. 1) Placental efficiency relates the placental mass to the fetal mass. Ratios at the extremes are related to cardiovascular disease risk later in life. 2) Placental shape predicts a large number of disease outcomes in adults but the regulators of placental shape are not known. 3) Non-human primate studies suggest that at about mid-gestation, the placenta becomes less plastic and less able to compensate for pathological stresses. 4) Recent studies suggest that lipids have an important role in regulating placental metabolism and thus the future health of offspring. 5) Placental inflammation affects nutrient transport to the fetus and programs for later disease. 6) Placental insufficiency leads to inadequate fetal growth and elevated risks for later life disease. 7) Maternal height, fat and muscle mass are important in combination with placental size and shape in predicting adult disease. 8) The placenta makes a host of hormones that influence fetal growth and are related to offspring disease. Unfortunately, our knowledge of placental growth and function lags far behind that of other organs. An investment in understanding placental growth and function will yield enormous benefits to human health because it is a key player in the origins of the most expensive and deadly chronic diseases that humans face.
Collapse
Affiliation(s)
- Kent L Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA; Department of Medicine, Oregon Health and Science University, Portland, OR, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA; Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, OR, USA.
| | - Kevin Kolahi
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Melinda Pierce
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Amy Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
| | - Rachel Drake
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Samantha Louey
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|