51
|
Liang S, Lin M, Niu L, Xu K, Wang X, Liang Y, Zhang M, Du D, Chen J. Cetuximab combined with natural killer cells therapy: an alternative to chemoradiotherapy for patients with advanced non-small cell lung cancer (NSCLC). Am J Cancer Res 2018; 8:879-891. [PMID: 29888109 PMCID: PMC5992505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023] Open
Abstract
Natural killer (NK) cells therapy has the potential to prolong survival in patients with advanced non-small cell lung cancer (NSCLC). We conducted a clinical trial to investigate the safety and efficacy of cetuximab plus NK cells therapy in patients with advanced NSCLC. Between June 2015 and August 2016, 54 patients with advanced EGFR-expressing NSCLC were assigned randomly to the cetuximab plus NK cells therapy group (A; n = 27) or cetuximab alone group (B; n = 27). Patients in group A received two courses of NK cells therapy continuously. Cetuximab was administered intravenously and the weekly maintenance dose was continued until tumor progression. All adverse effects were manageable and no significant difference was noted between the two groups (P > 0.05). Levels of CEA, NSE and circulating tumor cells (CTCs) in group A were significantly lower than those before treatment (P < 0.05). Patients in group A had a significant improvement in immune function and quality of life (QOL) (P < 0.05). Patients in group A survived longer than those in group B (median PFS: 6 months vs 4.5 months; median OS: 9.5 months vs 7.5 months; P < 0.05). Combination therapy could be an alternative to chemoradiotherapy for patients with advanced NSCLC.
Collapse
Affiliation(s)
- Shuzhen Liang
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Mao Lin
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Lizhi Niu
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Kecheng Xu
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| | - Xiaohua Wang
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
| | | | | | - Duanming Du
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| | - Jibing Chen
- Department of Central Laboratory, Fuda Cancer Hospital, Jinan UniversityGuangzhou, China
- Fuda Cancer InstituteGuangzhou, China
| |
Collapse
|
52
|
Gutting T, Burgermeister E, Härtel N, Ebert MP. Checkpoints and beyond - Immunotherapy in colorectal cancer. Semin Cancer Biol 2018; 55:78-89. [PMID: 29716829 DOI: 10.1016/j.semcancer.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Immunotherapy is the latest revolution in cancer therapy. It continues to show impressive results in malignancies like melanoma and others. At least so far, effects are modest in colorectal cancer (CRC) and only a subset of patients benefits from already approved checkpoint inhibitors. In this review, we discuss major hurdles of immunotherapy like the immunosuppressive niche and low immunogenicity of CRC next to current achievements of checkpoint inhibitors, interleukin treatment and adoptive cell transfer (dendritic cells/cytokine induced killer cells, tumor infiltrating lymphocytes, chimeric antigen receptor cells, T cell receptor transfer) in pre-clinical models and clinical trials. We intensively examine approaches to overcome low immunogenicity by combination of different therapies and address future strategies of therapy as well as the need of predictive factors in this emerging field of precision medicine.
Collapse
Affiliation(s)
- Tobias Gutting
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nicolai Härtel
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Heilig-Geist Hospital Bensheim, Rodensteinstraße 94, 64625 Bensheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
53
|
Ishikawa T, Okayama T, Sakamoto N, Ideno M, Oka K, Enoki T, Mineno J, Yoshida N, Katada K, Kamada K, Uchiyama K, Handa O, Takagi T, Konishi H, Kokura S, Uno K, Naito Y, Itoh Y. Phase I clinical trial of adoptive transfer of expanded natural killer cells in combination with IgG1 antibody in patients with gastric or colorectal cancer. Int J Cancer 2018; 142:2599-2609. [PMID: 29388200 DOI: 10.1002/ijc.31285] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells exhibit strong cytotoxic activity against tumor cells without prior sensitization, and have the potential to exert antibody-dependent cellular cytotoxicity (ADCC). In this clinical trial, we examined the safety and efficacy of the use of NK cells, generated using a novel expansion system, in combination with IgG1 antibodies for the treatment of advanced gastric or colorectal cancers. Treatment consisted of trastuzumab- or cetuximab-based chemotherapy, plus adoptive NK cell therapy. For administration of expanded NK cells, dose escalation with a sequential 3 + 3 design was performed in three steps, at doses of 0.5 × 109 , 1.0 × 109 , and 2.0 × 109 cells/injection (N = 9). After 3 days of IgG1 antibody administration, patients were infused with expanded NK cells three times at triweekly intervals. NK cell populations expanded with our system were confirmed as being enriched in NK cells (median 92.9%) with high expression of NKG2D (97.6%) and CD16 (69.6%). The combination therapy was very well tolerated with no severe adverse events. Among six evaluable patients, four presented stable disease (SD) and two presented progressive disease. Of the four SD patients, three showed an overall decrease in tumor size after combination therapy. Immune monitoring suggested that combination therapy enhanced whole blood IFN-γ production and reduced peripheral regulatory T cells (Tregs). In conclusion, this phase I trial provides evidence of good tolerability, induction of Th1 immune responses, and preliminary anti-tumor activity for this combination therapy, in patients with advanced gastric and colorectal cancer that have received previous therapy.
Collapse
Affiliation(s)
- Takeshi Ishikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Okayama
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoyuki Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Kaname Oka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | - Naohisa Yoshida
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Katada
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Kamada
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Handa
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Kokura
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuko Uno
- Division of Basic Research, Louis Pasteur Center for Medical Research, Kyoto, Japan
| | - Yuji Naito
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
54
|
Matić IZ, Kolundžija B, Damjanović A, Spasić J, Radosavljević D, Đorđić Crnogorac M, Grozdanić N, Juranić ZD. Peripheral White Blood Cell Subsets in Metastatic Colorectal Cancer Patients Treated with Cetuximab: The Potential Clinical Relevance. Front Immunol 2018; 8:1886. [PMID: 29354119 PMCID: PMC5758541 DOI: 10.3389/fimmu.2017.01886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
It was demonstrated that cetuximab-induced tumor regression is based on the effects exerted by immune cells included mainly in the innate immune response. Therefore, the focus of this study was to explore the alterations in the percentages of CD16+, and/or CD56+ lymphocytes, which are comprised of NK cells, and minority of CD56+CD3+ cells, in patients with metastatic colorectal cancer before or 2 months after the treatment with cetuximab-based regimens associated with the response to therapy. The changes in the percentages of lymphocytes and granulocytes in these patients were evaluated as well. We enrolled 50 patients with wild-type KRAS metastatic colorectal cancer. Disease progression was observed in 11/50 patients (non-responders), while other patients achieved partial response or stable disease (responders). Control groups included up to 72 healthy individuals. A significant decrease in the percentages of CD56+ and CD16+CD56+ lymphocytes together with a significant decrease in the percentage of lymphocytes and an increase in the ratio of granulocyte to lymphocyte percentages were observed in patients with metastatic colorectal cancer before therapy, compared with those in the healthy individuals. In contrast to those in the responders, the percentage of CD16+ lymphocytes in the overall white blood cell pool was shown to be significantly decreased in the non-responders, together with a significantly decreased percentage of lymphocytes, a significantly increased percentage of granulocytes, and an increased ratio of granulocyte to lymphocyte percentages before treatment compared with those in the healthy controls. Two months after the initiation of the treatment, significantly decreased percentages of CD16+, CD56+, and CD16+CD56+ lymphocytes were observed in patients, compared with those determined in the healthy controls. The same changes in the amounts of circulating immune cells were also observed in the responder subgroup, but the percentages of CD16+, CD56+, and CD16+CD56+ lymphocytes 2 months after treatment in the non-responder group did not differ significantly in comparison with healthy individuals. Considerable alterations of immune cell percentages observed in patients with metastatic colorectal cancer with disease progression indicate that the assessment of peripheral white blood cell architecture before treatment initiation may be clinically relevant.
Collapse
Affiliation(s)
- Ivana Z Matić
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Ana Damjanović
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jelena Spasić
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | | | - Nađa Grozdanić
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | |
Collapse
|
55
|
Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation. Cancer Treat Rev 2017; 63:48-60. [PMID: 29223828 PMCID: PMC7505164 DOI: 10.1016/j.ctrv.2017.11.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022]
Abstract
Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity–including, but not limited to, ADCC–provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications.
Collapse
|
56
|
de Bruin RCG, Veluchamy JP, Lougheed SM, Schneiders FL, Lopez-Lastra S, Lameris R, Stam AG, Sebestyen Z, Kuball J, Molthoff CFM, Hooijberg E, Roovers RC, Santo JPD, van Bergen En Henegouwen PMP, Verheul HMW, de Gruijl TD, van der Vliet HJ. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 2017; 7:e1375641. [PMID: 29296532 DOI: 10.1080/2162402x.2017.1375641] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022] Open
Abstract
Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor. Here we show that a novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific nanobody, this immunotherapeutic approach can be applied to a large group of cancer patients.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sinéad M Lougheed
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Famke L Schneiders
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France.,Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Roeland Lameris
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anita G Stam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Rob C Roovers
- Department of Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Wang W, Xiao X, Chen X, Huo Y, Xi WJ, Lin ZF, Zhang D, Li YF, Yang F, Wen WH, Yang AG, Wang T. Tumor-suppressive miR-145 co-repressed by TCF4-β-catenin and PRC2 complexes forms double-negative regulation loops with its negative regulators in colorectal cancer. Int J Cancer 2017; 142:308-321. [DOI: 10.1002/ijc.31056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/11/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Xin Xiao
- Department of Orthopedics; Xijing Hospital, Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Xu Chen
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Yi Huo
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
- Department of Medical Genetics and Developmental Biology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Wen-Jin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Zhi-Feng Lin
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Dan Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Yu-Fang Li
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
- Department of Medical Genetics and Developmental Biology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Fan Yang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Wei-Hong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| | - Tao Wang
- State Key Laboratory of Cancer Biology, Department of Immunology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
- Department of Medical Genetics and Developmental Biology; Fourth Military Medical University; Xi'an Shaanxi 710032 People's Republic of China
| |
Collapse
|
58
|
Hofer E, Koehl U. Natural Killer Cell-Based Cancer Immunotherapies: From Immune Evasion to Promising Targeted Cellular Therapies. Front Immunol 2017; 8:745. [PMID: 28747910 PMCID: PMC5506076 DOI: 10.3389/fimmu.2017.00745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
Immunotherapies based on natural killer (NK) cells are among the most promising therapies under development for the treatment of so far incurable forms of leukemia and other types of cancer. The importance of NK cells for the control of viral infections and cancer is supported among others by the findings that viruses and tumors use a multitude of mechanisms to subvert and evade the NK cell system. Infections and malignant diseases can further lead to the shaping of NK cell populations with altered reactivity. Counter measures of potential therapeutic impact include the blocking of inhibitory interactions between NK cell receptors and their cellular ligands, the enhancement of activating receptor signals, and the infusion of large numbers of ex vivo generated and selected NK cells. Moreover, the specific cross-linking of NK cells to their target cells using chimeric antigen receptors or therapeutic bi-/trispecific antibody reagents is a promising approach. In this context, NK cells stand out by their positive effects and safety demonstrated in most clinical trials so far. Based in part on results of the recent EC-sponsored project “NATURIMMUN” and considering additional published work in the field, we discuss below new developments and future directions that have the potential to further advance and establish NK cell-based therapies at the clinics on a broader scale.
Collapse
Affiliation(s)
- Erhard Hofer
- Department of Vascular Biology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Koehl
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany
| |
Collapse
|
59
|
Argiris A, Harrington KJ, Tahara M, Schulten J, Chomette P, Ferreira Castro A, Licitra L. Evidence-Based Treatment Options in Recurrent and/or Metastatic Squamous Cell Carcinoma of the Head and Neck. Front Oncol 2017; 7:72. [PMID: 28536670 PMCID: PMC5422557 DOI: 10.3389/fonc.2017.00072] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
The major development of the past decade in the first-line treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN) was the introduction of cetuximab in combination with platinum plus 5-fluorouracil chemotherapy (CT), followed by maintenance cetuximab (the "EXTREME" regimen). This regimen is supported by a phase 3 randomized trial and subsequent observational studies, and it confers well-documented survival benefits, with median survival ranging between approximately 10 and 14 months, overall response rates between 36 and 44%, and disease control rates of over 80%. Furthermore, as indicated by patient-reported outcome measures, the addition of cetuximab to platinum-based CT leads to a significant reduction in pain and problems with social eating and speech. Conversely, until very recently, there has been a lack of evidence-based second-line treatment options, and the therapies that have been available have shown low response rates and poor survival outcomes. Presently, a promising new treatment option in R/M SCCHN has emerged: immune checkpoint inhibitors (ICIs), which have demonstrated favorable results in second-line clinical trials. Nivolumab and pembrolizumab are the first two ICIs that were approved by the US Food and Drug Administration. We note that the trials that showed benefit with ICIs included not only patients who previously received ≥1 platinum-based regimens for R/M SCCHN but also patients who experienced recurrence within 6 months after combined modality therapy with a platinum agent for locally advanced disease. In this review, we outline the available clinical and observational evidence for the EXTREME regimen and the initial results from clinical trials for ICIs in patients with R/M SCCHN. We propose that these treatment options can be integrated into a new continuum of care paradigm, with first-line EXTREME regimen followed by second-line ICIs. A number of ongoing clinical trials are comparing regimens with ICIs, alone and in combination with other ICIs or CT, with the EXTREME regimen for first-line treatment of R/M SCCHN. As we eagerly await the results of these trials, the EXTREME regimen remains the standard of care for the first-line treatment of R/M SCCHN.
Collapse
Affiliation(s)
- Athanassios Argiris
- Hygeia Hospital, Athens, Greece
- Thomas Jefferson University, Philadelphia, PA, USA
| | - Kevin J. Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Tokyo, Japan
| | | | | | | | - Lisa Licitra
- Department of Head and Neck Cancer Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, University of Milan, Milan, Italy
| |
Collapse
|
60
|
Leal FE, Premeaux TA, Abdel-Mohsen M, Ndhlovu LC. Role of Natural Killer Cells in HIV-Associated Malignancies. Front Immunol 2017; 8:315. [PMID: 28377768 PMCID: PMC5359293 DOI: 10.3389/fimmu.2017.00315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
Now in its fourth decade, the burden of HIV disease still persists, despite significant milestone achievements in HIV prevention, diagnosis, treatment, care, and support. Even with long-term use of currently available antiretroviral therapies (ARTs), eradication of HIV remains elusive and now poses a unique set of challenges for the HIV-infected individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much greater than the age-matched uninfected population. The underlying mechanism is now recognized in part to be related to the immune dysregulated and inflammatory status characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are multifunctional effector immune cells that play a critical role in shaping the innate immune responses to viral infections and cancer. NK cells can modulate the adaptive immune response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore poised as attractive therapeutic targets that can be harnessed to control or clear both HIV and HIV-associated malignancies. To date, features of the tumor microenvironment and the evolution of NK-cell function among individuals with HIV-related malignancies remain unclear and may be distinct from malignancies observed in uninfected persons. This review intends to uncouple anti-HIV and antitumor NK-cell features that can be manipulated to halt the evolution of HIV disease and HIV-associated malignancies and serve as potential preventative and curative immunotherapeutic options.
Collapse
Affiliation(s)
- Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional de Cancer , Rio de Janeiro , Brazil
| | - Thomas A Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| |
Collapse
|
61
|
Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function. Sci Rep 2017; 7:43873. [PMID: 28281564 PMCID: PMC5345017 DOI: 10.1038/srep43873] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Advancements in multi-colour fluorescence activated cell sorting (FACS) panel warrant harmonized procedures to obtain comparable data between various laboratories. The intensifying clinical exploration of Natural Killer (NK) cell-based immunotherapy demands standardized and harmonized NK cell FACS panels and acquisition protocols. Eight colour FACS panels were designed to study human NK cell phenotype and function within peripheral blood mononuclear cells (PBMC). The panels were designed around fixed backbone markers and channels, covering antigens for non-NK lineage exclusion (CD3, TCRγδ, CD19, CD14, SYTOX® Blue) and NK cell selection (CD45, CD56, CD16), complemented with variable drop-in markers/channels to study NK cell phenotype (NKG2A, NKG2C, NKG2D and KIR2D) or NK cell function and activation (CD25, NKp44 and CD107a). Harmonized FACS set-up and data analysis for three different flow cytometers has been established, leading to highly comparable and reproducible data sets using the same PBMC reference samples (n = 6). Further studies of NK cells in fresh or cryopreserved PBMC samples (n = 12) confirmed that freezing and thawing of PBMC samples did not significantly affect NK phenotype or function. In conclusion, our data demonstrate that cryopreserved PBMC samples analysed by standardized FACS panels and harmonized analysis protocols will generate highly reliable data sets for multi-center clinical trials under validated conditions.
Collapse
|
62
|
Veluchamy JP, Lopez-Lastra S, Spanholtz J, Bohme F, Kok N, Heideman DAM, Verheul HMW, Di Santo JP, de Gruijl TD, van der Vliet HJ. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer. Front Immunol 2017; 8:87. [PMID: 28220124 PMCID: PMC5292674 DOI: 10.3389/fimmu.2017.00087] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/18/2017] [Indexed: 02/03/2023] Open
Abstract
Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) cell-mediated antitumor response. The IgG1 mAb cetuximab has been used for treatment of RASwt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present study, we address the potential of adoptive NK cell therapy to overcome these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR− RASwt, EGFR+ RASmut, and EGFR+ BRAFmut cells, A-PBNK were able to initiate lysis of EGFR+ colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated significantly by coating EGFR+ colon cancer cells with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in EGFR−RASwt (42 ± 8 versus 67 ± 7%), EGFR+ RASmut (20 ± 2 versus 37 ± 6%), and EGFR+ BRAFmut (23 ± 3 versus 43 ± 7%) colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR+ RASmut colon cancer cells was further confirmed in an in vivo preclinical mouse model where UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of concept for mCRC could be considered.
Collapse
Affiliation(s)
- John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Glycostem Therapeutics, Oss, Netherlands
| | - Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France; Université Paris-Sud (Paris-Saclay), Paris, France
| | | | | | - Nina Kok
- Glycostem Therapeutics , Oss , Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
63
|
Shevtsov M, Multhoff G. Immunological and Translational Aspects of NK Cell-Based Antitumor Immunotherapies. Front Immunol 2016; 7:492. [PMID: 27891129 PMCID: PMC5104957 DOI: 10.3389/fimmu.2016.00492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells play a pivotal role in the first line of defense against cancer. NK cells that are deficient in CD3 and a clonal T cell receptor (TCR) can be subdivided into two major subtypes, CD56dimCD16+ cytotoxic and CD56brightCD16− immunoregulatory NK cells. Cytotoxic NK cells not only directly kill tumor cells without previous stimulation by cytotoxic effector molecules, such as perforin and granzymes or via death receptor interactions, but also act as regulatory cells for the immune system by secreting cytokines and chemokines. The aim of this review is to highlight therapeutic strategies utilizing autologous and allogenic NK cells, combinations of NK cells with monoclonal antibodies to induce antibody-dependent cellular cytotoxicity, or immune checkpoint inhibitors. Additionally, we discuss the use of chimeric antigen receptor-engineered NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Gabriele Multhoff
- Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Experimental Immune Biology, Institute for innovative Radiotherapy (iRT), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|