51
|
Tsujimura T, Ueha R, Yoshihara M, Takei E, Nagoya K, Shiraishi N, Magara J, Inoue M. Involvement of the epithelial sodium channel in initiation of mechanically evoked swallows in anaesthetized rats. J Physiol 2019; 597:2949-2963. [PMID: 31032906 DOI: 10.1113/jp277895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows in anaesthetized rats. Amiloride and its analogues inhibit swallowing evoked by mechanical stimulation, but not swallowing evoked by chemical and electrical stimulation. The epithelial sodium channel is probably involved in the initiation of laryngeal mechanically evoked swallows. ABSTRACT The swallowing reflex plays a critical role in airway protection. Because impaired laryngeal mechanosensation is associated with food bolus aspiration, it is important to know how the laryngeal sensory system regulates swallowing initiation. This study was performed to clarify the neuronal mechanism of mechanically evoked swallows. Urethane-anaesthetized Sprague-Dawley male rats were used. A swallow was identified by activation of the suprahyoid and thyrohyoid muscles on electromyography. The swallowing threshold was measured by von Frey filament and electrical stimulation of the larynx. The number of swallows induced by upper airway distension and capsaicin application (0.03 nmol, 3 μl) to the vocal folds was counted. The effects of topical application (0.3-30 nmol, 3 μl) of the epithelial sodium channel (ENaC) blocker amiloride and its analogues (benzamil and dimethylamiloride), acid-sensing ion channel (ASIC) inhibitors (mambalgine-1 and diminazene) and gadolinium to the laryngeal mucosa on swallowing initiation were evaluated. A nerve transection study indicated that afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows. The mechanical threshold of swallowing was increased in a dose-dependent manner by amiloride and its analogues and gadolinium, but not by ASIC inhibitors. The number of swallows by upper airway distension was significantly decreased by benzamil application. However, the initiation of swallows evoked by capsaicin and electrical stimulation was not affected by benzamil application. We speculate that the ENaC is involved in the initiation of laryngeal mechanically evoked swallows.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Rumi Ueha
- Department of Otolaryngology, University of Tokyo, Tokyo, 113-8655, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Eri Takei
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naru Shiraishi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
52
|
Mazzone SB, Farrell MJ. Heterogeneity of cough neurobiology: Clinical implications. Pulm Pharmacol Ther 2019; 55:62-66. [DOI: 10.1016/j.pupt.2019.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 12/24/2022]
|
53
|
Antimycin A-induced mitochondrial dysfunction activates vagal sensory neurons via ROS-dependent activation of TRPA1 and ROS-independent activation of TRPV1. Brain Res 2019; 1715:94-105. [PMID: 30914247 DOI: 10.1016/j.brainres.2019.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023]
Abstract
Inflammation causes activation of nociceptive sensory nerves, resulting in debilitating sensations and reflexes. Inflammation also induces mitochondrial dysfunction through multiple mechanisms. Sensory nerve terminals are densely packed with mitochondria, suggesting that mitochondrial signaling may play a role in inflammation-induced nociception. We have previously shown that agents that induce mitochondrial dysfunction, such as antimycin A, activate a subset of nociceptive vagal sensory nerves that express transient receptor potential (TRP) channels ankyrin 1 (A1) and vanilloid 1 (V1). However, the mechanisms underlying these responses are incompletely understood. Here, we studied the contribution of TRPA1, TRPV1 and reactive oxygen species (ROS) to antimycin A-induced vagal sensory nerve activation in dissociated neurons and at the sensory terminals of bronchopulmonary C-fibers. Nociceptive neurons were defined chemically and genetically. Antimycin A-evoked activation of vagal nociceptors in a Fura2 Ca2+ assay correlated with TRPV1 responses compared to TRPA1 responses. Nociceptor activation was dependent on both TRP channels, with TRPV1 predominating in a majority of responding nociceptors and TRPA1 predominating only in nociceptors with the greatest responses. Surprisingly, both TRPA1 and TRPV1 were activated by H2O2 when expressed in HEK293. Nevertheless, targeting ROS had no effect of antimycin A-evoked TRPV1 activation in either HEK293 or vagal neurons. In contrast, targeting ROS inhibited antimycin A-evoked TRPA1 activation in HEK293, vagal neurons and bronchopulmonary C-fibers, and a ROS-insensitive TRPA1 mutant was completely insensitive to antimycin A. We therefore conclude that mitochondrial dysfunction activates vagal nociceptors by ROS-dependent (TRPA1) and ROS-independent (TRPV1) mechanisms.
Collapse
|
54
|
Patil MJ, Sun H, Ru F, Meeker S, Undem BJ. Targeting C-fibers for peripheral acting anti-tussive drugs. Pulm Pharmacol Ther 2019; 56:15-19. [PMID: 30872160 DOI: 10.1016/j.pupt.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/09/2023]
Abstract
Activation of vagal C-fibers is likely involved in some types of pathological coughing, especially coughing that is associated with airway inflammation. This is because stimulation of vagal C-fibers leads to strong urge to cough sensations, and because C-fiber terminals can be strongly activated by mediators associated with airway inflammation. The most direct manner in which a given mediator can activate a C-fiber terminal is through interacting with its receptor expressed in the terminal membrane. The agonist-receptor interaction then must lead to the opening (or potentially closing) of ion channels that lead to a membrane depolarization. This depolarization is referred to as a generator potential. If, and only if, the generator potential reaches the voltage necessary to activate voltage-gated sodium channels, action potentials are initiated and conducted to the central terminals within the CNS. Therefore, there are three target areas to block the inflammatory mediator induced activation of C-fiber terminals. First, at the level of the mediator-receptor interaction, secondly at the level of the generator potential, and third at the level of the voltage-gated sodium channels. Here we provide a brief overview of each of these therapeutic strategies.
Collapse
Affiliation(s)
- Mayur J Patil
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Hui Sun
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Fei Ru
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Sonya Meeker
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
55
|
Sun H, Lin AH, Ru F, Patil MJ, Meeker S, Lee LY, Undem BJ. KCNQ/M-channels regulate mouse vagal bronchopulmonary C-fiber excitability and cough sensitivity. JCI Insight 2019; 4:124467. [PMID: 30721152 DOI: 10.1172/jci.insight.124467] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
Increased airway vagal sensory C-fiber activity contributes to the symptoms of inflammatory airway diseases. The KCNQ/Kv7/M-channel is a well-known determinant of neuronal excitability, yet whether it regulates the activity of vagal bronchopulmonary C-fibers and airway reflex sensitivity remains unknown. Here we addressed this issue using single-cell RT-PCR, patch clamp technique, extracellular recording of single vagal nerve fibers innervating the mouse lungs, and telemetric recording of cough in free-moving mice. Single-cell mRNA analysis and biophysical properties of M-current (IM) suggest that KCNQ3/Kv7.3 is the major M-channel subunit in mouse nodose neurons. The M-channel opener retigabine negatively shifted the voltage-dependent activation of IM, leading to membrane hyperpolarization, increased rheobase, and suppression of both evoked and spontaneous action potential (AP) firing in nodose neurons in an M-channel inhibitor XE991-sensitive manner. Retigabine also markedly suppressed the α,β-methylene ATP-induced AP firing in nodose C-fiber terminals innervating the mouse lungs, and coughing evoked by irritant gases in awake mice. In conclusion, KCNQ/M-channels play a role in regulating the excitability of vagal airway C-fibers at both the cell soma and nerve terminals. Drugs that open M-channels in airway sensory afferents may relieve the sufferings associated with pulmonary inflammatory diseases such as chronic coughing.
Collapse
Affiliation(s)
- Hui Sun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - An-Hsuan Lin
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Fei Ru
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mayur J Patil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sonya Meeker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
56
|
Taylor-Clark TE. A nervous S1P of the lung: activation of airway nerves by sphingosine-1-phosphate. J Physiol 2019; 597:1785-1786. [PMID: 30828817 DOI: 10.1113/jp277731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
57
|
Adenosine triphosphate is co-secreted with glucagon-like peptide-1 to modulate intestinal enterocytes and afferent neurons. Nat Commun 2019; 10:1029. [PMID: 30833673 PMCID: PMC6399286 DOI: 10.1038/s41467-019-09045-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/01/2019] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.
Collapse
|
58
|
Patil MJ, Meeker S, Bautista D, Dong X, Undem BJ. Sphingosine-1-phosphate activates mouse vagal airway afferent C-fibres via S1PR3 receptors. J Physiol 2019; 597:2007-2019. [PMID: 30793318 DOI: 10.1113/jp277521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Sphingosine-1-phosphate (S1P) strongly activates mouse vagal C-fibres in the airways. Airway-specific nodose and jugular C-fibre neurons express mRNA coding for the S1P receptor S1PR3. S1P activation of nodose C-fibres is inhibited by a S1PR3 antagonist. S1P activation of nodose C-fibres does not occur in S1PR3 knockout mice. ABSTRACT We evaluated the effect of sphingosine-1-phosphate (S1P), a lipid that is elevated during airway inflammatory conditions like asthma, for its ability to stimulate vagal afferent C-fibres in mouse lungs. Single cell RT-PCR on lung-specific vagal afferent neurons revealed that both TRPV1-expressing and TRPV1-non-expressing nodose neurons express mRNA coding for the S1P receptor S1PR3. TRPV1-expressing airway-specific jugular ganglion neurons also express S1PR3 mRNA. S1PR1 and S1PR2 mRNAs were also found to be expressed but only in a limited subset (32% and 22%, respectively) of airway-specific vagal sensory neurons; whereas S1PR4 and S1PR5 were rarely expressed. We used large scale two-photon imaging of the nodose ganglia from our ex vivo preparation isolated from Pirt-Cre;R26-GCaMP6s transgenic mice, which allows for simultaneous monitoring of calcium transients in ∼1000 neuronal cell bodies in the ganglia during tracheal perfusion with S1P (10 μM). We found that S1P in the lungs strongly activated 81.5% of nodose fibres, 70% of which were also activated by capsaicin. Single fibre electrophysiological recordings confirmed that S1P evoked action potential (AP) generation in a concentration-dependent manner (0.1-10 μM). Action potential generation by S1P in nodose C-fibres was effectively inhibited by the S1PR3 antagonist TY 52156 (10 μM). Finally, in S1PR3 knockout mice, S1P was not able to activate any of the airway nodose C-fibres analysed. These results support the hypothesis that S1P may play a role in evoking C-fibre-mediated airway sensations and reflexes that are associated with airway inflammatory diseases.
Collapse
Affiliation(s)
- Mayur J Patil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sonya Meeker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diana Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xinzhong Dong
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
59
|
Chang RB. Body thermal responses and the vagus nerve. Neurosci Lett 2019; 698:209-216. [PMID: 30634012 PMCID: PMC7061531 DOI: 10.1016/j.neulet.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
While thermosensation from external environment has been extensively studied, physiological responses to temperature changes inside the body and the underlying regulatory mechanisms are less understood. As a critical link between body and brain that relays visceral organ information and regulates numerous physiological functions, the vagus nerve has been proposed to mediate diverse visceral thermal reflexes and indirectly regulate body temperature. However, the precise role of the vagus nerve in body thermal responses or visceral organ-related thermoregulation is still under debate due to extensive contradictory results. This data discrepancy is likely due to the high cell heterogeneity in the vagus nerve, as diverse vagal neuron types mediate numerous and sometimes opposite physiological functions. Here, we will review evidences that support and against the role of the vagus nerve in body thermosensation and thermoregulation and discuss potential future approaches for better understanding of this critical issue.
Collapse
Affiliation(s)
- Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, United States.
| |
Collapse
|
60
|
McGovern AE, Short KR, Kywe Moe AA, Mazzone SB. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol 2018; 142:1392-1402. [DOI: 10.1016/j.jaci.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|
61
|
Yu X, Patil MJ, Yu M, Liu Y, Wang J, Undem BJ, Yu S. Sphingosine-1-phosphate selectively activates vagal afferent C-fiber subtype in guinea pig esophagus. Neurogastroenterol Motil 2018; 30:e13359. [PMID: 29673037 DOI: 10.1111/nmo.13359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/25/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Activation and sensitization of visceral afferent nerves by inflammatory mediators play important roles in visceral nociception. Sphingosine-1-phosphate (S1P) is a lipid with intracellular and extracellular functions. Extracellularly, it can act as an autacoid via interactions with S1P receptors. The present study aims to determine the effect of S1P on esophageal vagal afferent nerve functions. METHODS Extracellular single-unit recordings were performed in ex vivo guinea pig esophageal-vagal preparations. The action potentials (APs) evoked by mechanical distension and chemical perfusions applied to the vagal afferent nerve endings in the esophagus were recorded at their intact neuronal cell bodies in either nodose or jugular ganglia. The effects of S1P and its receptor subtype agonists on vagal afferents were recorded and compared. The expression of S1P receptors (S1PR1-3) in esophageal-labeled vagal nodose and jugular neurons was studied by single-cell RT-PCR. KEY RESULTS Sphingosine-1-phosphate evoked AP discharges in almost all esophageal jugular but not nodose C-fibers without changing their responses to esophageal distension. Esophageal-labeled vagal nodose and jugular neurons highly expressed transcripts of S1PR1 and S1PR3. Agonists of S1PR1 and S1PR3 each partially mimicked S1P-induced effect in jugular C-fibers, suggesting that these receptors may contribute partially to S1P-induced activation effect on esophageal jugular C-fiber subtype. CONCLUSIONS & INFERENCES These data, for the first time, demonstrated a selective activation effect of S1P on vagal afferent nerve subtype in the gastrointestinal tract. This may help to better understand its role in visceral inflammatory nociception.
Collapse
Affiliation(s)
- X Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M J Patil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Y Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Wang
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - B J Undem
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
62
|
S1PR3 Mediates Itch and Pain via Distinct TRP Channel-Dependent Pathways. J Neurosci 2018; 38:7833-7843. [PMID: 30082422 DOI: 10.1523/jneurosci.1266-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 11/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive signaling lipid associated with a variety of chronic pain and itch disorders. S1P signaling has been linked to cutaneous pain, but its role in itch has not yet been studied. Here, we find that S1P triggers itch and pain in male mice in a concentration-dependent manner, with low levels triggering acute itch alone and high levels triggering both pain and itch. Ca2+ imaging and electrophysiological experiments revealed that S1P signals via S1P receptor 3 (S1PR3) and TRPA1 in a subset of pruriceptors and via S1PR3 and TRPV1 in a subset of heat nociceptors. Consistent with these findings, S1P-evoked itch behaviors are selectively lost in mice lacking TRPA1, whereas S1P-evoked acute pain and heat hypersensitivity are selectively lost in mice lacking TRPV1. We conclude that S1P acts via different cellular and molecular mechanisms to trigger itch and pain. Our discovery elucidates the diverse roles that S1P signaling plays in somatosensation and provides insight into how itch and pain are discriminated in the periphery.SIGNIFICANCE STATEMENT Itch and pain are major health problems with few effective treatments. Here, we show that the proinflammatory lipid sphingosine 1-phosphate (S1P) and its receptor, S1P receptor 3 (S1PR3), trigger itch and pain behaviors via distinct molecular and cellular mechanisms. Our results provide a detailed understanding of the roles that S1P and S1PR3 play in somatosensation, highlighting their potential as targets for analgesics and antipruritics, and provide new insight into the mechanistic underpinnings of itch versus pain discrimination in the periphery.
Collapse
|
63
|
Reznikov LR, Meyerholz DK, Abou Alaiwa M, Kuan SP, Liao YSJ, Bormann NL, Bair TB, Price M, Stoltz DA, Welsh MJ. The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 2018; 315:L133-L148. [PMID: 29631359 PMCID: PMC6139658 DOI: 10.1152/ajplung.00557.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity (AHR). As a comparison, we also used previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating AHR; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Shin-Ping Kuan
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Yan-Shin J Liao
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | - Thomas B Bair
- Iowa Institute of Human Genetics, University of Iowa , Iowa City, Iowa
| | - Margaret Price
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Department of Biomedical Engineering, College of Engineering, University of Iowa , Iowa City, Iowa
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Howard Hughes Medical Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|
64
|
Chou YL, Mori N, Canning BJ. Opposing effects of bronchopulmonary C-fiber subtypes on cough in guinea pigs. Am J Physiol Regul Integr Comp Physiol 2017; 314:R489-R498. [PMID: 29187382 DOI: 10.1152/ajpregu.00313.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have addressed the hypothesis that the opposing effects of bronchopulmonary C-fiber activation on cough are attributable to the activation of C-fiber subtypes. Coughing was evoked in anesthetized guinea pigs by citric acid (0.001-2 M) applied topically in 100-µl aliquots to the tracheal mucosa. In control preparations, citric acid evoked 10 ± 1 coughs cumulatively. Selective activation of the pulmonary C fibers arising from the nodose ganglia with either aerosols or continuous intravenous infusion of adenosine or the 5-HT3 receptor-selective agonist 2-methyl-5-HT nearly abolished coughing evoked subsequently by topical citric acid challenge. Delivering adenosine or 2-methyl-5-HT directly to the tracheal mucosa (where few if any nodose C fibers terminate) was without effect on citric acid-evoked cough. These actions of pulmonary administration of adenosine and 2-methyl-5-HT were accompanied by an increase in respiratory rate, but it is unlikely that the change in respiratory pattern caused the decrease in coughing, as the rapidly adapting receptor stimulant histamine also produced a marked tachypnea but was without effect on cough. In awake guinea pigs, adenosine failed to evoke coughing but reduced coughing induced by the nonselective C-fiber stimulant capsaicin. We conclude that bronchopulmonary C-fiber subtypes in guinea pigs have opposing effects on cough, with airway C fibers arising from the jugular ganglia initiating and/or sensitizing the cough reflex and the intrapulmonary C fibers arising from the nodose ganglia actively inhibiting cough upon activation.
Collapse
Affiliation(s)
- Yang-Ling Chou
- Johns Hopkins Asthma and Allergy Center , Baltimore, Maryland
| | - Nanako Mori
- Johns Hopkins Asthma and Allergy Center , Baltimore, Maryland
| | | |
Collapse
|