51
|
Co NT, Li MS, Krupa P. Computational Models for the Study of Protein Aggregation. Methods Mol Biol 2022; 2340:51-78. [PMID: 35167070 DOI: 10.1007/978-1-0716-1546-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein aggregation has been studied by many groups around the world for many years because it can be the cause of a number of neurodegenerative diseases that have no effective treatment. Obtaining the structure of related fibrils and toxic oligomers, as well as describing the pathways and main factors that govern the self-organization process, is of paramount importance, but it is also very difficult. To solve this problem, experimental and computational methods are often combined to get the most out of each method. The effectiveness of the computational approach largely depends on the construction of a reasonable molecular model. Here we discussed different versions of the four most popular all-atom force fields AMBER, CHARMM, GROMOS, and OPLS, which have been developed for folded and intrinsically disordered proteins, or both. Continuous and discrete coarse-grained models, which were mainly used to study the kinetics of aggregation, are also summarized.
Collapse
Affiliation(s)
- Nguyen Truong Co
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
52
|
Borges-Araújo L, Souza PCT, Fernandes F, Melo MN. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field. J Chem Theory Comput 2021; 18:357-373. [PMID: 34962393 DOI: 10.1021/acs.jctc.1c00615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoinositides are a family of membrane phospholipids that play crucial roles in membrane regulatory events. As such, these lipids are often a key part of molecular dynamics simulation studies of biological membranes, in particular of those employing coarse-grain models because of the potential long times and sizes of the involved membrane processes. Version 3 of the widely used Martini coarse-grain force field has been recently published, greatly refining many aspects of biomolecular interactions. In order to properly use it for lipid membrane simulations with phosphoinositides, we put forth the Martini 3-specific parameterization of inositol, phosphatidylinositol, and seven physiologically relevant phosphorylated derivatives of phosphatidylinositol. Compared to parameterizations for earlier Martini versions, focus was put on a more accurate reproduction of the behavior seen in both atomistic simulations and experimental studies, including the signaling-relevant phosphoinositide interaction with divalent cations. The models that we develop improve upon the conformational dynamics of phosphoinositides in the Martini force field and provide stable topologies at typical Martini time steps. They are able to reproduce experimentally known protein-binding poses as well as phosphoinositide aggregation tendencies. The latter was tested both in the presence and absence of calcium and included correct behavior of PI(4,5)P2 calcium-induced clusters, which can be of relevance for regulation.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Associate Laboratory i4HB─Institute for Health and Bioeconomy, at Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Paulo C T Souza
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS & University of Lyon, 7 Passage du Vercors, Lyon F-69367, France
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Associate Laboratory i4HB─Institute for Health and Bioeconomy, at Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
53
|
Song W, Duncan AL, Sansom MSP. Modulation of adenosine A2a receptor oligomerization by receptor activation and PIP 2 interactions. Structure 2021; 29:1312-1325.e3. [PMID: 34270937 PMCID: PMC8581623 DOI: 10.1016/j.str.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022]
Abstract
GPCRs have been shown to form oligomers, which generate distinctive signaling outcomes. However, the structural nature of the oligomerization process remains uncertain. We have characterized oligomeric configurations of the adenosine A2a receptor (A2aR) by combining large-scale molecular dynamics simulations with Markov state models. These oligomeric structures may also serve as templates for studying oligomerization of other class A GPCRs. Our simulation data revealed that receptor activation results in enhanced oligomerization, more diverse oligomer populations, and a more connected oligomerization network. The active state conformation of the A2aR shifts protein-protein association interfaces to those involving intracellular loop ICL3 and transmembrane helix TM6. Binding of PIP2 to A2aR stabilizes protein-protein interactions via PIP2-mediated association interfaces. These results indicate that A2aR oligomerization is responsive to the local membrane lipid environment. This, in turn, suggests a modulatory effect on A2aR whereby a given oligomerization profile favors the dynamic formation of specific supramolecular signaling complexes.
Collapse
Affiliation(s)
- Wanling Song
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
54
|
Sadeghi M, Noé F. Thermodynamics and Kinetics of Aggregation of Flexible Peripheral Membrane Proteins. J Phys Chem Lett 2021; 12:10497-10504. [PMID: 34677984 DOI: 10.1021/acs.jpclett.1c02954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomembrane remodeling is essential for cellular trafficking, with membrane-binding peripheral proteins playing a key role in it. Significant membrane remodeling as in endo- and exocytosis is often due to aggregates of many proteins with direct or membrane-mediated interactions. Understanding this process via computer simulations is extremely challenging: protein-membrane systems involve time and length scales that make atomistic simulations impractical, while most coarse-grained models fall short in resolving dynamics and physical effects of protein and membrane flexibility. Here, we develop a coarse-grained model of the bilayer membrane bestrewed with rotationally symmetric flexible proteins, parametrized to reflect local curvatures and lateral dynamics of proteins. We investigate the kinetics, equilibrium distributions, and the free energy landscape governing the formation and breakup of protein clusters on the surface of the membrane. We demonstrate how the flexibility of the proteins as well as their surface concentration play deciding roles in highly selective macroscopic aggregation behavior.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany
| |
Collapse
|
55
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
56
|
Pandey PR, Różycki B, Lipowsky R, Weikl TR. Structural variability and concerted motions of the T cell receptor - CD3 complex. eLife 2021; 10:e67195. [PMID: 34490842 PMCID: PMC8504971 DOI: 10.7554/elife.67195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
We investigate the structural and orientational variability of the membrane-embedded T cell receptor (TCR) - CD3 complex in extensive atomistic molecular dynamics simulations based on the recent cryo-EM structure determined by Dong et al., 2019. We find that the TCR extracellular (EC) domain is highly variable in its orientation by attaining tilt angles relative to the membrane normal that range from 15° to 55°. The tilt angle of the TCR EC domain is both coupled to a rotation of the domain and to characteristic changes throughout the TCR - CD3 complex, in particular in the EC interactions of the Cβ FG loop of the TCR, as well as in the orientation of transmembrane helices. The concerted motions of the membrane-embedded TCR - CD3 complex revealed in our simulations provide atomistic insights on conformational changes of the complex in response to tilt-inducing forces on antigen-bound TCRs.
Collapse
MESH Headings
- CD3 Complex/metabolism
- CD3 Complex/ultrastructure
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cryoelectron Microscopy
- Humans
- Molecular Dynamics Simulation
- Protein Binding
- Protein Conformation, alpha-Helical
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/ultrastructure
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
- Structure-Activity Relationship
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/ultrastructure
Collapse
Affiliation(s)
- Prithvi R Pandey
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-SystemsPotsdamGermany
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of SciencesWarsawPoland
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-SystemsPotsdamGermany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-SystemsPotsdamGermany
| |
Collapse
|
57
|
Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations. Biosystems 2021; 209:104505. [PMID: 34403719 DOI: 10.1016/j.biosystems.2021.104505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.
Collapse
|
58
|
Sahoo AR, Buck M. Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors. Int J Mol Sci 2021; 22:ijms22168593. [PMID: 34445298 PMCID: PMC8395321 DOI: 10.3390/ijms22168593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.
Collapse
Affiliation(s)
- Amita R. Sahoo
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
59
|
Chakraborty S, Wagh K, Gnanakaran S, López CA. Development of Martini 2.2 parameters for N-glycans: a case study of the HIV-1 Env glycoprotein dynamics. Glycobiology 2021; 31:787-799. [PMID: 33755116 PMCID: PMC8351497 DOI: 10.1093/glycob/cwab017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
N-linked glycans are ubiquitous in nature and play key roles in biology. For example, glycosylation of pathogenic proteins is a common immune evasive mechanism, hampering the development of successful vaccines. Due to their chemical variability and complex dynamics, an accurate molecular understanding of glycans is still limited by the lack of effective resolution of current experimental approaches. Here, we have developed and implemented a reductive model based on the popular Martini 2.2 coarse-grained force field for the computational study of N-glycosylation. We used the HIV-1 Env as a direct applied example of a highly glycosylated protein. Our results indicate that the model not only reproduces many observables in very good agreement with a fully atomistic force field but also can be extended to study large amount of glycosylation variants, a fundamental property that can aid in the development of drugs and vaccines.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
60
|
Molza AE, Gao P, Jakpou J, Nicolas J, Tsapis N, Ha-Duong T. Simulations of the Upper Critical Solution Temperature Behavior of Poly(ornithine- co-citrulline)s Using MARTINI-Based Coarse-Grained Force Fields. J Chem Theory Comput 2021; 17:4499-4511. [PMID: 34101464 DOI: 10.1021/acs.jctc.1c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ornithine-co-citrulline)s are ureido-based polymers, which were shown to exhibit tunable upper critical solution temperature (UCST) behavior, a property that can be exploited to develop thermoresponsive nanoparticles for controlled drug delivery systems. To gain insight into the driving forces that govern the formation and dissolution processes of poly(ornithine-co-citrulline) nanoparticles, a molecular dynamics (MD) simulation study has been carried out using MARTINI-based protein coarse-grained models. Multi-microsecond simulations at temperatures ranging from 280 to 370 K show that the fully reparametrized version 3.0 of MARTINI force field is able to capture the dependence on temperature of poly(ornithine-co-citrulline) aggregation and dissolution, while version 2.2 could not account for it. Furthermore, the phase separation observed in these simulations allowed us to extrapolate a phase diagram based on the Flory-Huggins theory of polymer solution, which could help in future rational design of drug delivery nanoparticles based on poly(amino acid)s.
Collapse
Affiliation(s)
| | - Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Justine Jakpou
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
61
|
Holdbrook DA, Marzinek JK, Boncel S, Boags A, Tan YS, Huber RG, Verma CS, Bond PJ. The nanotube express: Delivering a stapled peptide to the cell surface. J Colloid Interface Sci 2021; 604:670-679. [PMID: 34280765 DOI: 10.1016/j.jcis.2021.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS Carbon nanotubes (CNTs) represent a novel platform for cellular delivery of therapeutic peptides. Chemically-functionalized CNTs may enhance peptide uptake by improving their membrane targeting properties. EXPERIMENTS Using coarse-grained (CG) molecular dynamics (MD) simulations, we investigate membrane interactions of a peptide conjugated to pristine and chemically-modified CNTs. As proof of principle, we focus on their interactions with PM2, an amphipathic stapled peptide that inhibits the E3 ubiquitin ligase HDM2 from negatively regulating the p53 tumor suppressor. CNT interaction with both simple planar lipid bilayers as well as spherical lipid vesicles was studied, the latter as a surrogate for curved cellular membranes. FINDINGS Membrane permeation was rapid and spontaneous for both pristine and oxidized CNTs when unconjugated. This was slowed upon addition of a noncovalently attached peptide surface "sheath", which may be an effective way to slow CNT entry and avert membrane rupture. The CNT conjugates were observed to "desheath" their peptide layer at the bilayer interface upon insertion, leaving their cargo behind in the outer leaflet. This suggests that a synergy may exist to optimize CNT safety whilst enhancing the delivery efficiency of "hitchhiking" therapeutic molecules.
Collapse
Affiliation(s)
- Daniel A Holdbrook
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Slawomir Boncel
- Silesian University of Technology, Faculty of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Alister Boags
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Roland G Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore; National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, 117543 Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore.
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore; National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, 117543 Singapore, Singapore.
| |
Collapse
|
62
|
Larsen AH, Sansom MSP. Binding of Ca 2+-independent C2 domains to lipid membranes: A multi-scale molecular dynamics study. Structure 2021; 29:1200-1213.e2. [PMID: 34081910 PMCID: PMC8507603 DOI: 10.1016/j.str.2021.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023]
Abstract
C2 domains facilitate protein interactions with lipid bilayers in either a Ca2+-dependent or -independent manner. We used molecular dynamics (MD) simulations to explore six Ca2+-independent C2 domains, from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2. In coarse-grained MD simulations these C2 domains formed transient interactions with zwitterionic bilayers, compared with longer-lived interactions with anionic bilayers containing phosphatidylinositol bisphosphate (PIP2). Type I C2 domains bound non-canonically via the front, back, or side of the β sandwich, whereas type II C2 domains bound canonically, via the top loops. C2 domains interacted strongly with membranes containing PIP2, causing bound anionic lipids to cluster around the protein. Binding modes were refined via atomistic simulations. For PTEN and SHIP2, CG simulations of their phosphatase plus C2 domains with PIP2-containing bilayers were also performed, and the roles of the two domains in membrane localization compared. These studies establish a simulation protocol for membrane-recognition proteins. Binding of Ca2+-independent C2 domains to membranes was explored by MD simulation C2 domains from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2 were compared C2 domains formed longer-lived interactions with lipid bilayers containing PIP2 For PTEN and SHIP2, simulations of their phosphatase plus C2 domains were performed
Collapse
Affiliation(s)
- Andreas Haahr Larsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
63
|
Kjølbye LR, De Maria L, Wassenaar TA, Abdizadeh H, Marrink SJ, Ferkinghoff-Borg J, Schiøtt B. General Protocol for Constructing Molecular Models of Nanodiscs. J Chem Inf Model 2021; 61:2869-2883. [PMID: 34048229 DOI: 10.1021/acs.jcim.1c00157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanodisc technology is increasingly being applied for structural and biophysical studies of membrane proteins. In this work, we present a general protocol for constructing molecular models of nanodiscs for molecular dynamics simulations. The protocol is written in python and based on geometric equations, making it fast and easy to modify, enabling automation and customization of nanodiscs in silico. The novelty being the ability to construct any membrane scaffold protein (MSP) variant fast and easy given only an input sequence. We validated and tested the protocol by simulating seven different nanodiscs of various sizes and with different membrane scaffold proteins, both circularized and noncircularized. The structural and biophysical properties were analyzed and shown to be in good agreement with previously reported experimental data and simulation studies.
Collapse
Affiliation(s)
- Lisbeth R Kjølbye
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Haleh Abdizadeh
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
64
|
Lamprakis C, Andreadelis I, Manchester J, Velez-Vega C, Duca JS, Cournia Z. Evaluating the Efficiency of the Martini Force Field to Study Protein Dimerization in Aqueous and Membrane Environments. J Chem Theory Comput 2021; 17:3088-3102. [PMID: 33913726 DOI: 10.1021/acs.jctc.0c00507] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein complex assembly is one of the major drivers of biological response. Understanding the mechanisms of protein oligomerization/dimerization would allow one to elucidate how these complexes participate in biological activities and could ultimately lead to new approaches in designing novel therapeutic agents. However, determining the exact association pathways and structures of such complexes remains a challenge. Here, we use parallel tempering metadynamics simulations in the well-tempered ensemble to evaluate the performance of Martini 2.2P and Martini open-beta 3 (Martini 3) force fields in reproducing the structure and energetics of the dimerization process of membrane proteins and proteins in an aqueous solution in reasonable accuracy and throughput. We find that Martini 2.2P systematically overestimates the free energy of association by estimating large barriers in distinct areas, which likely leads to overaggregation when multiple monomers are present. In comparison, the less viscous Martini 3 results in a systematic underestimation of the free energy of association for proteins in solution, while it performs well in describing the association of membrane proteins. In all cases, the near-native dimer complexes are identified as minima in the free energy surface albeit not always as the lowest minima. In the case of Martini 3, we find that the spurious supramolecular protein aggregation present in Martini 2.2P multimer simulations is alleviated and thus this force field may be more suitable for the study of protein oligomerization. We propose that the use of enhanced sampling simulations with a refined coarse-grained force field and appropriately defined collective variables is a robust approach for studying the protein dimerization process, although one should be cautious of the ranking of energy minima.
Collapse
Affiliation(s)
- Christos Lamprakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Ioannis Andreadelis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - John Manchester
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - José S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
65
|
Bartoš L, Kabelka I, Vácha R. Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins. Biophys J 2021; 120:2296-2305. [PMID: 33864790 PMCID: PMC8390799 DOI: 10.1016/j.bpj.2021.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/11/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
Cell membranes are phospholipid bilayers with a large number of embedded transmembrane proteins. Some of these proteins, such as scramblases, have properties that facilitate lipid flip-flop from one membrane leaflet to another. Scramblases and similar transmembrane proteins could also affect the translocation of other amphiphilic molecules, including cell-penetrating or antimicrobial peptides. We studied the effect of transmembrane proteins on the translocation of amphiphilic peptides through the membrane. Using two very different models, we consistently demonstrate that transmembrane proteins with a hydrophilic patch enhance the translocation of amphiphilic peptides by stabilizing the peptide in the membrane. Moreover, there is an optimum amphiphilicity because the peptide could become overstabilized in the transmembrane state, in which the peptide-protein dissociation is hampered, limiting the peptide translocation. The presence of scramblases and other proteins with similar properties could be exploited for more efficient transport into cells. The described principles could also be utilized in the design of a drug-delivery system by the addition of a translocation-enhancing peptide that would integrate into the membrane.
Collapse
Affiliation(s)
- Ladislav Bartoš
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic
| | - Ivo Kabelka
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Brno, Czech Republic.
| |
Collapse
|
66
|
Majumder A, Straub JE. Addressing the Excessive Aggregation of Membrane Proteins in the MARTINI Model. J Chem Theory Comput 2021; 17:2513-2521. [PMID: 33720709 DOI: 10.1021/acs.jctc.0c01253] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MARTINI model is a widely used coarse-grained force field popular for its capacity to represent a diverse array of complex biomolecules. However, efforts to simulate increasingly realistic models of membranes, involving complex lipid mixtures and multiple proteins, suggest that membrane protein aggregates are overstabilized by the MARTINI v2.2 force field. In this study, we address this shortcoming of the MARTINI model. We determined the free energy of dimerization of four transmembrane protein systems using the nonpolarizable MARTINI model. Comparison with experimental FRET-based estimates of the dimerization free energy was used to quantify the significant overstabilization of each protein homodimer studied. To improve the agreement between simulation and experiment, a single uniform scaling factor, α, was used to enhance the protein-lipid Lennard-Jones interaction. A value of α = 1.04-1.045 was found to provide the best fit to the dimerization free energies for the proteins studied while maintaining the specificity of contacts at the dimer interface. To further validate the modified force field, we performed a multiprotein simulation using both MARTINI v2.2 and the reparameterized MARTINI model. While the original MARTINI model predicts oligomerization of protein into a single aggregate, the reparameterized MARTINI model maintains a dynamic equilibrium between monomers and dimers as predicted by experimental studies. The proposed reparameterization is an alternative to the standard MARTINI model for use in simulations of realistic models of a biological membrane containing diverse lipids and proteins.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston 02215, Massachusetts, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston 02215, Massachusetts, United States
| |
Collapse
|
67
|
Souza PCT, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks BMH, Wassenaar TA, Kroon PC, Melcr J, Nieto V, Corradi V, Khan HM, Domański J, Javanainen M, Martinez-Seara H, Reuter N, Best RB, Vattulainen I, Monticelli L, Periole X, Tieleman DP, de Vries AH, Marrink SJ. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 2021; 18:382-388. [PMID: 33782607 DOI: 10.1038/s41592-021-01098-3] [Citation(s) in RCA: 489] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.
Collapse
Affiliation(s)
- Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands. .,Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France.
| | - Riccardo Alessandri
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands.,Intangible Realities Laboratory, University of Bristol, School of Chemistry, Bristol, UK
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands.,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Ignacio Faustino
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Fabian Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Ilias Patmanidis
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Haleh Abdizadeh
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Peter C Kroon
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Vincent Nieto
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hanif M Khan
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.,Department of Chemistry and Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Jan Domański
- Department of Biochemistry, University of Oxford, Oxford, UK.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Nathalie Reuter
- Department of Chemistry and Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS and University of Lyon, Lyon, France
| | - Xavier Periole
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
68
|
Kociurzynski R, Makshakova ON, Knecht V, Römer W. Multiscale Molecular Dynamics Studies Reveal Different Modes of Receptor Clustering by Gb3-Binding Lectins. J Chem Theory Comput 2021; 17:2488-2501. [PMID: 33794087 DOI: 10.1021/acs.jctc.0c01145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recognition of carbohydrate receptors on host cell membranes by pathogenic lectins is a crucial step in the microbial invasion. Two bacterial lectins, the B-subunit of Shiga toxin from Shigella dysenteria (StxB) and lectin I from Pseudomonas aeruginosa (LecA), are specific to the same galactolipid-globotriaosylceramide (Gb3). In this study we present a coarse-grained (cg) model of Gb3, which we further apply to unravel the molecular details of glycolipid binding by two lectins on the surface of a DOPC/cholesterol/Gb3 bilayer. In cg molecular dynamics simulations with time scales of dozens of microseconds, Gb3 was randomly distributed. The binding of both StxB or LecA is accompanied by Gb3 clustering in a cholesterol environment and with exclusion of DOPC in protein vicinity. StxB being bound by all 15 binding sites induced membrane bending, while LecA interacted with two out of four binding sites for most of the time causing a smaller inward curvature of the model membrane. Stable interactions occurred preferably when LecA was normal to the membrane surface. Furthermore, all-atom simulations revealed that LecA bound Gb3's headgroup at only one out of two possible conformations of the carbohydrate moiety observed at protein-free conditions. The results shed light on the mechanism of interactions between two lectins and Gb3 on the membrane surface and offer a coarse-grained model to study more complex systems at large spatiotemporal scales.
Collapse
Affiliation(s)
- Raisa Kociurzynski
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.,Freiburg Centre for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Olga N Makshakova
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str. 2/31, 420111 Kazan, Russian Federation
| | - Volker Knecht
- Freiburg Centre for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,Institute of Physics, Albert-Ludwigs-University Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.,Freiburg Centre for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79104 Freiburg, Germany.,Signalling Research Centers BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| |
Collapse
|
69
|
Souza PCT, Limongelli V, Wu S, Marrink SJ, Monticelli L. Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations. Front Mol Biosci 2021; 8:657222. [PMID: 33855050 PMCID: PMC8039319 DOI: 10.3389/fmolb.2021.657222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023] Open
Abstract
Molecular docking is central to rational drug design. Current docking techniques suffer, however, from limitations in protein flexibility and solvation models and by the use of simplified scoring functions. All-atom molecular dynamics simulations, on the other hand, feature a realistic representation of protein flexibility and solvent, but require knowledge of the binding site. Recently we showed that coarse-grained molecular dynamics simulations, based on the most recent version of the Martini force field, can be used to predict protein/ligand binding sites and pathways, without requiring any a priori information, and offer a level of accuracy approaching all-atom simulations. Given the excellent computational efficiency of Martini, this opens the way to high-throughput drug screening based on dynamic docking pipelines. In this opinion article, we sketch the roadmap to achieve this goal.
Collapse
Affiliation(s)
- Paulo C. T. Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
- PharmCADD, Busan, South Korea
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Sangwook Wu
- PharmCADD, Busan, South Korea
- Department of Physics, Pukyong National University, Busan, South Korea
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| |
Collapse
|
70
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
71
|
Mahmood MI, Poma AB, Okazaki KI. Optimizing Gō-MARTINI Coarse-Grained Model for F-BAR Protein on Lipid Membrane. Front Mol Biosci 2021; 8:619381. [PMID: 33693028 PMCID: PMC7937874 DOI: 10.3389/fmolb.2021.619381] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Coarse-grained (CG) molecular dynamics (MD) simulations allow us to access much larger length and time scales than atomistic MD simulations, providing an attractive alternative to the conventional simulations. Based on the well-known MARTINI CG force field, the recently developed Gō-MARTINI model for proteins describes large-amplitude structural dynamics, which has not been possible with the commonly used elastic network model. Using the Gō-MARTINI model, we conduct MD simulations of the F-BAR Pacsin1 protein on lipid membrane. We observe that structural changes of the non-globular protein are largely dependent on the definition of the native contacts in the Gō model. To address this issue, we introduced a simple cutoff scheme and tuned the cutoff distance of the native contacts and the interaction strength of the Lennard-Jones potentials in the Gō-MARTINI model. With the optimized Gō-MARTINI model, we show that it reproduces structural fluctuations of the Pacsin1 dimer from atomistic simulations. We also show that two Pacsin1 dimers properly assemble through lateral interaction on the lipid membrane. Our work presents a first step towards describing membrane remodeling processes in the Gō-MARTINI CG framework by simulating a crucial step of protein assembly on the membrane.
Collapse
Affiliation(s)
- Md Iqbal Mahmood
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Adolfo B Poma
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Kei-Ichi Okazaki
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
72
|
Wan M, Song J, Yang Y, Gao L, Fang W. Development of coarse-grained force field for alcohols: an efficient meta-multilinear interpolation parameterization algorithm. Phys Chem Chem Phys 2021; 23:1956-1966. [PMID: 33464253 DOI: 10.1039/d0cp05503d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coarse-grained (CG) molecular dynamics are powerful tools to access a mesoscopic phenomenon and simultaneously record microscopic details, but currently the CG force fields (FFs) are still limited by low parameterization efficiency and poor accuracy especially for polar molecules. In this work, we developed a Meta-Multilinear Interpolation Parameterization (Meta-MIP) algorithm to optimize the CG FFs for alcohols. This algorithm significantly boosts parameterization efficiency by constructing on-the-fly local databases to cover the global optimal parameterization path. In specific, an alcohol molecule is mapped to a heterologous model composed of an OH bead and a hydrocarbon portion which consists of alkane beads representing two to four carbon atoms. Non-bonded potentials are described by soft Morse functions that have no tail-corrections but can still retain good continuities at truncation distance. Nearly all of the properties in terms of density, heat of vaporization, surface tension, and solvation free energy for alcohols predicted by the current FFs deviate from experimental values by less than 7%. This Meta-MIP algorithm can be readily applied to force field development for a wide variety of molecules or functional groups, in many situations including but not limited to CG FFs.
Collapse
Affiliation(s)
- Mingwei Wan
- Institution of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | | | | | | | | |
Collapse
|
73
|
Jarin Z, Newhouse J, Voth GA. Coarse-Grained Force Fields from the Perspective of Statistical Mechanics: Better Understanding of the Origins of a MARTINI Hangover. J Chem Theory Comput 2021; 17:1170-1180. [PMID: 33475352 PMCID: PMC7876797 DOI: 10.1021/acs.jctc.0c00638] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The popular MARTINI coarse-grained model is used as a test case to analyze the adherence of top-down coarse-grained molecular dynamics models (i.e., models primarily parametrized to match experimental results) to the known features of statistical mechanics for the underlying all-atom representations. Specifically, the temperature dependence of various pair distribution functions, and hence their underlying potentials of mean force via the reversible work theorem, are compared between MARTINI 2.0, Dry MARTINI, and all-atom simulations mapped onto equivalent coarse-grained sites for certain lipid bilayers. It is found that the MARTINI models do not completely capture the lipid structure seen in atomistic simulations as projected onto the coarse-grained mappings and that issues of accuracy and temperature transferability arise due to an incorrect enthalpy-entropy decomposition of these potentials of mean force. The potential of mean force for the association of two amphipathic helices in a lipid bilayer is also calculated, and especially at shorter ranges, the MARTINI and all-atom projection results differ substantially. The former is much less repulsive and hence will lead to a higher probability of MARTINI helix association in the MARTINI bilayer than occurs in the actual all-atom case. Additionally, the bilayer height fluctuation spectra are calculated for the MARTINI model, and compared to the all-atom results, it is found that the magnitude of thermally averaged amplitudes at intermediate length scales are quite different, pointing to a number of possible consequences for realistic modeling of membrane processes. Taken as a whole, the results presented here show disagreement in the enthalpic and entropic driving forces driving lateral structure in lipid bilayers as well as quantitative differences in association of embedded amphipathic helices, which can help direct future efforts to parametrize CG models with better agreement to the all-atom systems they aspire to represent.
Collapse
Affiliation(s)
- Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James Newhouse
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
74
|
Sica MP, Smulski CR. Coarse Grained Molecular Dynamic Simulations for the Study of TNF Receptor Family Members' Transmembrane Organization. Front Cell Dev Biol 2021; 8:577278. [PMID: 33553138 PMCID: PMC7859260 DOI: 10.3389/fcell.2020.577278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
The Tumor Necrosis Factor (TNF) and the TNF receptor (TNFR) superfamilies are composed of 19 ligands and 30 receptors, respectively. The oligomeric properties of ligands, both membrane bound and soluble, has been studied most. However, less is known about the oligomeric properties of TNFRs. Earlier reports identified the extracellular, membrane-distal, cysteine-rich domain as a pre-ligand assembly domain which stabilizes receptor dimers and/or trimers in the absence of ligand. Nevertheless, recent reports based on structural nuclear magnetic resonance (NMR) highlight the intrinsic role of the transmembrane domains to form dimers (p75NTR), trimers (Fas), or dimers of trimers (DR5). Thus, understanding the structural basis of transmembrane oligomerization may shed light on the mechanism for signal transduction and the impact of disease-associated mutations in this region. To this end, here we used an in silico coarse grained molecular dynamics approach with Martini force field to study TNFR transmembrane homotypic interactions. We have first validated this approach studying the three TNFR described by NMR (p75NTR, Fas, and DR5). We have simulated membrane patches composed of 36 helices of the same receptor equidistantly distributed in order to get unbiassed information on spontaneous proteins assemblies. Good agreement was found in the specific residues involved in homotypic interactions and we were able to observe dimers, trimers, and higher-order oligomers corresponding to those reported in NMR experiments. We have, applied this approach to study the assembly of disease-related mutations being able to assess their impact on oligomerization stability. In conclusion, our results showed the usefulness of coarse grained simulations with Martini force field to study in an unbiased manner higher order transmembrane oligomerization.
Collapse
Affiliation(s)
- Mauricio P Sica
- Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), San Carlos de Bariloche, Argentina.,Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Cristian R Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
75
|
Benayad Z, von Bülow S, Stelzl LS, Hummer G. Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model. J Chem Theory Comput 2021; 17:525-537. [PMID: 33307683 PMCID: PMC7872324 DOI: 10.1021/acs.jctc.0c01064] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 01/02/2023]
Abstract
Disordered proteins and nucleic acids can condense into droplets that resemble the membraneless organelles observed in living cells. MD simulations offer a unique tool to characterize the molecular interactions governing the formation of these biomolecular condensates, their physicochemical properties, and the factors controlling their composition and size. However, biopolymer condensation depends sensitively on the balance between different energetic and entropic contributions. Here, we develop a general strategy to fine-tune the potential energy function for molecular dynamics simulations of biopolymer phase separation. We rebalance protein-protein interactions against solvation and entropic contributions to match the excess free energy of transferring proteins between dilute solution and condensate. We illustrate this formalism by simulating liquid droplet formation of the FUS low-complexity domain (LCD) with a rebalanced MARTINI model. By scaling the strength of the nonbonded interactions in the coarse-grained MARTINI potential energy function, we map out a phase diagram in the plane of protein concentration and interaction strength. Above a critical scaling factor of αc ≈ 0.6, FUS-LCD condensation is observed, where α = 1 and 0 correspond to full and repulsive interactions in the MARTINI model. For a scaling factor α = 0.65, we recover experimental densities of the dilute and dense phases, and thus the excess protein transfer free energy into the droplet and the saturation concentration where FUS-LCD condenses. In the region of phase separation, we simulate FUS-LCD droplets of four different sizes in stable equilibrium with the dilute phase and slabs of condensed FUS-LCD for tens of microseconds, and over one millisecond in aggregate. We determine surface tensions in the range of 0.01-0.4 mN/m from the fluctuations of the droplet shape and from the capillary-wave-like broadening of the interface between the two phases. From the dynamics of the protein end-to-end distance, we estimate shear viscosities from 0.001 to 0.02 Pa s for the FUS-LCD droplets with scaling factors α in the range of 0.625-0.75, where we observe liquid droplets. Significant hydration of the interior of the droplets keeps the proteins mobile and the droplets fluid.
Collapse
Affiliation(s)
- Zakarya Benayad
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Département
de Chimie, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Sören von Bülow
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Lukas S. Stelzl
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute
for Biophysics, Goethe University Frankfurt, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
76
|
Caparotta M, Tomes CN, Mayorga LS, Masone D. The Synaptotagmin-1 C2B Domain Is a Key Regulator in the Stabilization of the Fusion Pore. J Chem Theory Comput 2020; 16:7840-7851. [DOI: 10.1021/acs.jctc.0c00734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marcelo Caparotta
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| | - Claudia N. Tomes
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| | - Luis S. Mayorga
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| |
Collapse
|
77
|
Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis. Proc Natl Acad Sci U S A 2020; 117:27980-27988. [PMID: 33093207 DOI: 10.1073/pnas.2008885117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Bcl-2 protein family comprises both pro- and antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family members can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate preferentially to the endoplasmic reticulum (ER), heterooligomerization between the TMDs of Mcl-1 and Bok predominantly takes place at the mitochondrial membrane. Strikingly, the coexpression of Mcl-1 and Bok TMDs produces an increase in ER mitochondrial-associated membranes, suggesting an active role of Mcl-1 in the induced mitochondrial targeting of Bok. Finally, the introduction of Mcl-1 TMD somatic mutations detected in cancer patients alters the TMD interaction pattern to provide the Mcl-1 protein with enhanced antiapoptotic activity, thereby highlighting the clinical relevance of Mcl-1 TMD interactions.
Collapse
|
78
|
Ludwig J, Maibaum L. Effect of alcohol on the phase separation in model membranes. Chem Phys Lipids 2020; 233:104986. [PMID: 33080278 DOI: 10.1016/j.chemphyslip.2020.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
The discovery of coexisting liquid-ordered and liquid-disordered phases in multicomponent lipid bilayers has received widespread attention due to its potential relevance for biological systems. One of the many open questions is how the presence of additional components affects the nature of the coexisting phases. Of particular interest is the addition of alcohols because their anesthetic properties may arise from modulating bilayer behavior. We use coarse-grained Molecular Dynamics simulations to gain insight into the partitioning preferences of linear n-alcohols into ordered and disordered bilayers alongside their effects on local membrane structure. We find that alcohols cause only small changes to membrane composition alongside a lack of significant effects on membrane thickness and lipid tail order. Cholesterol and n-alcohol trans-bilayer motion is measured and found to be near or within the range of previous atomistic results. The cholesterol flip-flop rates increase with both n-alcohol length and concentration for octanol, dodecanol, and hexadecanol, indicating a decrease in lipid order. Umbrella sampling simulations of removing cholesterol from tertiary membranes find no significant difference with or without n-alcohols at various concentrations. Simulations of a phase-separated bilayer show that octanol preferentially partitions into the liquid-disordered phase in a ratio of approximately 3:1 over the liquid-ordered phase. Furthermore, partition coefficients of alcohol in single-phase membranes show a preference for longer alcohols (dodecanol and hexadecanol) to partition preferentially into the liquid-ordered phase, while decreasing the length of the alcohol reverses this trend. Our work tests experimental results while also investigating the ability for coarse-grained MARTINI simulations to capture minute differences in model membrane spatial arrangements on the nanoscale level.
Collapse
Affiliation(s)
- James Ludwig
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
79
|
Jussupow A, Messias AC, Stehle R, Geerlof A, Solbak SMØ, Paissoni C, Bach A, Sattler M, Camilloni C. The dynamics of linear polyubiquitin. SCIENCE ADVANCES 2020; 6:6/42/eabc3786. [PMID: 33055165 PMCID: PMC7556843 DOI: 10.1126/sciadv.abc3786] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/25/2020] [Indexed: 05/17/2023]
Abstract
Polyubiquitin chains are flexible multidomain proteins, whose conformational dynamics enable them to regulate multiple biological pathways. Their dynamic is determined by the linkage between ubiquitins and by the number of ubiquitin units. Characterizing polyubiquitin behavior as a function of their length is hampered because of increasing system size and conformational variability. Here, we introduce a new approach to efficiently integrating small-angle x-ray scattering with simulations allowing us to accurately characterize the dynamics of linear di-, tri-, and tetraubiquitin in the free state as well as of diubiquitin in complex with NEMO, a central regulator in the NF-κB pathway. Our results show that the behavior of the diubiquitin subunits is independent of the presence of additional ubiquitin modules and that the dynamics of polyubiquitins with different lengths follow a simple model. Together with experimental data from multiple biophysical techniques, we then rationalize the 2:1 NEMO:polyubiquitin binding.
Collapse
Affiliation(s)
- Alexander Jussupow
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching 85747, Germany
| | - Ana C Messias
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Garching 85747, Germany
| | - Ralf Stehle
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Garching 85747, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Garching 85747, Germany
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany.
- Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, Garching 85747, Germany
| | - Carlo Camilloni
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching 85747, Germany.
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|
80
|
Jayaraman K, Das AK, Luethi D, Szöllősi D, Schütz GJ, Reith MEA, Sitte HH, Stockner T. SLC6 transporter oligomerization. J Neurochem 2020; 157:919-929. [PMID: 32767560 PMCID: PMC8247324 DOI: 10.1111/jnc.15145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Transporters of the solute carrier 6 (SLC6) family mediate the reuptake of neurotransmitters such as dopamine, norepinephrine, serotonin, GABA, and glycine. SLC6 family members are 12 transmembrane helix‐spanning proteins that operate using the transmembrane sodium gradient for transport. These transporters assume various quaternary arrangements ranging from monomers to complex stoichiometries with multiple subunits. Dopamine and serotonin transporter oligomerization has been implicated in trafficking of newly formed proteins from the endoplasmic reticulum to the plasma membrane with a pre‐fixed assembly. Once at the plasma membrane, oligomers are kept fixed in their quaternary assembly by interaction with phosphoinositides. While it remains unclear how oligomer formation precisely affects physiological transporter function, it has been shown that oligomerization supports the activity of release‐type psychostimulants. Most recently, single molecule microscopy experiments unveiled that the stoichiometry differs between individual members of the SLC6 family. The present overview summarizes our understanding of the influence of plasma membrane constituents on transporter oligomerization, describes the known interfaces between protomers and discusses open questions. ![]()
Collapse
Affiliation(s)
- Kumaresan Jayaraman
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anand K Das
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Dino Luethi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
81
|
Shivgan AT, Marzinek JK, Huber RG, Krah A, Henchman RH, Matsudaira P, Verma CS, Bond PJ. Extending the Martini Coarse-Grained Force Field to N-Glycans. J Chem Inf Model 2020; 60:3864-3883. [PMID: 32702979 DOI: 10.1021/acs.jcim.0c00495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play a vital role in a large number of cellular processes. Their complex and flexible nature hampers structure-function studies using experimental techniques. Molecular dynamics (MD) simulations can help in understanding dynamic aspects of glycans if the force field parameters used can reproduce key experimentally observed properties. Here, we present optimized coarse-grained (CG) Martini force field parameters for N-glycans, calibrated against experimentally derived binding affinities for lectins. The CG bonded parameters were obtained from atomistic (ATM) simulations for different glycan topologies including high mannose and complex glycans with various branching patterns. In the CG model, additional elastic networks are shown to improve maintenance of the overall conformational distribution. Solvation free energies and octanol-water partition coefficients were also calculated for various N-glycan disaccharide combinations. When using standard Martini nonbonded parameters, we observed that glycans spontaneously aggregated in the solution and required down-scaling of their interactions for reproduction of ATM model radial distribution functions. We also optimized the nonbonded interactions for glycans interacting with seven lectin candidates and show that a relatively modest scaling down of the glycan-protein interactions can reproduce free energies obtained from experimental studies. These parameters should be of use in studying the role of glycans in various glycoproteins and carbohydrate binding proteins as well as their complexes, while benefiting from the efficiency of CG sampling.
Collapse
Affiliation(s)
- Aishwary T Shivgan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Roland G Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Alexander Krah
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paul Matsudaira
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| |
Collapse
|
82
|
Rao R, Diharce J, Dugué B, Ostuni MA, Cadet F, Etchebest C. Versatile Dimerisation Process of Translocator Protein (TSPO) Revealed by an Extensive Sampling Based on a Coarse-Grained Dynamics Study. J Chem Inf Model 2020; 60:3944-3957. [DOI: 10.1021/acs.jcim.0c00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rajas Rao
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Julien Diharce
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Bérénice Dugué
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| | - Mariano A. Ostuni
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
| | - Frédéric Cadet
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
- PEACCEL, Artificial Intelligence Department, 6 Square Albin Cachot, Box 42, 75013 Paris, France
| | - Catherine Etchebest
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, F-75015, Paris, France
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France
- Université de la Réunion, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, Faculté des Sciences & Technologies Saint-Denis, F-97715 St. Denis, France
| |
Collapse
|
83
|
Vaiwala R, Sharma P, Puranik M, Ayappa KG. Developing a Coarse-Grained Model for Bacterial Cell Walls: Evaluating Mechanical Properties and Free Energy Barriers. J Chem Theory Comput 2020; 16:5369-5384. [DOI: 10.1021/acs.jctc.0c00539] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mrinalini Puranik
- Unilever Research & Development, 64 Main Road, Whitefield, Bangalore 560066, India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
84
|
Menon S, Sengupta N, Das P. Nanoscale Interplay of Membrane Composition and Amyloid Self-Assembly. J Phys Chem B 2020; 124:5837-5846. [DOI: 10.1021/acs.jpcb.0c03796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Menon
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Payel Das
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Applied Physics and Applied Math Department, Columbia University, New York, New York 10027, United States
| |
Collapse
|
85
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
86
|
Banerjee P, Lipowsky R, Santer M. Coarse-Grained Molecular Model for the Glycosylphosphatidylinositol Anchor with and without Protein. J Chem Theory Comput 2020; 16:3889-3903. [PMID: 32392421 PMCID: PMC7303967 DOI: 10.1021/acs.jctc.0c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Reinhard Lipowsky
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Mark Santer
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
87
|
Abstract
During inflammatory response, blood leukocytes adhere to the endothelium. This process involves numerous adhesion molecules, including a transmembrane chemokine, CX3CL1, which behaves as a molecular cluster. How this cluster assembles and whether this association has a functional role remain unknown. The analysis of CX3CL1 clusters using native electrophoresis and single molecule fluorescence kinetics shows that CX3CL1 is a homo-oligomer of 3 to 7 monomers. Fluorescence recovery after photobleaching assays reveal that the CX3CL1-transmembrane domain peptide self-associates in both cellular and acellular lipid environments, while its random counterpart (i.e. peptide with the same residues in a different order) does not. This strongly indicates that CX3CL1 oligomerization is driven by its intrinsic properties. According to the molecular modeling, CX3CL1 does not associate in compact bundles but rather with monomers linearly assembled side by side. Finally, the CX3CL1 transmembrane peptide inhibits both the CX3CL1 oligomerization and the adhesive function, while its random counterpart does not. This demonstrates that CX3CL1 oligomerization is mandatory for its adhesive potency. Our results provide a new direction to control CX3CL1-dependent cellular adherence in key immune processes.
Collapse
|
88
|
Cholesterol-mediated oligomerization pathways of serotonin G-coupled receptor 5-HT2C. Int J Biol Macromol 2020; 160:1090-1100. [PMID: 32485258 DOI: 10.1016/j.ijbiomac.2020.05.231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Serotonin (5-HT) receptors have been shown to homodimerize and heterodimerize with other G protein-coupled receptors (GPCRs), although the details of this process have not yet been elucidated. Here we use coarse-grained molecular dynamics on monomeric 5-HT2C receptors to predict the transmembrane (TM) helices involved in such associations. All these simulations were carried out both in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers and in mixed composition POPC-Cholesterol ones, to show whether the presence of cholesterol could directly influence and drive the dimeric association. The goal is to get insights on the self-assembly pathway leading to GPCRs 5-HT2C oligomerization, which is supposed to be the basis of its constitutional activity. From the analysis of the molecular dynamics trajectories, we observed the formation of 5-HT2C oligomers through self-assembly and we identified the main domains involved in the receptor dimerization. In particular, dimers and oligomers from the two different environments show TM4-TM5 and TM1-TM7-H8 as the preferential dimerization interfaces. Nevertheless, substantial differences arise for oligomers in POPC and in POPC-Chol membranes: in POPC-Chol the variability of dimers interfaces is strictly limited to the TM1-TM7-H8 and TM4-TM5 interfaces and the dimorphism depends on cholesterol that directly participates in its formation. These results are in agreement with both experimental evidences and other computational studies conducted on other GPCRs oligomerization.
Collapse
|
89
|
Javanainen M, Ollila OHS, Martinez-Seara H. Rotational Diffusion of Membrane Proteins in Crowded Membranes. J Phys Chem B 2020; 124:2994-3001. [PMID: 32188248 DOI: 10.1021/acs.jpcb.0c00884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Membrane proteins travel along cellular membranes and reorient themselves to form functional oligomers and protein-lipid complexes. Following the Saffman-Delbrück model, protein radius sets the rate of this diffusive motion. However, it is unclear how this model, derived for ideal and dilute membranes, performs under crowded conditions of cellular membranes. Here, we study the rotational motion of membrane proteins using molecular dynamics simulations of coarse-grained membranes and 2-dimensional Lennard-Jones fluids with varying levels of crowding. We find that the Saffman-Delbrück model captures the size-dependency of rotational diffusion under dilute conditions where protein-protein interactions are negligible, whereas stronger scaling laws arise under crowding. Together with our recent work on lateral diffusion, our results reshape the description of protein dynamics in native membrane environments: The translational and rotational motions of proteins with small transmembrane domains are rapid, whereas larger proteins or protein complexes display substantially slower dynamics.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 166 10, Czech Republic.,Computational Physics Laboratory, Tampere University, Tampere 33720, Finland
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
90
|
Membrane mediated toppling mechanism of the folate energy coupling factor transporter. Nat Commun 2020; 11:1763. [PMID: 32273501 PMCID: PMC7145868 DOI: 10.1038/s41467-020-15554-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
Energy coupling factor (ECF) transporters are responsible for the uptake of micronutrients in bacteria and archaea. They consist of an integral membrane unit, the S-component, and a tripartite ECF module. It has been proposed that the S-component mediates the substrate transport by toppling over in the membrane when docking onto an ECF module. Here, we present multi-scale molecular dynamics simulations and in vitro experiments to study the molecular toppling mechanism of the S-component of a folate-specific ECF transporter. Simulations reveal a strong bending of the membrane around the ECF module that provides a driving force for toppling of the S-component. The stability of the toppled state depends on the presence of non-bilayer forming lipids, as confirmed by folate transport activity measurements. Together, our data provide evidence for a lipid-dependent toppling-based mechanism for the folate-specific ECF transporter, a mechanism that might apply to other ECF transporters.
Collapse
|
91
|
Larsen AH, Wang Y, Bottaro S, Grudinin S, Arleth L, Lindorff-Larsen K. Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution. PLoS Comput Biol 2020; 16:e1007870. [PMID: 32339173 PMCID: PMC7205321 DOI: 10.1371/journal.pcbi.1007870] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/07/2020] [Accepted: 04/13/2020] [Indexed: 11/18/2022] Open
Abstract
Many proteins contain multiple folded domains separated by flexible linkers, and the ability to describe the structure and conformational heterogeneity of such flexible systems pushes the limits of structural biology. Using the three-domain protein TIA-1 as an example, we here combine coarse-grained molecular dynamics simulations with previously measured small-angle scattering data to study the conformation of TIA-1 in solution. We show that while the coarse-grained potential (Martini) in itself leads to too compact conformations, increasing the strength of protein-water interactions results in ensembles that are in very good agreement with experiments. We show how these ensembles can be refined further using a Bayesian/Maximum Entropy approach, and examine the robustness to errors in the energy function. In particular we find that as long as the initial simulation is relatively good, reweighting against experiments is very robust. We also study the relative information in X-ray and neutron scattering experiments and find that refining against the SAXS experiments leads to improvement in the SANS data. Our results suggest a general strategy for studying the conformation of multi-domain proteins in solution that combines coarse-grained simulations with small-angle X-ray scattering data that are generally most easy to obtain. These results may in turn be used to design further small-angle neutron scattering experiments that exploit contrast variation through 1H/2H isotope substitutions.
Collapse
Affiliation(s)
- Andreas Haahr Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | - Lise Arleth
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
92
|
Gahbauer S, Böckmann RA. Comprehensive Characterization of Lipid-Guided G Protein-Coupled Receptor Dimerization. J Phys Chem B 2020; 124:2823-2834. [DOI: 10.1021/acs.jpcb.0c00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Gahbauer
- Computational Biology, Friedrich-Alexander-University Erlangen-Nüremberg, Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Friedrich-Alexander-University Erlangen-Nüremberg, Erlangen, Germany
| |
Collapse
|
93
|
Hwang H, Hazel A, Lian P, Smith JC, Gumbart JC, Parks JM. A Minimal Membrane Metal Transport System: Dynamics and Energetics of mer Proteins. J Comput Chem 2020; 41:528-537. [PMID: 31721253 PMCID: PMC7263448 DOI: 10.1002/jcc.26098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
The mer operon in bacteria encodes a set of proteins and enzymes that impart resistance to environmental mercury toxicity by importing Hg2+ and reducing it to volatile Hg(0). Because the reduction occurs in the cytoplasm, mercuric ions must first be transported across the cytoplasmic membrane by one of a few known transporters. MerF is the smallest of these, containing only two transmembrane helices and two pairs of vicinal cysteines that coordinate mercuric ions. In this work, we use molecular dynamics simulations to characterize the dynamics of MerF in its apo and Hg2+ -bound states. We find that the apo state positions one of the cysteine pairs closer to the periplasmic side of the membrane, while in the bound state the same pair approaches the cytoplasmic side. This finding is consistent with the functional requirement of accepting Hg2+ from the periplasmic space, sequestering it on acceptance, and transferring it to the cytoplasm. Conformational changes in the TM helices facilitate the functional interaction of the two cysteine pairs. Free-energy calculations provide a barrier of 16 kcal/mol for the association of the periplasmic Hg2+ -bound protein MerP with MerF and 7 kcal/mol for the subsequent association of MerF's two cysteine pairs. Despite the significant conformational changes required to move the binding site across the membrane, coarse-grained simulations of multiple copies of MerF support the expectation that it functions as a monomer. Our results demonstrate how conformational changes and binding thermodynamics could lead to such a small membrane protein acting as an ion transporter. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Peng Lian
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, 37996
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| |
Collapse
|
94
|
Orioli S, Larsen AH, Bottaro S, Lindorff-Larsen K. How to learn from inconsistencies: Integrating molecular simulations with experimental data. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:123-176. [PMID: 32145944 DOI: 10.1016/bs.pmbts.2019.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular simulations and biophysical experiments can be used to provide independent and complementary insights into the molecular origin of biological processes. A particularly useful strategy is to use molecular simulations as a modeling tool to interpret experimental measurements, and to use experimental data to refine our biophysical models. Thus, explicit integration and synergy between molecular simulations and experiments is fundamental for furthering our understanding of biological processes. This is especially true in the case where discrepancies between measured and simulated observables emerge. In this chapter, we provide an overview of some of the core ideas behind methods that were developed to improve the consistency between experimental information and numerical predictions. We distinguish between situations where experiments are used to refine our understanding and models of specific systems, and situations where experiments are used more generally to refine transferable models. We discuss different philosophies and attempt to unify them in a single framework. Until now, such integration between experiments and simulations have mostly been applied to equilibrium data, and we discuss more recent developments aimed to analyze time-dependent or time-resolved data.
Collapse
Affiliation(s)
- Simone Orioli
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Haahr Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Atomistic Simulations Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
95
|
Caparotta M, Bustos DM, Masone D. Order–disorder skewness in alpha-synuclein: a key mechanism to recognize membrane curvature. Phys Chem Chem Phys 2020; 22:5255-5263. [DOI: 10.1039/c9cp04951g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, membrane curvature is understood as an active mechanism to control cells spatial organization and activity.
Collapse
Affiliation(s)
- Marcelo Caparotta
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
| | - Diego M. Bustos
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Facultad de Ingeniería
| |
Collapse
|
96
|
Wäschenbach L, Gertzen CGW, Keitel V, Gohlke H. Dimerization energetics of the G-protein coupled bile acid receptor TGR5 from all-atom simulations. J Comput Chem 2019; 41:874-884. [PMID: 31880348 DOI: 10.1002/jcc.26135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
We describe the first extensive energetic evaluation of GPCR dimerization on the atomistic level by means of potential of mean force (PMF) computations and implicit solvent/implicit membrane end-point free energy calculations (MM-PBSA approach). Free energies of association computed from the PMFs show that the formation of both the 1/8 and 4/5 interface is energetically favorable for TGR5, the first GPCR known to be activated by hydrophobic bile acids and neurosteroids. Furthermore, formation of the 1/8 interface is favored over that of the 4/5 interface. Both results are in line with our previous FRET experiments in live cells. Differences in lipid-protein interactions are identified to contribute to the observed differences in free energies of association. A per-residue decomposition of the MM-PBSA effective binding energy reveals hot spot residues specific for both interfaces that form clusters. This knowledge may be used to guide the design of dimerization inhibitors or perform mutational studies to explore physiological consequences of distorted TGR5 association. Finally, we characterized the role of Y111, located in the conserved (D/E)RY motif, as a facilitator of TGR5 interactions. The types of computations performed here should be transferable to other transmembrane proteins that form dimers or higher oligomers as long as good structural models of the dimeric or oligomeric states are available. Such computations may help to overcome current restrictions due to an imperfect energetic representation of protein association at the coarse-grained level. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucas Wäschenbach
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute for Complex Systems-Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
97
|
Zhou W, Fiorin G, Anselmi C, Karimi-Varzaneh HA, Poblete H, Forrest LR, Faraldo-Gómez JD. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 2019; 8:50576. [PMID: 31855177 PMCID: PMC6957315 DOI: 10.7554/elife.50576] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
That channels and transporters can influence the membrane morphology is increasingly recognized. Less appreciated is that the extent and free-energy cost of these deformations likely varies among different functional states of a protein, and thus, that they might contribute significantly to defining its mechanism. We consider the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known. Molecular simulations indicate that when the protomers become inward-facing, they cause deep, long-ranged, and yet mutually-independent membrane deformations. Using a novel simulation methodology, we estimate that the free-energy cost of this membrane perturbation is in the order of 6–7 kcal/mol per protomer. Compensating free-energy contributions within the protein or its environment must thus stabilize this inward-facing conformation for the transporter to function. We discuss these striking results in the context of existing experimental observations for this and other transporters.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Giacomo Fiorin
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Claudio Anselmi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hossein Ali Karimi-Varzaneh
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Horacio Poblete
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States.,Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
98
|
Su Z, Wu Y. Computational simulations of TNF receptor oligomerization on plasma membrane. Proteins 2019; 88:698-709. [PMID: 31710744 DOI: 10.1002/prot.25854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
The interactions between tumor necrosis factors (TNFs) and their corresponding receptors (TNFRs) play a pivotal role in inflammatory responses. Upon ligand binding, TNFR receptors were found to form oligomers on cell surfaces. However, the underlying mechanism of oligomerization is not fully understood. In order to tackle this problem, molecular dynamics (MD) simulations have been applied to the complex between TNF receptor-1 (TNFR1) and its ligand TNF-α as a specific test system. The simulations on both all-atom (AA) and coarse-grained (CG) levels achieved the similar results that the extracellular domains of TNFR1 can undergo large fluctuations on plasma membrane, while the dynamics of TNFα-TNFR1 complex is much more constrained. Using the CG model with the Martini force field, we are able to simulate the systems that contain multiple TNFα-TNFR1 complexes with the timescale of microseconds. We found that complexes can aggregate into oligomers on the plasma membrane through the lateral interactions between receptors at the end of the CG simulations. We suggest that this spatial organization is essential to the efficiency of signal transduction for ligands that belong to the TNF superfamily. We further show that the aggregation of two complexes is initiated by the association between the N-terminal domains of TNFR1 receptors. Interestingly, the cis-interfaces between N-terminal regions of two TNF receptors have been observed in the previous X-ray crystallographic experiment. Therefore, we provide supportive evidence that cis-interface is of functional importance in triggering the receptor oligomerization. Taken together, our study brings insights to understand the molecular mechanism of TNF signaling.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
99
|
Fu L, Wan M, Zhang S, Gao L, Fang W. Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophys J 2019; 118:138-150. [PMID: 31812355 DOI: 10.1016/j.bpj.2019.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria have increased the prevalence of a variety of serious diseases in modern times. Polymyxins are used as the last-line therapeutic options for the treatment of infections. However, the mechanism of action of polymyxins remains in dispute. In this work, we used a coarse-grained molecular dynamics simulation to investigate the mechanism of the cationic antimicrobial peptide polymyxin B (PmB) interacting with both the inner and outer membrane models of bacteria. Our results show that the binding of PmB disturbs the outer membrane by displacing the counterions, decreasing the orientation order of the lipopolysaccharide tail, and creating more lipopolysaccharide packing defects. Upon binding onto the inner membrane, in contrast to the traditional killing mechanism that antimicrobial peptides usually use to induce holes in the membrane, PmBs do not permeabilize the inner membrane but stiffen it by filling up the lipid packing defect, increasing the lipid tail order and the membrane bending rigidity as well as restricting the lipid diffusion. PmBs also mediate intermembrane contact and adhesion. These joint effects suggest that PmBs deprive the biological activity of Gram-negative bacteria by sterilizing the cell.
Collapse
Affiliation(s)
- Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
100
|
Fagerberg E, Lenton S, Skepö M. Evaluating Models of Varying Complexity of Crowded Intrinsically Disordered Protein Solutions Against SAXS. J Chem Theory Comput 2019; 15:6968-6983. [DOI: 10.1021/acs.jctc.9b00723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| |
Collapse
|