51
|
Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 2015; 30:1-7. [PMID: 26615332 DOI: 10.1016/j.mib.2015.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The human pathogen Vibrio cholerae is an autochthonous inhabitant of aquatic environments where it often interacts with zooplankton and their chitinous molts. Chitin induces natural competence for transformation in V. cholerae, a key mode of horizontal gene transfer (HGT). Recent comparative genomic analyses were indicative of extensive HGT in this species. However, we can still expand our understanding of the complex regulatory network that drives competence in V. cholerae. Here, we present recent advances, including the elucidation of bipartite competence regulation mediated by QstR, the inclusion of the type VI secretion system in the competence regulon of pandemic O1 El Tor strains, and the identification of TfoS as a transcriptional regulator that links chitin to competence induction in V. cholerae.
Collapse
Affiliation(s)
- Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
52
|
Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering. J Bacteriol 2015; 198:578-90. [PMID: 26598368 DOI: 10.1128/jb.00747-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The classical and El Tor biotypes of Vibrio cholerae serogroup O1, the etiological agent of cholera, are responsible for the sixth and seventh (current) pandemics, respectively. A genomic island (GI), GI-24, previously identified in a classical biotype strain of V. cholerae, is predicted to encode clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins); however, experimental evidence in support of CRISPR activity in V. cholerae has not been documented. Here, we show that CRISPR-Cas is ubiquitous in strains of the classical biotype but excluded from strains of the El Tor biotype. We also provide in silico evidence to suggest that CRISPR-Cas actively contributes to phage resistance in classical strains. We demonstrate that transfer of GI-24 to V. cholerae El Tor via natural transformation enables CRISPR-Cas-mediated resistance to bacteriophage CP-T1 under laboratory conditions. To elucidate the sequence requirements of this type I-E CRISPR-Cas system, we engineered a plasmid-based system allowing the directed targeting of a region of interest. Through screening for phage mutants that escape CRISPR-Cas-mediated resistance, we show that CRISPR targets must be accompanied by a 3' TT protospacer-adjacent motif (PAM) for efficient interference. Finally, we demonstrate that efficient editing of V. cholerae lytic phage genomes can be performed by simultaneously introducing an editing template that allows homologous recombination and escape from CRISPR-Cas targeting. IMPORTANCE Cholera, caused by the facultative pathogen Vibrio cholerae, remains a serious public health threat. Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) provide prokaryotes with sequence-specific protection from invading nucleic acids, including bacteriophages. In this work, we show that one genomic feature differentiating sixth pandemic (classical biotype) strains from seventh pandemic (El Tor biotype) strains is the presence of a CRISPR-Cas system in the classical biotype. We demonstrate that the CRISPR-Cas system from a classical biotype strain can be transferred to a V. cholerae El Tor biotype strain and that it is functional in providing resistance to phage infection. Finally, we show that this CRISPR-Cas system can be used as an efficient tool for the editing of V. cholerae lytic phage genomes.
Collapse
|
53
|
Matthey N, Blokesch M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. Trends Microbiol 2015; 24:98-110. [PMID: 26614677 DOI: 10.1016/j.tim.2015.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
54
|
Markov EY, Kulikalova ES, Urbanovich LY, Vishnyakov VS, Balakhonov SV. Chitin and Products of Its Hydrolysis in Vibrio cholerae Ecology. BIOCHEMISTRY (MOSCOW) 2015; 80:1109-16. [PMID: 26555464 DOI: 10.1134/s0006297915090023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of chitin and its hydrolysis products generated by Vibrio cholerae chitinases in mechanisms of its adaptation in water environments, metabolism, preservation, acquisition of pathogenic potential, and its epidemiological value are reviewed. Chitin utilization by V. cholerae as a source of energy, carbon, and nitrogen is described. Chitin association promotes biofilm formation on natural chitinous surfaces, increasing V. cholerae resistance to adverse factors in ecological niches: the human body and water environments with its inhabitants. Hydrolytic enzymes regulated by the corresponding genes result in complete chitin biodegradation by a chitinolytic catabolic cascade. Consequences of V. cholerae cell and chitin interaction at different hierarchical levels include metabolic and physiological cell reactions such as chemotaxis, cell division, biofilm formation, induction of genetic competence, and commensalic and symbiotic mutual relations with higher organisms, nutrient cycle, pathogenicity for humans, and water organisms that is an example of successful interrelation of bacteria and substratum in the ecology of the microorganism.
Collapse
Affiliation(s)
- E Yu Markov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, Irkutsk, 664002, Russia.
| | | | | | | | | |
Collapse
|
55
|
Blokesch M. Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: Intestinal interbacterial killing by competence-induced V. cholerae. Bioessays 2015; 37:1163-8. [PMID: 26445388 DOI: 10.1002/bies.201500101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human pathogen Vibrio cholerae exhibits two distinct lifestyles: one in the aquatic environment where it often associates with chitinous surfaces and the other as the causative agent of the disease cholera. While much of the research on V. cholerae has focused on the host-pathogen interaction, knowledge about the environmental lifestyle of the pathogen remains limited. We recently showed that the polymer chitin, which is extremely abundant in aquatic environments, induces natural competence as a mode of horizontal gene transfer and that this competence regulon also includes the type VI secretion system (T6SS), a molecular killing device. Here, I discuss the putative consequences that chitin-induced T6SS activation could have on intestinal colonization and how the transmission route might influence disease outcome. Moreover, I propose that common infant animal models for cholera might not sufficiently take into account T6SS-mediated interbacterial warfare between V. cholerae and the intestinal microbiota.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| |
Collapse
|
56
|
A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. Proc Natl Acad Sci U S A 2015; 112:10485-90. [PMID: 26240317 DOI: 10.1073/pnas.1509097112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Natural transformation is one mechanism of horizontal gene transfer (HGT) in Vibrio cholerae, the causative agent of cholera. Recently, it was found that V. cholerae isolates from the Haiti outbreak were poorly transformed by this mechanism. Here, we show that an integrating conjugative element (ICE)-encoded DNase, which we name IdeA, is necessary and sufficient for inhibiting natural transformation of Haiti outbreak strains. We demonstrate that IdeA inhibits this mechanism of HGT in cis via DNA endonuclease activity that is localized to the periplasm. Furthermore, we show that natural transformation between cholera strains in a relevant environmental context is inhibited by IdeA. The ICE encoding IdeA is globally distributed. Therefore, we analyzed the prevalence and role for this ICE in limiting natural transformation of isolates from Bangladesh collected between 2001 and 2011. We found that IdeA(+) ICEs were nearly ubiquitous in isolates from 2001 to 2005; however, their prevalence decreased to ∼40% from 2006 to 2011. Thus, IdeA(+) ICEs may have limited the role of natural transformation in V. cholerae. However, the rise in prevalence of strains lacking IdeA may now increase the role of this conserved mechanism of HGT in the evolution of this pathogen.
Collapse
|
57
|
Xu Z, Du P, Zhu B, Xu L, Wang H, Gao Y, Zhou H, Zhang W, Chen C, Shao Z. Phylogenetic study of clonal complex (CC)198 capsule null locus (cnl) genomes: A distinctive group within the species Neisseria meningitidis. INFECTION GENETICS AND EVOLUTION 2015; 34:372-7. [PMID: 26171575 DOI: 10.1016/j.meegid.2015.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Capsule null locus (cnl) strains, one type of specific unencapsulated Neisseria spp., only have regions D and E of the capsule gene cluster which encodes the genes for capsule biosynthesis, modification, and transportation. Compared with encapsulated strains, regions A and C of cnl strains have been replaced by 113 or 114 bp conserved non-coding sequences. Cnl strains include multiple clonal complexes (CC). According to previous studies, CC198 is the major clonal lineage in both cnl patients and healthy cnl carriers. We hypothesized that CC198 possesses different genome characteristics compared with other cnl strains. In this study, we obtained the draft genomes of two CC198 strains from healthy carriers. Using 75071 single nucleotide polymorphisms located in 1163 core genes, we constructed the phylogenetic relationships between a batch of representative Neisseria meningitidis genomes. CC198 and CC1136 clustered together, but apart from other N. meningitidis strains including CC53. We also aligned the sequences of genes located in regions D and E of the capsule gene locus from encapsulated and unencapsulated strains. A number of possible recombination events were identified in the galE and tex genes between different serogroups of encapsulated N. meningitidis and CC53 strains, especially in tex. In contrast, there is almost no recombination in N. meningitidis CC198 strains. These results showed that CC198 belongs to a phylogenetically distinct group within the species N. meningitidis, which may be directly derived from the cnl-type ancestor of N. meningitidis. The encapsulated strains may acquire other necessary genes for capsule formation by horizontal transfer.
Collapse
Affiliation(s)
- Zheng Xu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Pengcheng Du
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Bingqing Zhu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li Xu
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Haiyin Wang
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yuan Gao
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wen Zhang
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Chen Chen
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China.
| |
Collapse
|
58
|
Abstract
ABSTRACT
Many Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of “transformation.” Recent studies have identified multiple environmental cues sufficient to induce natural transformation in
Vibrio cholerae
and several other
Vibrio
species. In
V. cholerae
, nutrient limitation activates the cAMP receptor protein regulator, quorum-sensing signals promote synthesis of HapR-controlled QstR, chitin stimulates production of TfoX, and low extracellular nucleosides allow CytR to serve as an additional positive regulator. The network of signaling systems that trigger expression of each of these required regulators is well described, but the mechanisms by which each in turn controls competence apparatus genes is poorly understood. Recent work has defined a minimal set of genes that encode apparatus components and begun to characterize the architecture of the machinery by fluorescence microscopy. While studies with a small set of
V. cholerae
reference isolates have identified regulatory and competence genes required for DNA uptake, future studies may identify additional genes and regulatory connections, as well as revealing how common natural competence is among diverse
V. cholerae
isolates and other
Vibrio
species.
Collapse
|
59
|
Abstract
ABSTRACT
Vibrio
-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1°C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on
Vibrio
interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.
Collapse
|
60
|
Pentavalent outer membrane vesicles of Vibrio cholerae induce adaptive immune response and protective efficacy in both adult and passive suckling mice models. Microbes Infect 2015; 17:215-27. [DOI: 10.1016/j.micinf.2014.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/08/2023]
|
61
|
Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. Aquatic invasive species: challenges for the future. HYDROBIOLOGIA 2015; 750:147-170. [PMID: 32214452 DOI: 10.1007/s10750-014-2150-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 05/24/2023]
Abstract
Humans have effectively transported thousands of species around the globe and, with accelerated trade; the rate of introductions has increased over time. Aquatic ecosystems seem at particular risk from invasive species because of threats to biodiversity and human needs for water resources. Here, we review some known aspects of aquatic invasive species (AIS) and explore several new questions. We describe impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS. We also review the characteristics of species that should be the greatest threat for future invasions, including those that pave the way for invasions by other species ("invasional meltdown"). Susceptible aquatic communities, such as reservoirs, may serve as stepping stones for invasions of new landscapes. Some microbes disperse long distance, infect new hosts and grow in the external aquatic medium, a process that has consequences for human health. We also discuss the interaction between species invasions and other human impacts (climate change, landscape conversion), as well as the possible connection of invasions with regime shifts in lakes. Since many invaders become permanent features of the environment, we discuss how humans live with invasive species, and conclude with questions for future research.
Collapse
Affiliation(s)
- John E Havel
- 1Department of Biology, Missouri State University, 901 S. National Avenue, Springfield, MO 65897 USA
| | - Katya E Kovalenko
- 2Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway, Duluth, MN 55812 USA
| | - Sidinei Magela Thomaz
- 3State University of Maringá, Nupélia/DBI/PEA, Colombo Avenue 5790, Maringá, PR 87020-900 Brazil
| | - Stefano Amalfitano
- 4Water Research Institute (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Rome Italy
| | - Lee B Kats
- 5Natural Science Division, Pepperdine University, Malibu, CA 90263 USA
| |
Collapse
|
62
|
TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. J Bacteriol 2015; 197:1065-74. [PMID: 25561715 DOI: 10.1128/jb.02347-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacterial strain variation exists in natural populations of bacteria and can be generated experimentally through directed or random mutation. The advent of rapid and cost-efficient whole-genome sequencing has facilitated strain-level genotyping. Even with modern tools, however, it often remains a challenge to map specific traits to individual genetic loci, especially for traits that cannot be selected under culture conditions (e.g., colonization level or pathogenicity). Using a combination of classical and modern approaches, we analyzed strain-level variation in Vibrio fischeri and identified the basis by which some strains lack the ability to utilize glycerol as a carbon source. We proceeded to reconstruct the lineage of the commonly used V. fischeri laboratory strains. Compared to the wild-type ES114 strain, we identify in ES114-L a 9.9-kb deletion with endpoints in tadB2 and glpF; restoration of the missing portion of glpF restores the wild-type phenotype. The widely used strains ESR1, JRM100, and JRM200 contain the same deletion, and ES114-L is likely a previously unrecognized intermediate strain in the construction of many ES114 derivatives. ES114-L does not exhibit a defect in competitive squid colonization but ESR1 does, demonstrating that glycerol utilization is not required for early squid colonization. Our genetic mapping approach capitalizes on the recently discovered chitin-based transformation pathway, which is conserved in the Vibrionaceae; therefore, the specific approach used is likely to be useful for mapping genetic traits in other Vibrio species.
Collapse
|
63
|
Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. Aquatic invasive species: challenges for the future. HYDROBIOLOGIA 2015; 750:147-170. [PMID: 32214452 PMCID: PMC7087615 DOI: 10.1007/s10750-014-2166-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/20/2014] [Accepted: 12/24/2014] [Indexed: 05/15/2023]
Abstract
Humans have effectively transported thousands of species around the globe and, with accelerated trade; the rate of introductions has increased over time. Aquatic ecosystems seem at particular risk from invasive species because of threats to biodiversity and human needs for water resources. Here, we review some known aspects of aquatic invasive species (AIS) and explore several new questions. We describe impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS. We also review the characteristics of species that should be the greatest threat for future invasions, including those that pave the way for invasions by other species ("invasional meltdown"). Susceptible aquatic communities, such as reservoirs, may serve as stepping stones for invasions of new landscapes. Some microbes disperse long distance, infect new hosts and grow in the external aquatic medium, a process that has consequences for human health. We also discuss the interaction between species invasions and other human impacts (climate change, landscape conversion), as well as the possible connection of invasions with regime shifts in lakes. Since many invaders become permanent features of the environment, we discuss how humans live with invasive species, and conclude with questions for future research.
Collapse
Affiliation(s)
- John E. Havel
- Department of Biology, Missouri State University, 901 S. National Avenue, Springfield, MO 65897 USA
| | - Katya E. Kovalenko
- Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway, Duluth, MN 55812 USA
| | - Sidinei Magela Thomaz
- State University of Maringá, Nupélia/DBI/PEA, Colombo Avenue 5790, Maringá, PR 87020-900 Brazil
| | - Stefano Amalfitano
- Water Research Institute (IRSA-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Rome Italy
| | - Lee B. Kats
- Natural Science Division, Pepperdine University, Malibu, CA 90263 USA
| |
Collapse
|
64
|
Lo Scrudato M, Borgeaud S, Blokesch M. Regulatory elements involved in the expression of competence genes in naturally transformable Vibrio cholerae. BMC Microbiol 2014; 14:327. [PMID: 25539806 PMCID: PMC4299799 DOI: 10.1186/s12866-014-0327-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Background The human pathogen Vibrio cholerae normally enters the developmental program of natural competence for transformation after colonizing chitinous surfaces. Natural competence is regulated by at least three pathways in this organism: chitin sensing/degradation, quorum sensing and carbon catabolite repression (CCR). The cyclic adenosine monophosphate (cAMP) receptor protein CRP, which is the global regulator of CCR, binds to regulatory DNA elements called CRP sites when in complex with cAMP. Previous studies in Haemophilus influenzae suggested that the CRP protein binds competence-specific CRP-S sites under competence-inducing conditions, most likely in concert with the master regulator of transformation Sxy/TfoX. Results In this study, we investigated the regulation of the competence genes qstR and comEA as an example of the complex process that controls competence gene activation in V. cholerae. We identified previously unrecognized putative CRP-S sites upstream of both genes. Deletion of these motifs significantly impaired natural transformability. Moreover, site-directed mutagenesis of these sites resulted in altered gene expression. This altered gene expression also correlated directly with protein levels, bacterial capacity for DNA uptake, and natural transformability. Conclusions Based on the data provided in this study we suggest that the identified sites are important for the expression of the competence genes qstR and comEA and therefore for natural transformability of V. cholerae even though the motifs might not reflect bona fide CRP-S sites.
Collapse
|
65
|
The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. mBio 2014; 5:mBio.02283-14. [PMID: 25538196 PMCID: PMC4278540 DOI: 10.1128/mbio.02283-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bacterial cell surface is the first structure the host immune system targets to prevent infection. Cationic antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS) molecules. We recently reported that modern strains of the global intestinal pathogen Vibrio cholerae modify the anionic lipid A domain of LPS with a novel moiety, amino acids. Remarkably, glycine or diglycine addition to lipid A alters the surface charge of the bacteria to help evade the cationic antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. cholerae are unknown. Here, we identify a novel two-component system that regulates lipid A glycine modification by responding to important biological cues associated with pathogenesis, including bile, mildly acidic pH, and cationic antimicrobial peptides. The histidine kinase Vc1319 (VprB) and the response regulator Vc1320 (VprA) respond to these signals and are required for the expression of the almEFG operon that encodes the genes essential for glycine modification of lipid A. Importantly, both the newly identified two-component system and the lipid A modification machinery are required for colonization of the mammalian host. This study demonstrates how V. cholerae uses a previously unknown regulatory network, independent of well-studied V. cholerae virulence factors and regulators, to respond to the host environment and cause infection. Vibrio cholerae, the etiological agent of cholera disease, infects millions of people every year. V. cholerae El Tor and classical biotypes have been responsible for all cholera pandemics. The El Tor biotype responsible for the current seventh pandemic has displaced the classical biotype worldwide and is highly resistant to cationic antimicrobial peptides, like polymyxin B. This resistance arises from the attachment of one or two glycine residues to the lipid A domain of lipopolysaccharide, a major surface component of Gram-negative bacteria. Here, we identify the VprAB two-component system that regulates the charge of the bacterial surface by directly controlling the expression of genes required for glycine addition to lipid A. The VprAB-dependent lipid A modification confers polymyxin B resistance and contributes significantly to pathogenesis. This finding is relevant for understanding how Vibrio cholerae has evolved mechanisms to facilitate the evasion of the host immune system and increase bacterial fitness.
Collapse
|
66
|
Mazel D, Colwell R, Klose K, Oliver J, Crumlish M, McDougald D, Bland MJ, Austin B. VIBRIO 2014 meeting report. Res Microbiol 2014; 165:857-64. [PMID: 25463383 DOI: 10.1016/j.resmic.2014.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/15/2014] [Accepted: 10/15/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Didier Mazel
- Unité Plasticité du Génome bactérien and CNRS UMR 3525, Département de Génomes et Génétique, Institut Pasteur, Paris, France.
| | - Rita Colwell
- Maryland Pathogen Research Institute and Center of Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Karl Klose
- Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - James Oliver
- Department of Biology, University North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Mags Crumlish
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, The University of New South Wales, Sydney 2052, Australia
| | - Michael J Bland
- Unité Plasticité du Génome bactérien and CNRS UMR 3525, Département de Génomes et Génétique, Institut Pasteur, Paris, France
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
67
|
Abstract
Many bacteria can become naturally competent to take up extracellular DNA across their outer and inner membranes by a dedicated competence apparatus. Whereas some studies show that the DNA delivered to the cytoplasm may be used for genome repair or for nutrition, it can also be recombined onto the chromosome by homologous recombination: a process called natural transformation. Along with conjugation and transduction, natural transformation represents a mechanism for horizontal transfer of genetic material, e.g., antibiotic resistance genes, which can confer new beneficial characteristics onto the recipient bacteria. Described here are protocols for quantifying the frequency of transformation for the human pathogen Vibrio cholerae, one of several Vibrio species recently shown to be capable of natural transformation.
Collapse
Affiliation(s)
- Samit S Watve
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | | | | |
Collapse
|
68
|
Blokesch M. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae. Mob Genet Elements 2014; 2:224-227. [PMID: 23446800 PMCID: PMC3575429 DOI: 10.4161/mge.22284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a fundamental gap in our understanding of how horizontal gene transfer contributes to the enormous range of genetic variations that are observed among bacteria. The objective of our study was to better understand how the acquisition of genetic material by natural transformation is regulated within a population of Vibrio cholerae cells. V. cholerae is an aquatic bacterium and a facultative human pathogen. It acquires natural competence for transformation in response to changing environmental signals, such as the presence of chitinous surfaces, the absence of monomeric sugars and quorum sensing-linked autoinducers. The latter play a distinctive role in V. cholerae as they fine-tune a switch from the degradation of extracellular DNA toward the uptake of intact DNA strands in competence-induced cells. The link between quorum sensing and natural competence for transformation will be discussed. Furthermore, we speculate on the overrepresentation of transformation-negative strains of V. cholerae in patient-derived culture collections, which might be the result of a biased sampling strategy as virulence and natural transformation are contrarily regulated by the quorum sensing network.
Collapse
Affiliation(s)
- Melanie Blokesch
- Global Health Institute; School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne, Switzerland
| |
Collapse
|
69
|
Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. mBio 2014; 5:mBio.01356-14. [PMID: 25139901 PMCID: PMC4147863 DOI: 10.1128/mbio.01356-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SXT-R391 Integrative conjugative elements (ICEs) are self-transmissible mobile genetic elements able to confer multidrug resistance and other adaptive features to bacterial hosts, including Vibrio cholerae, the causative agent of cholera. ICEs are arranged in a mosaic genetic structure composed of a conserved backbone interspersed with variable DNA clusters located in conserved hot spots. In this study, we investigated ICE acquisition and subsequent microevolution in pandemic V. cholerae. Ninety-six ICEs were retrieved from publicly available sequence databases from V. cholerae clinical strains and were compared to a set of reference ICEs. Comparative genomics highlighted the existence of five main ICE groups with a distinct genetic makeup, exemplified by ICEVchInd5, ICEVchMoz10, SXT, ICEVchInd6, and ICEVchBan11. ICEVchInd5 (the most frequent element, represented by 70 of 96 elements analyzed) displayed no sequence rearrangements and was characterized by 46 single nucleotide polymorphisms (SNPs). SNP analysis revealed that recent inter-ICE homologous recombination between ICEVchInd5 and other ICEs circulating in gammaproteobacteria generated ICEVchMoz10, ICEVchInd6, and ICEVchBan11. Bayesian phylogenetic analyses indicated that ICEVchInd5 and SXT were independently acquired by the current pandemic V. cholerae O1 and O139 lineages, respectively, within a period of only a few years. SXT-R391 ICEs have been recognized as key vectors of antibiotic resistance in the seventh-pandemic lineage of V. cholerae, which remains a major cause of mortality and morbidity on a global scale. ICEs were acquired only recently in this clade and are acknowledged to be major contributors to horizontal gene transfer and the acquisition of new traits in bacterial species. We have reconstructed the temporal dynamics of SXT-R391 ICE acquisition and spread and have identified subsequent recombination events generating significant diversity in ICEs currently circulating among V. cholerae clinical strains. Our results showed that acquisition of SXT-R391 ICEs provided the V. cholerae seventh-pandemic lineage not only with a multidrug resistance phenotype but also with a powerful molecular tool for rapidly accessing the pan-genome of a large number of gammaproteobacteria.
Collapse
|
70
|
High prevalence of toxin producing enteropathogenic Vibrios among estuarine crab in Ganges delta of West Bengal, India. INFECTION GENETICS AND EVOLUTION 2014; 26:359-61. [PMID: 24927645 DOI: 10.1016/j.meegid.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 11/24/2022]
|
71
|
Akoachere JFTK, Mbuntcha CKP. Water sources as reservoirs of Vibrio cholerae O1 and non-O1 strains in Bepanda, Douala (Cameroon): relationship between isolation and physico-chemical factors. BMC Infect Dis 2014; 14:421. [PMID: 25073409 PMCID: PMC4131033 DOI: 10.1186/1471-2334-14-421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 07/11/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cholera has been endemic in Douala since 1971. Most outbreaks start from Bepanda, an overcrowded neighbourhood with poor hygiene and sanitary conditions. We investigated water sources in Bepanda as reservoirs of Vibrio cholerae, the causative agent of cholera, determined its antibiotic susceptibility and some physico-chemical characteristics that could maintain the endemicity of this organism in Bepanda. METHODS Three hundred and eighteen water samples collected from 45 wells, 8 taps and 1 stream from February to July 2009 were analyzed for V. cholerae using standard methods. Isolates were characterized morphologically, biochemically and serologically. The disc diffusion technique was employed to investigate antibiotic susceptibility. Differences in prevalence of organism between seasons were analysed. Correlation strength and direction of association between physico-chemical parameters and occurrence of V. cholerae was analyzed using the Kendall tau_b non-parametric correlation. This was further confirmed with the forward-stepwise binary logistic regression. RESULTS Eighty-seven (27.4%) samples were positive for V. cholerae. Isolation was highest from wells. The organism was isolated in the rainy season and dry season but the frequency of isolation was significantly higher (χ2 = 7.009, df = 1, P = 0.008) in the rainy season. Of the 96 confirmed V. cholerae isolates, 32 (33.3%) belonged to serogroup O1 and 64 (66.6%) were serogroup non-O1/non-O139. Isolates from tap (municipal water) were non-O1/non-O139 strains. Salinity had a significant positive correlation with isolation in the dry season (+0.267, P = 0.015) and rainy season (+0.223, P = 0.028). The forward-stepwise method of binary logistic regression indicated that as pH (Wald = 11.753, df = 1), P = 0.001) increased, odds of isolation of V. cholerae also increased (B = 1.297, S.E = 0.378, Exp(B) = 3.657). All isolates were sensitive to ciprofloxacin and ofloxacin. Multi-drug resistance was predominant among the non-O1/non-O139 isolates. CONCLUSION V. cholerae was found in wells and stream in both seasons. Cholera will continue to be a health threat in Bepanda if intervention measures to prevent outbreak are not implemented. Continuous monitoring of water sources in this and other cholera high-risk areas in Cameroon is necessary, for a better preparedness and control of cholera.
Collapse
Affiliation(s)
- Jane-Francis Tatah Kihla Akoachere
- />Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- />Laboratory for Emerging Infectious Diseases, Faculty of Science, University of Buea, Buea, Cameroon
| | | |
Collapse
|
72
|
Lehmann JS, Matthias MA, Vinetz JM, Fouts DE. Leptospiral pathogenomics. Pathogens 2014; 3:280-308. [PMID: 25437801 PMCID: PMC4243447 DOI: 10.3390/pathogens3020280] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022] Open
Abstract
Leptospirosis, caused by pathogenic spirochetes belonging to the genus Leptospira, is a zoonosis with important impacts on human and animal health worldwide. Research on the mechanisms of Leptospira pathogenesis has been hindered due to slow growth of infectious strains, poor transformability, and a paucity of genetic tools. As a result of second generation sequencing technologies, there has been an acceleration of leptospiral genome sequencing efforts in the past decade, which has enabled a concomitant increase in functional genomics analyses of Leptospira pathogenesis. A pathogenomics approach, by coupling of pan-genomic analysis of multiple isolates with sequencing of experimentally attenuated highly pathogenic Leptospira, has resulted in the functional inference of virulence factors. The global Leptospira Genome Project supported by the U.S. National Institute of Allergy and Infectious Diseases to which key scientific contributions have been made from the international leptospirosis research community has provided a new roadmap for comprehensive studies of Leptospira and leptospirosis well into the future. This review describes functional genomics approaches to apply the data generated by the Leptospira Genome Project towards deepening our knowledge of virulence factors of Leptospira using the emerging discipline of pathogenomics.
Collapse
Affiliation(s)
- Jason S Lehmann
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | - Michael A Matthias
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0741, USA.
| | | |
Collapse
|
73
|
Kremer N, Philipp EER, Carpentier MC, Brennan CA, Kraemer L, Altura MA, Augustin R, Häsler R, Heath-Heckman EAC, Peyer SM, Schwartzman J, Rader BA, Ruby EG, Rosenstiel P, McFall-Ngai MJ. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 2014; 14:183-94. [PMID: 23954157 DOI: 10.1016/j.chom.2013.07.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/12/2013] [Accepted: 06/24/2013] [Indexed: 11/30/2022]
Abstract
Upon transit to colonization sites, bacteria often experience critical priming that prepares them for subsequent, specific interactions with the host; however, the underlying mechanisms are poorly described. During initiation of the symbiosis between the bacterium Vibrio fischeri and its squid host, which can be observed directly and in real time, approximately five V. fischeri cells aggregate along the mucociliary membranes of a superficial epithelium prior to entering host tissues. Here, we show that these few early host-associated symbionts specifically induce robust changes in host gene expression that are critical to subsequent colonization steps. This exquisitely sensitive response to the host's specific symbiotic partner includes the upregulation of a host endochitinase, whose activity hydrolyzes polymeric chitin in the mucus into chitobiose, thereby priming the symbiont and also producing a chemoattractant gradient that promotes V. fischeri migration into host tissues. Thus, the host responds transcriptionally upon initial symbiont contact, which facilitates subsequent colonization.
Collapse
Affiliation(s)
- Natacha Kremer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M, Watanabe H, Izumiya H. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 2013; 91:326-47. [PMID: 24236404 DOI: 10.1111/mmi.12462] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 11/27/2022]
Abstract
In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, Wang L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2013; 38:56-89. [PMID: 23848592 DOI: 10.1111/1574-6976.12034] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Sun Y, Bernardy EE, Hammer BK, Miyashiro T. Competence and natural transformation in vibrios. Mol Microbiol 2013; 89:583-95. [PMID: 23803158 DOI: 10.1111/mmi.12307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| | - Eryn E Bernardy
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Brian K Hammer
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| |
Collapse
|
77
|
Analysis of Vibrio cholerae genome sequences reveals unique rtxA variants in environmental strains and an rtxA-null mutation in recent altered El Tor isolates. mBio 2013; 4:e00624. [PMID: 23592265 PMCID: PMC3634609 DOI: 10.1128/mbio.00624-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vibrio cholerae genome sequences were analyzed for variation in the rtxA gene that encodes the multifunctional autoprocessing RTX (MARTX) toxin. To accommodate genomic analysis, a discrepancy in the annotated rtxA start site was resolved experimentally. The correct start site is an ATG downstream from rtxC resulting in a gene of 13,638 bp and deduced protein of 4,545 amino acids. Among the El Tor O1 and closely related O139 and O37 genomes, rtxA was highly conserved, with nine alleles differing by only 1 to 6 nucleotides in 100 years. In contrast, 12 alleles from environment-associated isolates are highly variable, at 1 to 3% by nucleotide and 3 to 7% by amino acid. The difference in variation rates did not represent a bias for conservation of the El Tor rtxA compared to that of other strains but rather reflected the lack of gene variation in overall genomes. Three alleles were identified that would affect the function of the MARTX toxin. Two environmental isolates carry novel arrangements of effector domains. These include a variant from RC385 that would suggest an adenylate cyclase toxin and from HE-09 that may have actin ADP-ribosylating activity. Within the recently emerged altered El Tor strains that have a classical ctxB gene, a mutation arose in rtxA that introduces a premature stop codon that disabled toxin function. This null mutant is the genetic background for subsequent emergence of the ctxB7 allele resulting in the strain that spread into Haiti in 2010. Thus, similar to classical strains, the altered El Tor pandemic strains eliminated rtxA after acquiring a classical ctxB. IMPORTANCE Pathogen evolution involves both gain and loss of factors that influence disease. In the environment, bacteria evolve rapidly, with nucleotide diversity arising by genetic modification. Such is occurring with Vibrio cholerae, exemplified by extensive diversity and unique variants of the rtxA-encoded multifunctional autoprocessing RTX (MARTX) toxin among environment-associated strains that cause localized diarrheal outbreaks and food-borne disease. In contrast, seventh pandemic El Tor V. cholerae strains associated with severe diarrhea have changed minimally until the altered El Tor emerged as the most frequent cause of cholera, including in the 2010 Haiti epidemic. These strains have increased virulence attributed to a new variant of the major virulence factor, cholera toxin. It is revealed that these strains also have an inactivated MARTX toxin gene. A similar inactivation occurred during classical cholera pandemics, highlighting that evolution of El Tor cholera is following a similar path of increased dependence on cholera toxin, while eliminating other secreted factors.
Collapse
|
78
|
Marin MA, Vicente ACP. Architecture of the superintegron in Vibrio cholerae: identification of core and unique genes. F1000Res 2013; 2:63. [PMID: 25580216 PMCID: PMC4032106 DOI: 10.12688/f1000research.2-63.v1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/20/2022] Open
Abstract
Background:
Vibriocholerae, the etiologic agent of cholera, is indigenous to aquatic environments. The
V. cholerae genome consists of two chromosomes; the smallest of these harbors a large gene capture and excision system called the superintegron (SI), of ~120 kbp. The flexible nature of the SI that results from gene cassette capture, deletion and rearrangement is thought to make it a hotspot of
V.cholerae diversity, but beyond the basic structure it is not clear if there is a core genome in the SI and if so how it is structured. The aim of this study was to explore the core genome structure and the differences in gene content among strains of
V. cholerae. Methods: From the complete genomes of seven
V.cholerae and one
Vibrio mimicus representative strains,
we recovered the SI sequences based on the locations of the structural gene
IntI4 and the
V.choleraerepeats. Analysis of the pangenome, including cluster analysis of functional genes, pangenome profile analysis, genetic variation analysis of functional genes, strain evolution analysis and function enrichment analysis of gene clusters, was performed using a pangenome analysis pipeline in addition to the R scripts, splitsTree4 and genoPlotR. Results and conclusions: Here, we reveal the genetic architecture of the
V. cholerae SI. It contains eight core genes when
V. mimicus is included and 21 core genes when only
V. cholerae strains are considered; many of them are present in several copies. The
V. cholerae SI has an open pangenome, which means that
V. cholerae may be able to import new gene cassettes to SI. The set of dispensable SI genes is influenced by the niche and type species. The core genes are distributed along the SI, apparently without a position effect.
Collapse
Affiliation(s)
- Michel A Marin
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Rio de Janeiro, 4365, PO Box 926 CEP 21045-900, Brazil
| | - Ana Carolina P Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC), Rio de Janeiro, 4365, PO Box 926 CEP 21045-900, Brazil
| |
Collapse
|
79
|
Islam A, Labbate M, Djordjevic SP, Alam M, Darling A, Melvold J, Holmes AJ, Johura FT, Cravioto A, Charles IG, Stokes HW. Indigenous Vibrio cholerae strains from a non-endemic region are pathogenic. Open Biol 2013; 3:120181. [PMID: 23407641 PMCID: PMC3603452 DOI: 10.1098/rsob.120181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the 200+ serogroups of Vibrio cholerae, only O1 or O139 strains are reported to cause cholera, and mostly in endemic regions. Cholera outbreaks elsewhere are considered to be via importation of pathogenic strains. Using established animal models, we show that diverse V. cholerae strains indigenous to a non-endemic environment (Sydney, Australia), including non-O1/O139 serogroup strains, are able to both colonize the intestine and result in fluid accumulation despite lacking virulence factors believed to be important. Most strains lacked the type three secretion system considered a mediator of diarrhoea in non-O1/O13 V. cholerae. Multi-locus sequence typing (MLST) showed that the Sydney isolates did not form a single clade and were distinct from O1/O139 toxigenic strains. There was no correlation between genetic relatedness and the profile of virulence-associated factors. Current analyses of diseases mediated by V. cholerae focus on endemic regions, with only those strains that possess particular virulence factors considered pathogenic. Our data suggest that factors other than those previously well described are of potential importance in influencing disease outbreaks.
Collapse
Affiliation(s)
- Atiqul Islam
- The Ithree Institute, University of Technology, Broadway, Sydney, New South Wales 2007, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Lo Scrudato M, Blokesch M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res 2013; 41:3644-58. [PMID: 23382174 PMCID: PMC3616704 DOI: 10.1093/nar/gkt041] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human pathogen Vibrio cholerae is an aquatic bacterium associated with zooplankton and their chitinous exoskeletons. On chitinous surfaces, V. cholerae initiates a developmental programme, known as natural competence, to mediate transformation, which is a mode of horizontal gene transfer. Competence facilitates the uptake of free DNA and recombination into the bacterial genome. Recent studies have indicated that chitin surfaces are required, but not sufficient to induce competence. Two additional regulatory pathways, i.e. catabolite repression and quorum sensing (QS), are components of the regulatory network that controls natural competence in V. cholerae. In this study, we investigated the link between chitin induction and QS. We show that the major regulators of these two pathways, TfoX and HapR, are both involved in the activation of a gene encoding a transcriptional regulator of the LuxR-type family, which we named QS and TfoX-dependent regulator (QstR). We demonstrate that HapR binds the promoter of qstR in a site-specific manner, indicating a role for HapR as an activator of qstR. In addition, epistasis experiments indicate that QstR compensates for the absence of HapR. We also provide evidence that QstR is required for the proper expression of a small but essential subset of competence genes and propose a new regulatory model in which QstR links chitin-induced TfoX activity with QS.
Collapse
Affiliation(s)
- Mirella Lo Scrudato
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
81
|
Borgeaud S, Blokesch M. Overexpression of the tcp gene cluster using the T7 RNA polymerase/promoter system and natural transformation-mediated genetic engineering of Vibrio cholerae. PLoS One 2013; 8:e53952. [PMID: 23308292 PMCID: PMC3538720 DOI: 10.1371/journal.pone.0053952] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/04/2012] [Indexed: 12/23/2022] Open
Abstract
The human pathogen and aquatic bacterium Vibrio cholerae belongs to the group of naturally competent bacteria. This developmental program allows the bacterium to take up free DNA from its surrounding followed by a homologous recombination event, which allows integration of the transforming DNA into the chromosome. Taking advantage of this phenomenon we genetically engineered V. cholerae using natural transformation and FLP recombination. More precisely, we adapted the T7 RNA polymerase/promoter system in this organism allowing expression of genes in a T7 RNA polymerase-dependent manner. We naturally transformed V. cholerae by adding a T7-specific promoter sequence upstream the toxin-coregulated pilus (tcp) gene cluster. In a V. cholerae strain, which concomitantly produced the T7 RNA polymerase, this genetic manipulation resulted in the overexpression of downstream genes. The phenotypes of the strain were also in line with the successful production of TCP pili. This provides a proof-of-principle that the T7 RNA polymerase/promoter system is functional in V. cholerae and that genetic engineering of this organism by natural transformation is a straightforward and efficient approach.
Collapse
Affiliation(s)
- Sandrine Borgeaud
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melanie Blokesch
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
82
|
Stine OC, Morris JG. Circulation and transmission of clones of Vibrio cholerae during cholera outbreaks. Curr Top Microbiol Immunol 2013; 379:181-93. [PMID: 24407776 DOI: 10.1007/82_2013_360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cholera is still a major public health problem. The underlying bacterial pathogen Vibrio cholerae (V. cholerae) is evolving and some of its mutations have set the stage for outbreaks. After V. cholerae acquired the mobile elements VSP I & II, the El Tor pandemic began and spread across the tropics. The replacement of the O1 serotype encoding genes with the O139 encoding genes triggered an outbreak that swept across the Indian subcontinent. The sxt element generated a third selective sweep and most recently a fourth sweep was associated with the exchange of the El Tor ctx allele for a classical ctx allele in the El Tor background. In Kenya, variants of this fourth selective sweep have differentiated and become endemic residing in and emerging from environmental reservoirs. On a local level, studies in Bangladesh have revealed that outbreaks may arise from a nonrandom subset of the genetic lineages in the environment and as the population of the pathogen expands, many novel mutations may be found increasing the amount of genetic variation, a phenomenon known as a founder flush. In Haiti, after the initial invasion and expansion of V. cholerae in 2010, a second outbreak occurred in the winter of 2011-2012 driven by natural selection of specific mutations.
Collapse
Affiliation(s)
- O Colin Stine
- Department of Epidemiology and Public Health, University of Maryland, 596 Howard Hall, 660 W. Redwood St., Baltimore, MD, 21201, USA,
| | | |
Collapse
|
83
|
Wang H, Chen S, Zhang J, Rothenbacher FP, Jiang T, Kan B, Zhong Z, Zhu J. Catalases promote resistance of oxidative stress in Vibrio cholerae. PLoS One 2012; 7:e53383. [PMID: 23300923 PMCID: PMC3534063 DOI: 10.1371/journal.pone.0053383] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a major challenge faced by bacteria. Many bacteria control oxidative stress resistance pathways through the transcriptional regulator OxyR. The human pathogen Vibrio cholerae is a Gram-negative bacterium that is the causative agent of cholera. V. cholerae lives in both aquatic environments and human small intestines, two environments in which it encounters reactive oxygen species (ROS). To study how V. cholerae responds to oxidative stress, we constructed an in-frame oxyR deletion mutant. We found that this mutant was not only sensitive to H2O2, but also displayed a growth defect when diluted in rich medium. Further study showed that two catalases, KatG and KatB, either when expressed in living cells, present in culture supernatants, or added as purified recombinant proteins, could rescue the oxyR growth defect. Furthermore, although it could colonize infant mouse intestines similar to that of wildtype, the oxyR mutant was defective in zebrafish intestinal colonization. Alternatively, co-infection with wildtype, but not katG-katB deletion mutants, greatly enhanced oxyR mutant colonization. Our study suggests that OxyR in V. cholerae is critical for antioxidant defense and that the organism is capable of scavenging environmental ROS to facilitate population growth.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shusu Chen
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Zhang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Francesca P. Rothenbacher
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tiantian Jiang
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zengtao Zhong
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (ZZ); (JZ)
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (ZZ); (JZ)
| |
Collapse
|
84
|
Blokesch M. TransFLP--a method to genetically modify Vibrio cholerae based on natural transformation and FLP-recombination. J Vis Exp 2012:3761. [PMID: 23093249 DOI: 10.3791/3761] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Several methods are available to manipulate bacterial chromosomes(1-3). Most of these protocols rely on the insertion of conditionally replicative plasmids (e.g. harboring pir-dependent or temperature-sensitive replicons(1,2)). These plasmids are integrated into bacterial chromosomes based on homology-mediated recombination. Such insertional mutants are often directly used in experimental settings. Alternatively, selection for plasmid excision followed by its loss can be performed, which for Gram-negative bacteria often relies on the counter-selectable levan sucrase enzyme encoded by the sacB gene(4). The excision can either restore the pre-insertion genotype or result in an exchange between the chromosome and the plasmid-encoded copy of the modified gene. A disadvantage of this technique is that it is time-consuming. The plasmid has to be cloned first; it requires horizontal transfer into V. cholerae (most notably by mating with an E. coli donor strain) or artificial transformation of the latter; and the excision of the plasmid is random and can either restore the initial genotype or create the desired modification if no positive selection is exerted. Here, we present a method for rapid manipulation of the V. cholerae chromosome(s)(5) (Figure 1). This TransFLP method is based on the recently discovered chitin-mediated induction of natural competence in this organism(6) and other representative of the genus Vibrio such as V. fischeri(7). Natural competence allows the uptake of free DNA including PCR-generated DNA fragments. Once taken up, the DNA recombines with the chromosome given the presence of a minimum of 250-500 bp of flanking homologous region(8). Including a selection marker in-between these flanking regions allows easy detection of frequently occurring transformants. This method can be used for different genetic manipulations of V. cholerae and potentially also other naturally competent bacteria. We provide three novel examples on what can be accomplished by this method in addition to our previously published study on single gene deletions and the addition of affinity-tag sequences(5). Several optimization steps concerning the initial protocol of chitin-induced natural transformation(6) are incorporated in this TransFLP protocol. These include among others the replacement of crab shell fragments by commercially available chitin flakes(8), the donation of PCR-derived DNA as transforming material(9), and the addition of FLP-recombination target sites (FRT)(5). FRT sites allow site-directed excision of the selection marker mediated by the Flp recombinase(10).
Collapse
Affiliation(s)
- Melanie Blokesch
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
| |
Collapse
|
85
|
Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol Rev 2012; 37:336-63. [PMID: 22928673 DOI: 10.1111/j.1574-6976.2012.00353.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/27/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window.
Collapse
Affiliation(s)
- Patrick Seitz
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
86
|
Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 2012; 8:e1002917. [PMID: 23028317 PMCID: PMC3441752 DOI: 10.1371/journal.ppat.1002917] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/05/2012] [Indexed: 02/05/2023] Open
Abstract
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.
Collapse
Affiliation(s)
- Kimberley D. Seed
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
87
|
Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L. Microbial diversity and potential pathogens in ornamental fish aquarium water. PLoS One 2012; 7:e39971. [PMID: 22970112 PMCID: PMC3435374 DOI: 10.1371/journal.pone.0039971] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022] Open
Abstract
Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing >80% of all sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential risks to the pet industry, fishes in trade, humans and other species.
Collapse
Affiliation(s)
- Katherine F. Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Victor Schmidt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Gail E. Rosen
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Columbia University Center for Infection and Immunity, Mailman School of Public Health, New York, New York, United States of America
| | - Linda Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Geological Sciences, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
88
|
The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 2012; 8:e1002778. [PMID: 22737089 PMCID: PMC3380833 DOI: 10.1371/journal.pgen.1002778] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/03/2012] [Indexed: 12/02/2022] Open
Abstract
The human pathogen Vibrio cholerae is an aquatic bacterium frequently encountered in rivers, lakes, estuaries, and coastal regions. Within these environmental reservoirs, the bacterium is often found associated with zooplankton and more specifically with their chitinous exoskeleton. Upon growth on such chitinous surfaces, V. cholerae initiates a developmental program termed “natural competence for genetic transformation.” Natural competence for transformation is a mode of horizontal gene transfer in bacteria and contributes to the maintenance and evolution of bacterial genomes. In this study, we investigated competence gene expression within this organism at the single cell level. We provide evidence that under homogeneous inducing conditions the majority of the cells express competence genes. A more heterogeneous expression pattern was observable on chitin surfaces. We hypothesize that this was the case due to the heterogeneity around the chitin surface, which might vary extensively with respect to chitin degradation products and autoinducers; these molecules contribute to competence induction based on carbon catabolite repression and quorum-sensing pathways, respectively. Therefore, we investigated the contribution of these two signaling pathways to natural competence in detail using natural transformation assays, transcriptional reporter fusions, quantitative RT–PCR, and immunological detection of protein levels using Western blot analysis. The results illustrate that all tested competence genes are dependent on the transformation regulator TfoX. Furthermore, intracellular cAMP levels play a major role in natural transformation. Finally, we demonstrate that only a minority of genes involved in natural transformation are regulated in a quorum-sensing-dependent manner and that these genes determine the fate of the surrounding DNA. We conclude with a model of the regulatory circuit of chitin-induced natural competence in V. cholerae. The human pathogen Vibrio cholerae is an aquatic bacterium often encountered in rivers, estuaries, and coastal regions. Within this environmental niche, the bacterium often associates with the chitinous exoskeleton of zooplankton. Upon colonization of these chitinous surfaces, V. cholerae switches on a developmental program known as natural competence for genetic transformation. Natural competence for transformation is a mode of horizontal gene transfer that allows bacteria to acquire new genes derived from free DNA, which is released by other members within the same habitat. The evolutionary consequences could be that the bacterial recipient becomes better adapted to its environmental niche or, in a worst-case scenario, more pathogenic for man. The results of this study show that, under optimal conditions, the majority of cells within a V. cholerae population express competence genes. However, in an aquatic environment, a combination of different ecological factors might lead to heterogeneity in the competence phenotype. Therefore, we investigated the role of extracellular and intracellular signaling molecules with respect to competence induction. This report illustrates that at least three interconnected signaling cascades are required for competence induction, which are based on bacterial metabolism and group behavior.
Collapse
|
89
|
Garza DR, Thompson CC, Loureiro ECB, Dutilh BE, Inada DT, Junior ECS, Cardoso JF, Nunes MRT, de Lima CPS, Silvestre RVD, Nunes KNB, Santos ECO, Edwards RA, Vicente ACP, de Sá Morais LLC. Genome-wide study of the defective sucrose fermenter strain of Vibrio cholerae from the Latin American cholera epidemic. PLoS One 2012; 7:e37283. [PMID: 22662140 PMCID: PMC3360680 DOI: 10.1371/journal.pone.0037283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022] Open
Abstract
The 7th cholera pandemic reached Latin America in 1991, spreading from Peru to virtually all Latin American countries. During the late epidemic period, a strain that failed to ferment sucrose dominated cholera outbreaks in the Northern Brazilian Amazon region. In order to understand the genomic characteristics and the determinants of this altered sucrose fermenting phenotype, the genome of the strain IEC224 was sequenced. This paper reports a broad genomic study of this strain, showing its correlation with the major epidemic lineage. The potentially mobile genomic regions are shown to possess GC content deviation, and harbor the main V. cholera virulence genes. A novel bioinformatic approach was applied in order to identify the putative functions of hypothetical proteins, and was compared with the automatic annotation by RAST. The genome of a large bacteriophage was found to be integrated to the IEC224's alanine aminopeptidase gene. The presence of this phage is shown to be a common characteristic of the El Tor strains from the Latin American epidemic, as well as its putative ancestor from Angola. The defective sucrose fermenting phenotype is shown to be due to a single nucleotide insertion in the V. cholerae sucrose-specific transportation gene. This frame-shift mutation truncated a membrane protein, altering its structural pore-like conformation. Further, the identification of a common bacteriophage reinforces both the monophyletic and African-Origin hypotheses for the main causative agent of the 1991 Latin America cholera epidemics.
Collapse
Affiliation(s)
- Daniel Rios Garza
- Laboratory of Environmental Microbiology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Cristiane C. Thompson
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Computer Science, San Diego State University, San Diego, California, United States of America
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Davi Toshio Inada
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | | | | | | | | | | | | | - Robert A. Edwards
- Department of Computer Science, San Diego State University, San Diego, California, United States of America
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Ana Carolina P. Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | |
Collapse
|
90
|
Kadoya R, Chattoraj DK. Insensitivity of chromosome I and the cell cycle to blockage of replication and segregation of Vibrio cholerae chromosome II. mBio 2012; 3:e00067-12. [PMID: 22570276 PMCID: PMC3350373 DOI: 10.1128/mbio.00067-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Vibrio cholerae has two chromosomes (chrI and chrII) whose replication and segregation are under different genetic controls. The region covering the replication origin of chrI resembles that of the Escherichia coli chromosome, and both origins are under control of the highly conserved initiator, DnaA. The origin region of chrII resembles that of plasmids that have iterated initiator-binding sites (iterons) and is under control of the chrII-specific initiator, RctB. Both chrI and chrII encode chromosome-specific orthologs of plasmid partitioning proteins, ParA and ParB. Here, we have interfered with chrII replication, segregation, or both, using extra copies of sites that titrate RctB or ParB. Under these conditions, replication and segregation of chrI remain unaffected for at least 1 cell cycle. In this respect, chrI behaves similarly to the E. coli chromosome when plasmid maintenance is disturbed in the same cell. Apparently, no checkpoint exists to block cell division before the crippled chromosome is lost by a failure to replicate or to segregate. Whether blocking chrI replication can affect chrII replication remains to be tested. IMPORTANCE Chromosome replication, chromosome segregation, and cell division are the three main events of the cell cycle. They occur in an orderly fashion once per cell cycle. How the sequence of events is controlled is only beginning to be answered in bacteria. The finding of bacteria that possess more than one chromosome raises the important question: how are different chromosomes coordinated in their replication and segregation? It appears that in the evolution of the two-chromosome genome of V. cholerae, either the secondary chromosome adapted to the main chromosome to ensure its maintenance or it is maintained independently, as are bacterial plasmids. An understanding of chromosome coordination is expected to bear on the evolutionary process of chromosome acquisition and on the efficacy of possible strategies for selective elimination of a pathogen by targeting a specific chromosome.
Collapse
Affiliation(s)
- Ryosuke Kadoya
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
91
|
Bardill JP, Hammer BK. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biol 2012; 9:392-401. [PMID: 22546941 DOI: 10.4161/rna.19975] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the waterborne bacterium responsible for worldwide outbreaks of the acute, potentially fatal cholera diarrhea. The primary factors this human pathogen uses to cause the disease are controlled by a complex regulatory program linking extracellular signaling inputs to changes in expression of several critical virulence genes. Recently it has been uncovered that many non-coding regulatory sRNAs are important components of the V. cholerae virulence regulon. Most of these sRNAs appear to require the RNA-binding protein, Hfq, to interact with and alter the expression of target genes, while a few sRNAs appear to function by an Hfq-independent mechanism. Direct base-pairing between the sRNAs and putative target mRNAs has been shown in a few cases but the extent of each sRNAs regulon is not fully known. Genetic and biochemical methods, coupled with computational and genomics approaches, are being used to validate known sRNAs and also to identify many additional putative sRNAs that may play a role in the pathogenic lifestyle of V. cholerae.
Collapse
Affiliation(s)
- J Patrick Bardill
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
92
|
Franco SLM, Swenson GJ, Long RA. Year round patchiness of Vibrio vulnificus within a temperate Texas bay. J Appl Microbiol 2012; 112:593-604. [PMID: 22212214 DOI: 10.1111/j.1365-2672.2011.05229.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS To investigate with high geographical resolution the small-scale spatial and temporal distribution of the pathogen Vibrio vulnificus throughout the water column in a temperate Texas bay where numerous V. vulnificus infections had been reported by the regional media the previous summer. METHODS AND RESULTS Surface and bottom water samples were collected from 19 sites between April 2005 and October 2006 from Matagorda Bay, TX. Physicochemical parameters were measured and V. vulnificus were analysed using quantitative polymerase chain reaction (Q-PCR) as a means of overcoming constraints of traditional culturing techniques. V. vulnificus was detected through out the year, although its temporal and spatial distribution was patchy. V. vulnificus abundances at individual sites ranged from <10 to >1·1×10(3)cellsml(-1) . No statistically reliable predictive model related to the physicochemical parameters could be developed for this pathogen. CONCLUSIONS This study demonstrates that year round detection of V. vulnificus while likely in the viable but nonculturable (VBNC) state during the winter months and emphasizes why physicochemical factors are insufficient metrics for robust regression modelling of this pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides an effective new tool, Q-PCR, to study environmental distribution of V. vulnificus and that in the light of the patchy distribution observed, new reliable approaches and a mechanistic understanding of pathogen ecology need to be considered to effectively model the aquatic distribution of V. vulnificus.
Collapse
Affiliation(s)
- S L M Franco
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
93
|
Blokesch M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 2012; 14:1898-912. [PMID: 22222000 DOI: 10.1111/j.1462-2920.2011.02689.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although Vibrio cholerae is a human pathogen its primary habitat are aquatic environments. In this environment, V.cholerae takes advantage of the abundance of zooplankton, whose chitinous exoskeletons provide a nutritious surface. Chitin also induces the developmental programme of natural competence in several species of the genus Vibrio. Because the chitin surface can serve as the sole carbon source for V.cholerae, the link between carbon catabolite repression and chitin-induced natural competence for transformation was investigated in this study. Provision of competing phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS)-dependent carbon sources in addition to chitin significantly lowered natural transformability. These sugars are known to interfere with the accumulation of 3',5'-cyclic AMP (cAMP); therefore, the contributions of the cAMP-producing enzyme, adenylate cyclase and the cAMP receptor protein (CRP) to chitin surface colonization, chitin degradation and natural transformation were also analysed. The results provided here indicate that cAMP and CRP are important in at least three interlinked areas of the chitin-induced natural competence programme. First, cAMP and CRP are required for the efficient colonization of the chitin surface; second both contribute to chitin degradation and utilization, and third, cAMP plus CRP play a role in increasing competence gene expression. These findings highlight the complex regulatory circuit of chitin-induced natural competence in V.cholerae.
Collapse
Affiliation(s)
- Melanie Blokesch
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
94
|
The Vibrio cholerae mannitol transporter is regulated posttranscriptionally by the MtlS small regulatory RNA. J Bacteriol 2011; 194:598-606. [PMID: 22101846 DOI: 10.1128/jb.06153-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vibrio cholerae continues to pose a health threat in many developing nations and regions of the world struck by natural disasters. It is a pathogen that rapidly adapts to aquatic environments and the human small intestine. Small regulatory RNAs (sRNAs) may contribute to this adaptability. Specifically, the mannitol operon sRNA (MtlS sRNA; previously designated the IGR7 sRNA) is transcribed antisense to the 5' untranslated region of the mtl operon, encoding the mannitol-specific phosphotransferase system. Mannitol is a six-carbon sugar alcohol that accumulates in the human small intestine, the primary site of V. cholerae colonization. To better understand the V. cholerae mtl operon at a molecular level, we investigated mtlA expression in the presence of various carbon sources and the role of the MtlS sRNA. We observed that MtlA protein is present only in cells grown on mannitol sugar, whereas MtlS sRNA is expressed during growth on all sugars other than mannitol. In contrast, mtlA mRNA is expressed in similar amounts regardless of the carbon source used for bacterial growth. These observations suggest that the regulation of MtlA protein expression is a posttranscriptional event. We further demonstrate that MtlS sRNA overexpression repressed MtlA synthesis without affecting the stability of the messenger and that this process is largely independent of Hfq. We propose a model in which, when carbon sources other than mannitol are present, MtlS sRNA is transcribed, base pairs with the 5' untranslated region of the mtlA mRNA, occluding the ribosome binding site, and inhibits the synthesis of the mannitol-specific phosphotransferase system.
Collapse
|
95
|
Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 2011; 82:1015-37. [PMID: 22032623 PMCID: PMC3212620 DOI: 10.1111/j.1365-2958.2011.07867.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae.
Collapse
Affiliation(s)
- Andrea Seper
- Institut fuer Molekulare Biowissenschaften, Karl-Franzens-Universitaet Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J Bacteriol 2011; 193:4914-24. [PMID: 21784943 DOI: 10.1128/jb.05396-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although it is a human pathogen, Vibrio cholerae is a regular member of aquatic habitats, such as coastal regions and estuaries. Within these environments, V. cholerae often takes advantage of the abundance of zooplankton and their chitinous molts as a nutritious surface on which the bacteria can form biofilms. Chitin also induces the developmental program of natural competence for transformation in several species of the genus Vibrio. In this study, we show that V. cholerae does not distinguish between species-specific and non-species-specific DNA at the level of DNA uptake. This is in contrast to what has been shown for other Gram-negative bacteria, such as Neisseria gonorrhoeae and Haemophilus influenzae. However, species specificity with respect to natural transformation still occurs in V. cholerae. This is based on a positive correlation between quorum sensing and natural transformation. Using mutant-strain analysis, cross-feeding experiments, and synthetic cholera autoinducer-1 (CAI-1), we provide strong evidence that the species-specific signaling molecule CAI-1 plays a major role in natural competence for transformation. We suggest that CAI-1 can be considered a competence pheromone.
Collapse
|
97
|
Thompson FL, Neto AA, Santos EDO, Izutsu K, Iida T. Effect of N-acetyl-D-glucosamine on gene expression in Vibrio parahaemolyticus. Microbes Environ 2011; 26:61-6. [PMID: 21487204 DOI: 10.1264/jsme2.me10152] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed the effect of N-acetyl-D-glucosamine (GlcNAc) on gene expression in the marine bacterium Vibrio parahaemolyticus. The total number of genes whose expression was induced and repressed genes in the presence of GlcNAc was 81 and 55, respectively. The induced genes encoded a variety of products, including proteins related to energy metabolism (e.g. GlcNAc and chitin utilization), transport, central metabolism and chemotaxis, hypothetical proteins, mannose-sensitive hemagglutinin pilus (MSHA), and a PilA protein, whereas the repressed genes encoded mainly hypothetical proteins. GlcNAc appears to influence directly or indirectly a variety of cellular processes, including energy metabolism, chitin utilization, competence, biofilm formation and pathogenicity. GlcNAc, one of the most abundant aminosugars in the oceans, is used by V. parahaemolyticus as an energy source and affects the cellular functioning of this marine bacterium.
Collapse
Affiliation(s)
- Fabiano L Thompson
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
98
|
Antonova ES, Hammer BK. Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae. FEMS Microbiol Lett 2011; 322:68-76. [PMID: 21658103 DOI: 10.1111/j.1574-6968.2011.02328.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera and a natural inhabitant of aquatic environments, regulates numerous behaviors using a quorum-sensing (QS) system conserved among many members of the marine genus Vibrio. The Vibrio QS response is mediated by two extracellular autoinducer (AI) molecules: CAI-I, which is produced only by Vibrios, and AI-2, which is produced by many bacteria. In marine biofilms on chitinous surfaces, QS-proficient V. cholerae become naturally competent to take up extracellular DNA. Because the direct role of AIs in this environmental behavior had not been determined, we sought to define the contribution of CAI-1 and AI-2 in controlling transcription of the competence gene, comEA, and in DNA uptake. In this study we demonstrated that comEA transcription and the horizontal acquisition of DNA by V. cholerae are induced in response to purified CAI-1 and AI-2, and also by autoinducers derived from other Vibrios co-cultured with V. cholerae within a mixed-species biofilm. These results suggest that autoinducer communication within a consortium may promote DNA exchange among Vibrios, perhaps contributing to the evolution of these bacterial pathogens.
Collapse
Affiliation(s)
- Elena S Antonova
- School of Biology, Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | |
Collapse
|
99
|
Abstract
As an etiological agent of bacterial sepsis and wound infections, Vibrio vulnificus is unique among the Vibrionaceae. The most intensely studied of its virulence factors is the capsular polysaccharide (CPS). Over 100 CPS types have been identified, yet little is known about the genetic mechanisms that drive such diversity. Chitin, the second-most-abundant polysaccharide in nature, is known to induce competence in Vibrio species. Here, we show that the frequency of chitin-induced transformation in V. vulnificus varies by strain and that (GlcNAc)(2) is the shortest chitin-derived polymer capable of inducing competence. Transformation frequencies (TFs) increased 8-fold when mixed-culture biofilms were exposed to a strain-specific lytic phage, suggesting that the lysis of dead cells during lytic infection increased the amount of extracellular DNA within the biofilm that was available for transfer. Furthermore, we show that V. vulnificus can undergo chitin-dependent carbotype conversion following the uptake and recombination of complete cps loci from exogenous genomic DNA (gDNA). The acquisition of a partial locus was also demonstrated when internal regions of homology between the endogenous and exogenous loci existed. This suggested that the same mechanism governing the transfer of complete cps loci also contributed to their evolution by generating novel combinations of CPS biosynthesis genes. Since no evidence that cps loci were preferentially acquired during natural transformation (random transposon-tagged DNA was readily taken up in chitin transformation assays) exists, the phenomenon of chitin-induced transformation likely plays an important but general role in the evolution of this genetically promiscuous genus.
Collapse
|
100
|
Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 2011; 193:1953-65. [PMID: 21317321 DOI: 10.1128/jb.01340-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tfoX (also called sxy) gene product is the central regulator of DNA uptake in the naturally competent bacteria Haemophilus influenzae and Vibrio cholerae. However, the mechanisms regulating tfoX gene expression in both organisms are poorly understood. Our previous studies revealed that in V. cholerae, chitin disaccharide (GlcNAc)₂ is needed to activate the transcription and translation of V. cholerae tfoX (tfoX(VC)) to induce natural competence. In this study, we screened a multicopy library of V. cholerae DNA fragments necessary for translational regulation of tfoX(VC). A clone carrying the VC2078-VC2079 intergenic region, designated tfoR, increased the expression of a tfoX(VC)::lacZ translational fusion constructed in Escherichia coli. Using a tfoX(VC)::lacZ reporter system in V. cholerae, we confirmed that tfoR positively regulated tfoX(VC) expression at the translational level. Deletion of tfoR abolished competence for exogenous DNA even when (GlcNAc)₂ was provided. The introduction of a plasmid clone carrying the tfoR(+) gene into the tfoR deletion mutant complemented the competence deficiency. We also found that the tfoR gene encodes a 102-nucleotide small RNA (sRNA), which was transcriptionally activated in the presence of (GlcNAc)₂. Finally, we showed that this sRNA activated translation from tfoX(VC) mRNA in a highly purified in vitro translation system. Taking these results together, we propose that in the presence of (GlcNAc)₂, TfoR sRNA is expressed to activate the translation of tfoX(VC), which leads to the induction of natural competence.
Collapse
|