51
|
Quintana JF, Pino RCD, Yamada K, Zhang N. Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes (Basel) 2018; 9:E368. [PMID: 30037058 PMCID: PMC6071061 DOI: 10.3390/genes9070368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes are highly divergent from their metazoan hosts, and as part of adaptation to a parasitic life style have developed a unique endomembrane system. The key virulence mechanism of many pathogens is successful immune evasion, to enable survival within a host, a feature that requires both genetic events and membrane transport mechanisms in African trypanosomes. Intracellular trafficking not only plays a role in immune evasion, but also in homeostasis of intracellular and extracellular compartments and interactions with the environment. Significantly, historical and recent work has unraveled some of the connections between these processes and highlighted how immune evasion mechanisms that are associated with adaptations to membrane trafficking may have, paradoxically, provided specific sensitivity to drugs. Here, we explore these advances in understanding the membrane composition of the trypanosome plasma membrane and organelles and provide a perspective for how transport could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juan F Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | - Kayo Yamada
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
52
|
Ilari A, Genovese I, Fiorillo F, Battista T, De Ionna I, Fiorillo A, Colotti G. Toward a Drug Against All Kinetoplastids: From LeishBox to Specific and Potent Trypanothione Reductase Inhibitors. Mol Pharm 2018; 15:3069-3078. [PMID: 29897765 DOI: 10.1021/acs.molpharmaceut.8b00185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leishmaniasis, Chagas disease, and sleeping sickness affect millions of people worldwide and lead to the death of about 50 000 humans per year. These diseases are caused by the kinetoplastids Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, respectively. These parasites share many general features, including gene conservation, high amino acid identity among proteins, the presence of subcellular structures as glycosomes and the kinetoplastid, and genome architecture, that may make drug development family specific, rather than species-specific, i.e., on the basis of the inhibition of a common, conserved parasite target. However, no optimal molecular targets or broad-spectrum drugs have been identified to date to cure these diseases. Here, the LeishBox from GlaxoSmithKline high-throughput screening, a 192-molecule set of best antileishmanial compounds, based on 1.8 million compounds, was used to identify specific inhibitors of a validated Leishmania target, trypanothione reductase (TR), while analyzing in parallel the homologous human enzyme glutathione reductase (GR). We identified three specific highly potent TR inhibitors and performed docking on the TR solved structure, thereby elucidating the putative molecular basis of TR inhibition. Since TRs from kinetoplastids are well conserved, and these compounds inhibit the growth of Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, the identification of a common validated target may lead to the development of potent antikinetoplastid drugs.
Collapse
Affiliation(s)
- Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilaria Genovese
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Fabiana Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Theo Battista
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilenia De Ionna
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| |
Collapse
|
53
|
Melarsoprol Resistance in African Trypanosomiasis. Trends Parasitol 2018; 34:481-492. [DOI: 10.1016/j.pt.2018.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
|
54
|
Rico E, Jeacock L, Kovářová J, Horn D. Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes. Sci Rep 2018; 8:7960. [PMID: 29785042 PMCID: PMC5962531 DOI: 10.1038/s41598-018-26303-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022] Open
Abstract
The Cas9 endonuclease can be programmed by guide RNA to introduce sequence-specific breaks in genomic DNA. Thus, Cas9-based approaches present a range of novel options for genome manipulation and precision editing. African trypanosomes are parasites that cause lethal human and animal diseases. They also serve as models for studies on eukaryotic biology, including 'divergent' biology. Genome modification, exploiting the native homologous recombination machinery, has been important for studies on trypanosomes but often requires multiple rounds of transfection using selectable markers that integrate at low efficiency. We report a system for delivering tetracycline inducible Cas9 and guide RNA to Trypanosoma brucei. In these cells, targeted DNA cleavage and gene disruption can be achieved at close to 100% efficiency without further selection. Disruption of aquaglyceroporin (AQP2) or amino acid transporter genes confers resistance to the clinical drugs pentamidine or eflornithine, respectively, providing simple and robust assays for editing efficiency. We also use the new system for homology-directed, precision base editing; a single-stranded oligodeoxyribonucleotide repair template was delivered to introduce a single AQP2 - T791G/L264R mutation in this case. The technology we describe now enables a range of novel programmed genome-editing approaches in T. brucei that would benefit from temporal control, high-efficiency and precision.
Collapse
Affiliation(s)
- Eva Rico
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Laura Jeacock
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Julie Kovářová
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
55
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
56
|
Volkov OA, Brockway AJ, Wring SA, Peel M, Chen Z, Phillips MA, De Brabander JK. Species-Selective Pyrimidineamine Inhibitors of Trypanosoma brucei S-Adenosylmethionine Decarboxylase. J Med Chem 2018; 61:1182-1203. [PMID: 29271204 PMCID: PMC5965259 DOI: 10.1021/acs.jmedchem.7b01654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
New therapeutic options are needed for treatment of human African trypanosomiasis (HAT) caused by protozoan parasite Trypanosoma brucei. S-Adenosylmethionine decarboxylase (AdoMetDC) is an essential enzyme in the polyamine pathway of T. brucei. Previous attempts to target this enzyme were thwarted by the lack of brain penetration of the most advanced series. Herein, we describe a T. brucei AdoMetDC inhibitor series based on a pyrimidineamine pharmacophore that we identified by target-based high-throughput screening. The pyrimidineamines showed selectivity for T. brucei AdoMetDC over the human enzyme, inhibited parasite growth in whole-cell assay, and had good predicted blood-brain barrier penetration. The medicinal chemistry program elucidated structure-activity relationships within the series. Features of the series that were required for binding were revealed by determining the X-ray crystal structure of TbAdoMetDC bound to one analog. The pyrimidineamine series provides a novel starting point for an anti-HAT lead optimization.
Collapse
Affiliation(s)
- Oleg A. Volkov
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Anthony J. Brockway
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Stephen A. Wring
- Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite C, Durham, North Carolina 27713, United States
| | - Michael Peel
- Scynexis, Inc. (now Avista Pharma Solutions), 3501 Tricenter Boulevard, Suite C, Durham, North Carolina 27713, United States
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Jef K. De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| |
Collapse
|
57
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
58
|
Drug resistance in protozoan parasites. Emerg Top Life Sci 2017; 1:627-632. [PMID: 33525852 PMCID: PMC7289004 DOI: 10.1042/etls20170113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/04/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023]
Abstract
As with all other anti-infectives (antibiotics, anti-viral drugs, and anthelminthics), the limited arsenal of anti-protozoal drugs is being depleted by a combination of two factors: increasing drug resistance and the failure to replace old and often shamefully inadequate drugs, including those compromised by (cross)-resistance, through the development of new anti-parasitics. Both factors are equally to blame: a leaking bathtub may have plenty of water if the tap is left open; if not, it will soon be empty. Here, I will reflect on the factors that contribute to the drug resistance emergency that is unfolding around us, specifically resistance in protozoan parasites.
Collapse
|
59
|
Schmidt RS, Macêdo JP, Steinmann ME, Salgado AG, Bütikofer P, Sigel E, Rentsch D, Mäser P. Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J 2017; 285:1012-1023. [PMID: 29063677 DOI: 10.1111/febs.14302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei comprise the causative agents of sleeping sickness, T. b. gambiense and T. b. rhodesiense, as well as the livestock-pathogenic T. b. brucei. The parasites are transmitted by the tsetse fly and occur exclusively in sub-Saharan Africa. T. brucei are not only lethal pathogens but have also become model organisms for molecular parasitology. We focus here on membrane transport proteins of T. brucei, their contribution to homeostasis and metabolism in the context of a parasitic lifestyle, and their pharmacological role as potential drug targets or routes of drug entry. Transporters and channels in the plasma membrane are attractive drug targets as they are accessible from the outside. Alternatively, they can be exploited to selectively deliver harmful substances into the trypanosome's interior. Both approaches require the targeted transporter to be essential: in the first case to kill the trypanosome, in the second case to prevent drug resistance due to loss of the transporter. By combining functional and phylogenetic analyses, we were mining the T. brucei predicted proteome for transporters of pharmacological significance. Here, we review recent progress in the identification of transporters of lipid precursors, amino acid permeases and ion channels in T. brucei.
Collapse
Affiliation(s)
- Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Juan P Macêdo
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
60
|
Abstract
African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR), which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens. The development of drugs to treat infections with eukaryotic pathogens is challenging because many key virulence factors have closely related homologues in humans. Drug toxicity greatly limits these development efforts. For pathogens that replicate at a high rate, especially in the blood, an alternative approach is to target the cell cycle directly, much as is done to treat some hematologic malignancies. The results presented here indicate that targeting the cell cycle via inhibition of ribonucleotide reductase is effective at killing trypanosomes and prolonging the survival of infected animals.
Collapse
|
61
|
Sayé M, Fargnoli L, Reigada C, Labadie GR, Pereira CA. Evaluation of proline analogs as trypanocidal agents through the inhibition of a Trypanosoma cruzi proline transporter. Biochim Biophys Acta Gen Subj 2017; 1861:2913-2921. [PMID: 28844978 DOI: 10.1016/j.bbagen.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/30/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential biological processes in T. cruzi, its transport and metabolism are interesting drug targets. METHODS Four synthetic proline analogues (ITP-1B/1C/1D/1G) were evaluated as inhibitors of proline transport mediated through the T. cruzi proline permease TcAAAP069. The trypanocidal activity of the compounds was also assessed. RESULTS The compounds ITP-1B and ITP-1G inhibited proline transport mediated through TcAAAP069 permease in a dose-dependent manner. The analogues ITP-1B, -1D and -1G had trypanocidal effect on T. cruzi epimastigotes with IC50 values between 30 and 40μM. However, only ITP-1G trypanocidal activity was related with its inhibitory effect on TcAAAP069 proline transporter. Furthermore, this analogue strongly inhibited the parasite stage differentiation from epimastigote to metacyclic trypomastigote. Finally, compounds ITP-1B and ITP-1G were also able to inhibit the transport mediated by other permeases from the same amino acid permeases family, TcAAAP. CONCLUSIONS It is possible to design synthetic amino acid analogues with trypanocidal activity. The compound ITP-1G is an interesting starting point for new trypanocidal drug design which is also an inhibitor of transport of amino acids and polyamines mediated by permeases from the TcAAAP family, such as proline transporter TcAAAP069 among others. GENERAL SIGNIFICANCE The Trypanosoma cruzi amino acid transporter family TcAAAP constitutes a multiple and promising therapeutic target for the development of new treatments against Chagas disease.
Collapse
Affiliation(s)
- Melisa Sayé
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía Fargnoli
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Chantal Reigada
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Claudio A Pereira
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
62
|
Macedo JP, Currier RB, Wirdnam C, Horn D, Alsford S, Rentsch D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei. FASEB J 2017; 31:4649-4660. [PMID: 28679527 PMCID: PMC5602898 DOI: 10.1096/fj.201700311r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 12/02/2022]
Abstract
Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO “essential medicine” eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.—Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei.
Collapse
Affiliation(s)
- Juan P Macedo
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Rachel B Currier
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Corina Wirdnam
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, London, United Kingdom;
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland;
| |
Collapse
|
63
|
Mathieu C, Macêdo JP, Hürlimann D, Wirdnam C, Haindrich AC, Suter Grotemeyer M, González-Salgado A, Schmidt RS, Inbar E, Mäser P, Bütikofer P, Zilberstein D, Rentsch D. Arginine and Lysine Transporters Are Essential for Trypanosoma brucei. PLoS One 2017; 12:e0168775. [PMID: 28045943 PMCID: PMC5207785 DOI: 10.1371/journal.pone.0168775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022] Open
Abstract
For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.
Collapse
Affiliation(s)
| | - Juan P. Macêdo
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Daniel Hürlimann
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Corina Wirdnam
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | - Ehud Inbar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
64
|
Daunes S, Yardley V, Croft SL, D'Silva C. Antiprotozoal glutathione derivatives with flagellar membrane binding activity against T. brucei rhodesiense. Bioorg Med Chem 2016; 25:1329-1340. [PMID: 28131508 DOI: 10.1016/j.bmc.2016.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/16/2022]
Abstract
A new series of N-substituted S-(2,4-dinitrophenyl)glutathione dibutyl diesters were synthesized to improve in vitro anti-protozoal activity against the pathogenic parasites Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania donovani. The results obtained indicate that N-substituents enhance the inhibitory properties of glutathione diesters whilst showing reduced toxicity against KB cells as in the cases of compounds 5, 9, 10, 16, 18 and 19. We suggest that the interaction of N-substituted S-(2,4-dinitrophenyl) glutathione dibutyl diesters with T. b. brucei occurs mainly by weak hydrophobic interactions such as London and van der Waals forces. A QSAR study indicated that the inhibitory activity of the peptide is associated negatively with the average number of C atoms, NC and positively to SZX, the ZX shadow a geometric descriptor related to molecular size and orientation of the compound. HPLC-UV studies in conjunction with optical microscopy indicate that the observed selectivity of inhibition of these compounds against bloodstream form T. b. brucei parasites in comparison to L. donovani under the same conditions is due to intracellular uptake via endocytosis in the flagellar pocket.
Collapse
Affiliation(s)
- Sylvie Daunes
- School of Chemistry and Environmental Sciences, The Manchester Metropolitan University, Faculty of Science and Engineering, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Vanessa Yardley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Simon L Croft
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Claudius D'Silva
- School of Chemistry and Environmental Sciences, The Manchester Metropolitan University, Faculty of Science and Engineering, John Dalton Building, Chester Street, Manchester M1 5GD, UK; School of Chemistry, Central University of Rajasthan, Bandar Sindari, Jaipur-Ajmer Highway (Rajasthan), India.
| |
Collapse
|
65
|
Abstract
Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inadequate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key issues surrounding the main economically important animal trypanosome species and the diseases they cause are also presented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to identify new drug targets and interrogate resistance mechanisms.
Collapse
|
66
|
Dewar S, Sienkiewicz N, Ong HB, Wall RJ, Horn D, Fairlamb AH. The Role of Folate Transport in Antifolate Drug Action in Trypanosoma brucei. J Biol Chem 2016; 291:24768-24778. [PMID: 27703008 PMCID: PMC5114424 DOI: 10.1074/jbc.m116.750422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify and characterize mechanisms of resistance to antifolate drugs in African trypanosomes. Genome-wide RNAi library screens were undertaken in bloodstream form Trypanosoma brucei exposed to the antifolates methotrexate and raltitrexed. In conjunction with drug susceptibility and folate transport studies, RNAi knockdown was used to validate the functions of the putative folate transporters. The transport kinetics of folate and methotrexate were further characterized in whole cells. RNA interference target sequencing experiments identified a tandem array of genes encoding a folate transporter family, TbFT1-3, as major contributors to antifolate drug uptake. RNAi knockdown of TbFT1-3 substantially reduced folate transport into trypanosomes and reduced the parasite's susceptibly to the classical antifolates methotrexate and raltitrexed. In contrast, knockdown of TbFT1-3 increased susceptibly to the non-classical antifolates pyrimethamine and nolatrexed. Both folate and methotrexate transport were inhibited by classical antifolates but not by non-classical antifolates or biopterin. Thus, TbFT1-3 mediates the uptake of folate and classical antifolates in trypanosomes, and TbFT1-3 loss-of-function is a mechanism of antifolate drug resistance.
Collapse
Affiliation(s)
- Simon Dewar
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Natasha Sienkiewicz
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Han B Ong
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Richard J Wall
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - David Horn
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alan H Fairlamb
- From the Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
67
|
Garcia-Salcedo JA, Unciti-Broceta JD, Valverde-Pozo J, Soriano M. New Approaches to Overcome Transport Related Drug Resistance in Trypanosomatid Parasites. Front Pharmacol 2016; 7:351. [PMID: 27733833 PMCID: PMC5039210 DOI: 10.3389/fphar.2016.00351] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/16/2016] [Indexed: 01/07/2023] Open
Abstract
Leishmania and Trypanosoma are members of the Trypanosomatidae family that cause severe human infections such as leishmaniasis, Chagas disease, and sleeping sickness affecting millions of people worldwide. Despite efforts to eradicate them, migrations are expanding these infections to developing countries. There are no vaccines available and current treatments depend only on chemotherapy. Drug resistance is a major obstacle for the treatment of these diseases given that existing drugs are old and limited, with some having severe side effects. Most resistance mechanisms developed by these parasites are related with a decreased uptake or increased efflux of the drug due to mutations or altered expression of membrane transporters. Different new approaches have been elaborated that can overcome these mechanisms of resistance including the use of inhibitors of efflux pumps and drug carriers for both active and passive targeting. Here we review new formulations that have been successfully applied to circumvent resistance related to drug transporters, opening alternative ways to solve drug resistance in protozoan parasitic diseases.
Collapse
Affiliation(s)
- Jose A Garcia-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, GranadaSpain; Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain
| | - Juan D Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, Granada Spain
| | - Javier Valverde-Pozo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospitales Universitarios de Granada - Universidad de Granada, GranadaSpain; Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain
| | - Miguel Soriano
- Centro de Genómica e Investigación Oncológica - Pfizer/Universidad de Granada/Junta de Andalucía, GranadaSpain; Departamento de Agronomía, Universidad de Almería, AlmeríaSpain
| |
Collapse
|
68
|
Graf FE, Ludin P, Arquint C, Schmidt RS, Schaub N, Kunz Renggli C, Munday JC, Krezdorn J, Baker N, Horn D, Balmer O, Caccone A, de Koning HP, Mäser P. Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense. Cell Mol Life Sci 2016; 73:3387-400. [PMID: 26973180 PMCID: PMC4967103 DOI: 10.1007/s00018-016-2173-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/01/2016] [Indexed: 12/02/2022]
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine.
Collapse
Affiliation(s)
- Fabrice E Graf
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Philipp Ludin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Christian Arquint
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Remo S Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Nadia Schaub
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Christina Kunz Renggli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jessica Krezdorn
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Nicola Baker
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- The University of Kent, Canterbury, Kent, CT2 7NZ, UK
| | - David Horn
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, 4000, Basel, Switzerland
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, 4000, Basel, Switzerland.
| |
Collapse
|
69
|
Eze AA, Gould MK, Munday JC, Tagoe DNA, Stelmanis V, Schnaufer A, De Koning HP. Reduced Mitochondrial Membrane Potential Is a Late Adaptation of Trypanosoma brucei brucei to Isometamidium Preceded by Mutations in the γ Subunit of the F1Fo-ATPase. PLoS Negl Trop Dis 2016; 10:e0004791. [PMID: 27518185 PMCID: PMC4982688 DOI: 10.1371/journal.pntd.0004791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/30/2016] [Indexed: 11/19/2022] Open
Abstract
Background Isometamidium is the main prophylactic drug used to prevent the infection of livestock with trypanosomes that cause Animal African Trypanosomiasis. As well as the animal infective trypanosome species, livestock can also harbor the closely related human infective subspecies T. b. gambiense and T. b. rhodesiense. Resistance to isometamidium is a growing concern, as is cross-resistance to the diamidine drugs diminazene and pentamidine. Methodology/Principal Findings Two isometamidium resistant Trypanosoma brucei clones were generated (ISMR1 and ISMR15), being 7270- and 16,000-fold resistant to isometamidium, respectively, which retained their ability to grow in vitro and establish an infection in mice. Considerable cross-resistance was shown to ethidium bromide and diminazene, with minor cross-resistance to pentamidine. The mitochondrial membrane potentials of both resistant cell lines were significantly reduced compared to the wild type. The net uptake rate of isometamidium was reduced 2-3-fold but isometamidium efflux was similar in wild-type and resistant lines. Fluorescence microscopy and PCR analysis revealed that ISMR1 and ISMR15 had completely lost their kinetoplast DNA (kDNA) and both lines carried a mutation in the nuclearly encoded γ subunit gene of F1 ATPase, truncating the protein by 22 amino acids. The mutation compensated for the loss of the kinetoplast in bloodstream forms, allowing near-normal growth, and conferred considerable resistance to isometamidium and ethidium as well as significant resistance to diminazene and pentamidine, when expressed in wild type trypanosomes. Subsequent exposure to either isometamidium or ethidium led to rapid loss of kDNA and a further increase in isometamidium resistance. Conclusions/Significance Sub-lethal exposure to isometamidium gives rise to viable but highly resistant trypanosomes that, depending on sub-species, are infective to humans and cross-resistant to at least some diamidine drugs. The crucial mutation is in the F1 ATPase γ subunit, which allows loss of kDNA and results in a reduction of the mitochondrial membrane potential. Isometamidium is the only prophylactic treatment of Animal African Trypanosomiasis, a wasting disease of livestock and domestic animals in sub-Saharan Africa. Unfortunately resistance threatens the continued utility of this drug after decades of use. Not only does this disease have severe impacts on agriculture, but some subspecies of Trypanosoma brucei are human-infective as well (causing sleeping sickness) and there is concern that cross-resistance with trypanocides of the diamidine class could further undermine treatment of both veterinary and human infections. It is therefore essential to understand the mechanism of isometamidium resistance and the likelihood for cross-resistance with other first-line trypanocides. Here, we report that isometamidium resistance can be caused by a mutation in an important mitochondrial protein, the γ subunit of the F1 ATPase, and that this mutation alone is sufficient for high levels of resistance, cross-resistance to various drugs, and a strongly reduced mitochondrial membrane potential. This report will for the first time enable a structural assessment of isometamidium resistance genes in T. brucei spp.
Collapse
Affiliation(s)
- Anthonius A. Eze
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew K. Gould
- Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel N. A. Tagoe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Valters Stelmanis
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute for Immunology and Infection Research and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
70
|
Abstract
Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Dundee Drug Discovery Unit, Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
71
|
Skinner-Adams TS, Sumanadasa SD, Fisher GM, Davis RA, Doolan DL, Andrews KT. Defining the targets of antiparasitic compounds. Drug Discov Today 2016; 21:725-39. [DOI: 10.1016/j.drudis.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/04/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
72
|
Mahamad Maifiah MH, Cheah SE, Johnson MD, Han ML, Boyce JD, Thamlikitkul V, Forrest A, Kaye KS, Hertzog P, Purcell AW, Song J, Velkov T, Creek DJ, Li J. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii. Sci Rep 2016; 6:22287. [PMID: 26924392 PMCID: PMC4770286 DOI: 10.1038/srep22287] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03-149.1 (polymyxin-susceptible) and 03-149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Matthew D. Johnson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mei-Ling Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - John D. Boyce
- Department of Microbiology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Visanu Thamlikitkul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alan Forrest
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7569, USA
| | - Keith S. Kaye
- Detroit Medical Centre and Wayne State University, University Health Centre, Detroit, MI, 48201, USA
| | - Paul Hertzog
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
73
|
Foscolos AS, Papanastasiou I, Foscolos GB, Tsotinis A, Kellici TF, Mavromoustakos T, Taylor MC, Kelly JM. New hydrazones of 5-nitro-2-furaldehyde with adamantanealkanohydrazides: synthesis and in vitro trypanocidal activity. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00035e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of hydrazones of 5-nitro-2-furaldehyde with adamantane alkanohydrazides was synthesized and their trypanocidal activity was evaluated.
Collapse
Affiliation(s)
- Angeliki-Sofia Foscolos
- School of Health Sciences
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- National and Kapodistrian University of Athens
- 15784 Athens
| | - Ioannis Papanastasiou
- School of Health Sciences
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- National and Kapodistrian University of Athens
- 15784 Athens
| | - George B. Foscolos
- School of Health Sciences
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- National and Kapodistrian University of Athens
- 15784 Athens
| | - Andrew Tsotinis
- School of Health Sciences
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- National and Kapodistrian University of Athens
- 15784 Athens
| | - Tahsin F. Kellici
- Faculty of Chemistry
- Department of Organic Chemistry
- University of Athens
- 15771 Athens
- Greece
| | - Thomas Mavromoustakos
- Faculty of Chemistry
- Department of Organic Chemistry
- University of Athens
- 15771 Athens
- Greece
| | - Martin C. Taylor
- Department of Pathogen Molecular Biology
- London School of Hygiene and Tropical Medicine
- London WC1 E7HT
- UK
| | - John M. Kelly
- Department of Pathogen Molecular Biology
- London School of Hygiene and Tropical Medicine
- London WC1 E7HT
- UK
| |
Collapse
|
74
|
Jones DC, Foth BJ, Urbaniak MD, Patterson S, Ong HB, Berriman M, Fairlamb AH. Genomic and Proteomic Studies on the Mode of Action of Oxaboroles against the African Trypanosome. PLoS Negl Trop Dis 2015; 9:e0004299. [PMID: 26684831 PMCID: PMC4689576 DOI: 10.1371/journal.pntd.0004299] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022] Open
Abstract
SCYX-7158, an oxaborole, is currently in Phase I clinical trials for the treatment of human African trypanosomiasis. Here we investigate possible modes of action against Trypanosoma brucei using orthogonal chemo-proteomic and genomic approaches. SILAC-based proteomic studies using an oxaborole analogue immobilised onto a resin was used either in competition with a soluble oxaborole or an immobilised inactive control to identify thirteen proteins common to both strategies. Cell-cycle analysis of cells incubated with sub-lethal concentrations of an oxaborole identified a subtle but significant accumulation of G2 and >G2 cells. Given the possibility of compromised DNA fidelity, we investigated long-term exposure of T. brucei to oxaboroles by generating resistant cell lines in vitro. Resistance proved more difficult to generate than for drugs currently used in the field, and in one of our three cell lines was unstable. Whole-genome sequencing of the resistant cell lines revealed single nucleotide polymorphisms in 66 genes and several large-scale genomic aberrations. The absence of a simple consistent mechanism among resistant cell lines and the diverse list of binding partners from the proteomic studies suggest a degree of polypharmacology that should reduce the risk of resistance to this compound class emerging in the field. The combined genetic and chemical biology approaches have provided lists of candidates to be investigated for more detailed information on the mode of action of this promising new drug class. The mode of action of a new class of boron-containing chemicals (the oxaboroles), currently under development for the treatment of human African trypanosomiasis, is unknown. Here we identify a number of potential candidate proteins that could be involved either in the mode of action of these compounds or in the mechanism of resistance. This information could prove critical in protecting the compounds against resistance emerging in the field as well as opening up new avenues for drug discovery.
Collapse
Affiliation(s)
- Deuan C. Jones
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bernardo J. Foth
- Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Michael D. Urbaniak
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Stephen Patterson
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Han B. Ong
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew Berriman
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Alan H. Fairlamb
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
75
|
Garcia-Salcedo JA, Unciti-Broceta JD, Soriano M. Could specific cell targeting overcome resistance associated with current treatments for African trypanosomiasis? Nanomedicine (Lond) 2015; 10:3515-7. [DOI: 10.2217/nnm.15.167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Jose A Garcia-Salcedo
- Unidad de Enfermedades Infecciosas, Instituto de Investigación Biosanitaria ibs. GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Juan D Unciti-Broceta
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Miguel Soriano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
- Departamento de Agronomía, Universidad de Almería, Almería, Spain
| |
Collapse
|
76
|
Wyllie S, Foth BJ, Kelner A, Sokolova AY, Berriman M, Fairlamb AH. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei. J Antimicrob Chemother 2015; 71:625-34. [PMID: 26581221 PMCID: PMC4743696 DOI: 10.1093/jac/dkv376] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/15/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES The objective of this study was to identify the mechanisms of resistance to nifurtimox and fexinidazole in African trypanosomes. METHODS Bloodstream-form Trypanosoma brucei were selected for resistance to nifurtimox and fexinidazole by stepwise exposure to increasing drug concentrations. Clones were subjected to WGS to identify putative resistance genes. Transgenic parasites modulating expression of genes of interest were generated and drug susceptibility phenotypes determined. RESULTS Nifurtimox-resistant (NfxR) and fexinidazole-resistant (FxR) parasites shared reciprocal cross-resistance suggestive of a common mechanism of action. Previously, a type I nitroreductase (NTR) has been implicated in nitro drug activation. WGS of resistant clones revealed that NfxR parasites had lost >100 kb from one copy of chromosome 7, rendering them hemizygous for NTR as well as over 30 other genes. FxR parasites retained both copies of NTR, but lost >70 kb downstream of one NTR allele, decreasing NTR transcription by half. A single knockout line of NTR displayed 1.6- and 1.9-fold resistance to nifurtimox and fexinidazole, respectively. Since NfxR and FxR parasites are ∼6- and 20-fold resistant to nifurtimox and fexinidazole, respectively, additional factors must be involved. Overexpression and knockout studies ruled out a role for a putative oxidoreductase (Tb927.7.7410) and a hypothetical gene (Tb927.1.1050), previously identified in a genome-scale RNAi screen. CONCLUSIONS NTR was confirmed as a key resistance determinant, either by loss of one gene copy or loss of gene expression. Further work is required to identify which of the many dozens of SNPs identified in the drug-resistant cell lines contribute to the overall resistance phenotype.
Collapse
Affiliation(s)
- Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bernardo J Foth
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Kelner
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Antoaneta Y Sokolova
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
77
|
Di Pietro O, Vicente-García E, Taylor MC, Berenguer D, Viayna E, Lanzoni A, Sola I, Sayago H, Riera C, Fisa R, Clos MV, Pérez B, Kelly JM, Lavilla R, Muñoz-Torrero D. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. Eur J Med Chem 2015; 105:120-37. [PMID: 26479031 PMCID: PMC4638191 DOI: 10.1016/j.ejmech.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease and leishmaniasis, which are caused by the trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, are among the most deadly neglected tropical diseases. The development of drugs that are active against several trypanosomatids is appealing from a clinical and economic viewpoint, and seems feasible, as these parasites share metabolic pathways and hence might be treatable by common drugs. From benzonapthyridine 1, an inhibitor of acetylcholinesterase (AChE) for which we have found a remarkable trypanocidal activity, we have designed and synthesized novel benzo[h][1,6]naphthyridines, pyrrolo[3,2-c]quinolines, azepino[3,2-c]quinolines, and pyrano[3,2-c]quinolines through 2–4-step sequences featuring an initial multicomponent Povarov reaction as the key step. To assess the therapeutic potential of the novel compounds, we have evaluated their in vitro activity against T. brucei, T. cruzi, and Leishmania infantum, as well as their brain permeability, which is of specific interest for the treatment of late-stage HAT. To assess their potential toxicity, we have determined their cytotoxicity against rat myoblast L6 cells and their AChE inhibitory activity. Several tricyclic heterofused quinoline derivatives were found to display an interesting multi-trypanosomatid profile, with one-digit micromolar potencies against two of these parasites and two-digit micromolar potency against the other. Pyranoquinoline 39, which displays IC50 values of 1.5 μM, 6.1 μM and 29.2 μM against T. brucei, L. infantum and T. cruzi, respectively, brain permeability, better drug-like properties (lower lipophilicity and molecular weight and higher CNS MPO desirability score) than hit 1, and the lowest AChE inhibitory activity of the series (IC50 > 30 μM), emerges as an interesting multi-trypanosomatid lead, amenable to further optimization particularly in terms of its selectivity index over mammalian cells. Novel classes of tricyclic heterofused quinolines have been synthesized. Their 2–4-step syntheses involve a multicomponent Povarov reaction as the key step. Some compounds exhibit single digit micromolar potencies against 2 trypanosomatids. All compounds with multi-trypanosomatid activity can cross the blood–brain barrier. Most compounds with multi-trypanosomatid activity have drug like properties.
Collapse
Affiliation(s)
- Ornella Di Pietro
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | | | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diana Berenguer
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Anna Lanzoni
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Helena Sayago
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain
| | - Cristina Riera
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Roser Fisa
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - M Victòria Clos
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Rodolfo Lavilla
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain; Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
78
|
Tagoe DNA, Kalejaiye TD, de Koning HP. The ever unfolding story of cAMP signaling in trypanosomatids: vive la difference! Front Pharmacol 2015; 6:185. [PMID: 26441645 PMCID: PMC4561360 DOI: 10.3389/fphar.2015.00185] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022] Open
Abstract
Kinetoplastids are unicellular, eukaryotic, flagellated protozoans containing the eponymous kinetoplast. Within this order, the family of trypanosomatids are responsible for some of the most serious human diseases, including Chagas disease (Trypanosoma cruzi), sleeping sickness (Trypanosoma brucei spp.), and leishmaniasis (Leishmania spp). Although cAMP is produced during the life cycle stages of these parasites, its signaling pathways are very different from those of mammals. The absence of G-protein-coupled receptors, the presence of structurally different adenylyl cyclases, the paucity of known cAMP effector proteins and the stringent need for regulation of cAMP in the small kinetoplastid cells all suggest a significantly different biochemical pathway and likely cell biology. However, each of the main kinetoplastid parasites express four class 1-type cyclic nucleotide-specific phosphodiesterases (PDEA-D), which have highly similar catalytic domains to that of human PDEs. To date, only TbrPDEB, expressed as two slightly different isoforms TbrPDEB1 and B2, has been found to be essential when ablated. Although the genomes contain reasonably well conserved genes for catalytic and regulatory domains of protein kinase A, these have been shown to have varied structural and functional roles in the different species. Recent discovery of a role of cAMP/AMP metabolism in a quorum-sensing signaling pathway in T. brucei, and the identification of downstream cAMP Response Proteins (CARPs) whose expression levels correlate with sensitivity to PDE inhibitors, suggests a complex signaling cascade. The interplay between the roles of these novel CARPs and the quorum-sensing signaling pathway on cell division and differentiation makes for intriguing cell biology and a new paradigm in cAMP signal transduction, as well as potential targets for trypanosomatid-specific cAMP pathway-based therapeutics.
Collapse
Affiliation(s)
- Daniel N A Tagoe
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow , Glasgow, UK ; Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK ; Department of Laboratory Technology, Division of Medical Laboratory Technology, University of Cape Coast , Cape Coast, Ghana
| | - Titilola D Kalejaiye
- Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| |
Collapse
|
79
|
Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, Muñóz-Torres M, de Koning HP, Magez S, Garcia-Salcedo JA. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis. PLoS Pathog 2015; 11:e1004942. [PMID: 26110623 PMCID: PMC4482409 DOI: 10.1371/journal.ppat.1004942] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/08/2015] [Indexed: 01/01/2023] Open
Abstract
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.
Collapse
Affiliation(s)
- Juan D. Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - José L. Arias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - José Maceira
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - Miguel Soriano
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
- Departamento de Agronomía, Universidad de Almería, Almería, Spain
| | - Matilde Ortiz-González
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
| | - José Hernández-Quero
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Manuel Muñóz-Torres
- Unidad de Metabolismo Óseo, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan Magez
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - José A. Garcia-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN-CSIC), PTS Granada, Armilla, Spain
- Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENYO), PTS Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
80
|
Shimogawa MM, Saada EA, Vashisht AA, Barshop WD, Wohlschlegel JA, Hill KL. Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei. Mol Cell Proteomics 2015; 14:1977-88. [PMID: 25963835 DOI: 10.1074/mcp.m114.045146] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 02/05/2023] Open
Abstract
African trypanosomes are devastating human and animal pathogens transmitted by tsetse flies between mammalian hosts. The trypanosome surface forms a critical host interface that is essential for sensing and adapting to diverse host environments. However, trypanosome surface protein composition and diversity remain largely unknown. Here, we use surface labeling, affinity purification, and proteomic analyses to describe cell surface proteomes from insect-stage and mammalian bloodstream-stage Trypanosoma brucei. The cell surface proteomes contain most previously characterized surface proteins. We additionally identify a substantial number of novel proteins, whose functions are unknown, indicating the parasite surface proteome is larger and more diverse than generally appreciated. We also show stage-specific expression for individual paralogs within several protein families, suggesting that fine-tuned remodeling of the parasite surface allows adaptation to diverse host environments, while still fulfilling universally essential cellular needs. Our surface proteome analyses complement existing transcriptomic, proteomic, and in silico analyses by highlighting proteins that are surface-exposed and thereby provide a major step forward in defining the host-parasite interface.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- From the ‡Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095
| | - Edwin A Saada
- From the ‡Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095
| | - Ajay A Vashisht
- §Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095
| | - William D Barshop
- §Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095
| | - James A Wohlschlegel
- §Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095; ¶Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| | - Kent L Hill
- From the ‡Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, 90095; ¶Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|
81
|
de Macêdo JP, Schumann Burkard G, Niemann M, Barrett MP, Vial H, Mäser P, Roditi I, Schneider A, Bütikofer P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathog 2015; 11:e1004875. [PMID: 25946070 PMCID: PMC4422618 DOI: 10.1371/journal.ppat.1004875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/13/2015] [Indexed: 01/27/2023] Open
Abstract
Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug action or targeting. Human and animal trypanosomiases caused by Trypanosoma brucei parasites represent major burdens to human welfare and agricultural development in rural sub-Saharan Africa. Although the numbers of infected humans have decreased continuously during the last decades, emerging resistance and adverse side effects against commonly used drugs require an urgent need for the identification of novel drug targets and the development of new drugs. Using an unbiased genome-wide screen to search for genes involved in the mode of action of trypanocidal compounds, we identified a member of the mitochondrial carrier family, TbMCP14, as prime candidate to mediate the action of a group of anti-parasitic choline analogs against T. brucei. Ablation of TbMCP14 expression by RNA interference or gene deletion decreases the susceptibility of parasites towards the compounds while over-expression of the carrier shows the opposite effect. In addition, down-regulation of TbMCP14 protects mitochondria from drug-induced decrease in mitochondrial membrane potential and reduces proline-dependent ATP production. Together, the results demonstrate that TbMCP14 is involved in energy production in T. brucei, possibly by acting as a mitochondrial proline carrier, and reveal TbMCP14 as candidate protein for drug action or targeting.
Collapse
Affiliation(s)
- Juan P de Macêdo
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henri Vial
- Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5235, Université Montpellier II, Montpellier, France
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
82
|
Munday JC, Tagoe DNA, Eze AA, Krezdorn JAM, Rojas López KE, Alkhaldi AAM, McDonald F, Still J, Alzahrani KJ, Settimo L, De Koning HP. Functional analysis of drug resistance-associated mutations in the Trypanosoma brucei adenosine transporter 1 (TbAT1) and the proposal of a structural model for the protein. Mol Microbiol 2015; 96:887-900. [PMID: 25708978 PMCID: PMC4755147 DOI: 10.1111/mmi.12979] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2015] [Indexed: 02/01/2023]
Abstract
The Trypanosoma brucei aminopurine transporter P2/TbAT1 has long been implicated in the transport of, and resistance to, the diamidine and melaminophenyl arsenical classes of drugs that form the backbone of the pharmacopoeia against African trypanosomiasis. Genetic alterations including deletions and single nucleotide polymorphisms (SNPs) have been observed in numerous strains and clinical isolates. Here, we systematically investigate each reported mutation and assess their effects on transporter function after expression in a tbat1(-/-) T. brucei line. Out of a set of six reported SNPs from a reported 'resistance allele', none significantly impaired sensitivity to pentamidine, diminazene or melarsoprol, relative to the TbAT1-WT allele, although several combinations, and the deletion of the codon for residue F316, resulted in highly significant impairment. These combinations of SNPs, and ΔF316, also strongly impaired the uptake of [(3)H]-adenosine and [(3)H]-diminazene, identical to the tbat1(-/-) control. The TbAT1 protein model predicted that residues F19, D140 and F316 interact with the substrate of the transporter. Mutation of D140 to alanine resulted in an inactive transporter, whereas the mutation F19A produced a transporter with a slightly increased affinity for [(3)H]-diminazene but reduced the uptake rate. The results presented here validate earlier hypotheses of drug binding motifs for TbAT1.
Collapse
Affiliation(s)
- Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Daniel N A Tagoe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Laboratory Technology, University of Cape Coast, Cape Coast, Ghana
| | - Anthonius A Eze
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Medical Biochemistry, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Jessica A M Krezdorn
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Karla E Rojas López
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Abdulsalam A M Alkhaldi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Biology, College of Science, Aljouf University, Sakaka, Saudi Arabia
| | - Fiona McDonald
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jennifer Still
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Khalid J Alzahrani
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Faculty of Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Department of Chemistry and Chemical Biology, 417 Egan Research Center, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
83
|
Munday JC, Settimo L, de Koning HP. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front Pharmacol 2015; 6:32. [PMID: 25814953 PMCID: PMC4356943 DOI: 10.3389/fphar.2015.00032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 12/02/2022] Open
Abstract
Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (DA; Berenil®), cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (melarsoprol/pentamidine cross resistance, MPXR) is the result of loss of a separate high affinity pentamidine transporter (HAPT1). A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the “selectivity region” of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible structural rationale for this remarkable ability.
Collapse
Affiliation(s)
- Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK ; Department of Chemistry and Chemical Biology, Northeastern University Boston, MA, USA
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| |
Collapse
|
84
|
Genome-scale RNAi screens for high-throughput phenotyping in bloodstream-form African trypanosomes. Nat Protoc 2014; 10:106-33. [PMID: 25502887 DOI: 10.1038/nprot.2015.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability to simultaneously assess every gene in a genome for a role in a particular process has obvious appeal. This protocol describes how to perform genome-scale RNAi library screens in bloodstream-form African trypanosomes, a family of parasites that causes lethal human and animal diseases and also serves as a model for studies on basic aspects of eukaryotic biology and evolution. We discuss strain assembly, screen design and implementation, the RNAi target sequencing approach and hit validation, and we provide a step-by-step protocol. A screen can yield from one to thousands of 'hits' associated with the phenotype of interest. The screening protocol itself takes 2 weeks or less to be completed, and high-throughput sequencing may also be completed within weeks. Pre- and post-screen strain assembly, validation and follow-up can take several months, depending on the type of screen and the number of hits analyzed.
Collapse
|
85
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
86
|
Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J Lipid Res 2014; 56:331-41. [PMID: 25424002 DOI: 10.1194/jlr.m054643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Craigen R Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Hosanna Anyatonwu
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - Laurence Lecordier
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| | - David J Leaver
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409 Institute of Chemistry and Biomedical Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - Benoit Vanhollebeke
- Laboratoire de Parasitologie Moléculaire, IBMM, Université Libre de Bruxelles, B6041 Gosselies, Belgium
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry and Biochemistry Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
87
|
Trypanosoma brucei eflornithine transporter AAT6 is a low-affinity low-selective transporter for neutral amino acids. Biochem J 2014; 463:9-18. [PMID: 24988048 DOI: 10.1042/bj20140719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the up-take of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants. The transport was electrogenic and further analysed in Xenopus laevis oocytes. Neutral amino acids, proline analogues, eflornithine and acivicin induced inward currents. For proline, glycine and tryptophan the apparent affinities and maximal transport rates increased with more negative membrane potentials. Proline-induced currents were dependent on pH, but not on sodium. Although proline represents the primary energy source of T. brucei in the tsetse fly, down-regulation of TbAAT6-expression by RNAi showed that in culture TbAAT6 is not essential for growth of procyclic form trypanosomes in the presence of glucose or proline as energy source. TbAAT6-RNAi lines of both bloodstream and procyclic form trypanosomes showed reduced susceptibility to eflornithine, whereas the sensitivity to acivicin remained unchanged, indicating that acivicin enters the cell by more than one transporter.
Collapse
|
88
|
Glover L, Horn D. Locus-specific control of DNA resection and suppression of subtelomeric VSG recombination by HAT3 in the African trypanosome. Nucleic Acids Res 2014; 42:12600-13. [PMID: 25300492 PMCID: PMC4227765 DOI: 10.1093/nar/gku900] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The African trypanosome, Trypanosoma brucei, is a parasitic protozoan that achieves antigenic variation through DNA-repair processes involving Variant Surface Glycoprotein (VSG) gene rearrangements at subtelomeres. Subtelomeric suppression of DNA repair operates in eukaryotes but little is known about these controls in trypanosomes. Here, we identify a trypanosome histone acetyltransferase (HAT3) and a deacetylase (SIR2rp1) required for efficient RAD51-dependent homologous recombination. HAT3 and SIR2rp1 were required for RAD51-focus assembly and disassembly, respectively, at a chromosome-internal locus and a synthetic defect indicated distinct contributions to DNA repair. Although HAT3 promoted chromosome-internal recombination, it suppressed subtelomeric VSG recombination, and these locus-specific effects were mediated through differential production of ssDNA by DNA resection; HAT3 promoted chromosome-internal resection but suppressed subtelomeric resection. Consistent with the resection defect, HAT3 was specifically required for the G2-checkpoint response at a chromosome-internal locus. HAT3 also promoted resection at a second chromosome-internal locus comprising tandem-duplicated genes. We conclude that HAT3 and SIR2rp1 can facilitate temporally distinct steps in DNA repair. HAT3 promotes ssDNA formation and recombination at chromosome-internal sites but has the opposite effect at a subtelomeric VSG. These locus-specific controls reveal compartmentalization of the T. brucei genome in terms of the DNA-damage response and suppression of antigenic variation by HAT3.
Collapse
Affiliation(s)
- Lucy Glover
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
89
|
Vincent IM, Barrett MP. Metabolomic-based strategies for anti-parasite drug discovery. ACTA ACUST UNITED AC 2014; 20:44-55. [PMID: 25281738 DOI: 10.1177/1087057114551519] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metabolomics-based studies are proving of great utility in the analysis of modes of action (MOAs) and resistance mechanisms of drugs in parasitic protozoa. They have helped to determine the MOA of eflornithine, half of the gold standard combination therapy in use against human African trypanosomiasis (HAT), as well as the mechanism of resistance to this drug. In Leishmania, metabolomics has also given insight into the MOA of miltefosine, an alkylphospholipid. Several studies on antimony resistance in Leishmania have been conducted, analyzing the metabolic content of resistant lines, offering clues as to the MOA of this class of drugs. A study of chloroquine resistance in Plasmodium falciparum combined metabolomics techniques with other genetic and proteomic techniques to offer new insight into the role of the PfCRT protein. The MOA and mechanism of resistance to a group of halogenated pyrimidines in Trypanosoma brucei have also recently been elucidated. Effective as metabolomics techniques are, care must be taken in the design and implementation of these experiments, to ensure the resulting data are meaningful. This review outlines the steps required to conduct a metabolomics experiment as well as provide an overview of metabolomics-based drug research in protozoa to date.
Collapse
Affiliation(s)
- Isabel M Vincent
- The Glasgow Polyomics Facility and Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Michael P Barrett
- The Glasgow Polyomics Facility and Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
90
|
Sekhar GN, Watson CP, Fidanboylu M, Sanderson L, Thomas SA. Delivery of antihuman African trypanosomiasis drugs across the blood-brain and blood-CSF barriers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:245-75. [PMID: 25307219 DOI: 10.1016/bs.apha.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human African trypanosomiasis (HAT or sleeping sickness) is a potentially fatal disease caused by the parasite, Trypanosoma brucei sp. The parasites are transmitted by the bite of insect vectors belonging to the genus Glossina (tsetse flies) and display a life cycle strategy that is equally spread between human and insect hosts. T.b. gambiense is found in western and central Africa whereas, T.b. rhodesiense is found in eastern and southern Africa. The disease has two clinical stages: a blood stage after the bite of an infected tsetse fly, followed by a central nervous system (CNS) stage where the parasite penetrates the brain; causing death if left untreated. The blood-brain barrier (BBB) makes the CNS stage difficult to treat because it prevents 98% of all known compounds from entering the brain, including some anti-HAT drugs. Those that do enter the brain are toxic compounds in their own right and have serious side effects. There are only a few drugs available to treat HAT and those that do are stage specific. This review summarizes the incidence, diagnosis, and treatment of HAT and provides a close examination of the BBB transport of anti-HAT drugs and an overview of the latest drugs in development.
Collapse
Affiliation(s)
- Gayathri N Sekhar
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Christopher P Watson
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Mehmet Fidanboylu
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Lisa Sanderson
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Sarah A Thomas
- King's College London, Institute of Pharmaceutical Sciences, London, United Kingdom.
| |
Collapse
|
91
|
Drug target identification using a trypanosome overexpression library. Antimicrob Agents Chemother 2014; 58:6260-4. [PMID: 25049244 DOI: 10.1128/aac.03338-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidation of molecular targets is very important for lead optimization during the drug development process. We describe a direct method to find targets of antitrypanosomal compounds against Trypanosoma brucei using a trypanosome overexpression library. As proof of concept, we treated the library with difluoromethylornithine and DDD85646 and identified their respective targets, ornithine decarboxylase and N-myristoyltransferase. The overexpression library could be a useful tool to study the modes of action of novel antitrypanosomal drug candidates.
Collapse
|
92
|
Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:95-111. [PMID: 25057459 PMCID: PMC4095053 DOI: 10.1016/j.ijpddr.2014.02.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 12/30/2022]
Abstract
Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Gillian Fisher
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Tina S Skinner-Adams
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
93
|
Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter. PLoS One 2014; 9:e92028. [PMID: 24637744 PMCID: PMC3956872 DOI: 10.1371/journal.pone.0092028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/19/2014] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, has a metabolism largely based on the consumption of glucose and proline. This amino acid is essential for host cells infection and intracellular differentiation. In this work we identified a proline transporter (TcAAAP069) by yeasts complementation assays and overexpression in Trypanosoma cruzi epimastigotes. TcAAAP069 is mono-specific for proline but presents an unusual feature; the lack of stereospecificity, because it is competitively inhibited by the D- enantiomer. Parasites overexpressing TcAAAP069 have an increased intracellular proline concentration, 2.6-fold higher than controls, as a consequence of a higher proline transport rate. Furthermore, augmented proline concentration correlates with an improved resistance to trypanocidal drugs and also to reactive oxygen species including hydrogen peroxide and nitric oxide, emulating natural physiological situations. The IC50s for nifurtimox, benznidazole, H2O2 and NO. were 125%, 68%, 44% and 112% higher than controls, respectively. Finally, proline metabolism generates a higher concentration (48%) of ATP in TcAAAP069 parasites. Since proline participates on essential energy pathways, stress and drug resistance responses, these results provide a novel target for the development of new drugs for the treatments for Chagas' disease.
Collapse
|
94
|
Abstract
ABSTRACTThe need for new drugs to treat microbial infections is pressing. The great progress made in the middle part of the twentieth Century was followed by a period of relative inactivity as the medical needs relating to infectious disease in the wealthier nations receded. Growing realisation that anti-infectives are needed in many parts of the world, to treat neglected diseases as well as to combat the burgeoning risk of resistance to existing drugs, has galvanised a new wave of research into anti-microbial drugs. The transfer of knowledge from the Pharmaceutical industry relating to the importance of understanding how to target drugs successfully within the body, and improved understanding of how pathogens interact with their hosts, is driving a series of new paradigms in anti-infective drug design. Here we provide an overview of those processes as an introduction to a series of articles from experts in this area that emerged from a meeting entitled “Emerging Paradigms in Anti-Infective Drug Design” held in London on the 17th and 18th September 2012. The symposium was organised jointly by British Society for Parasitology (BSP) and the Biological & Medicinal Chemistry sector of the Royal Society of Chemistry (RSC) and held at the London School of Hygiene & Tropical Medicine. The symposium set out to cover all aspects of the identification of new therapeutic modalities for the treatment of neglected and tropical diseases. We aimed to bring together leading scientists from all the disciplines working in this field and cover the pharmacology, medicinal chemistry and drug delivery of potential new medicines. Sessions were held on: “Target diseases and targets for drugs”, “Target based medicinal chemistry”, “Bioavailability and chemistry”, “Targeting intracellular microbes”, “Alternative approaches and models”, and “New anti-infectives – how do we get there?”This symposium was organised by Simon Croft (LSHTM) and Mike Barrett (University of Glasgow) for the BSP, and David Alker (David Alker Associates) and Andrew Stachulski (University of Liverpool) for the Biological & Medicinal Chemistry sector of the RSC.
Collapse
|
95
|
Abstract
Light-emitting diode (LED) fluorescence microscopy offers potential benefits in the diagnosis of human African trypanosomiasis and in other aspects of diseases management, such as detection of drug-resistant strains. To advance such approaches, reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we describe a series of novel green fluorescent diamidines and their suitability as probes with which to stain trypanosomes.
Collapse
|
96
|
Graf FE, Ludin P, Wenzler T, Kaiser M, Brun R, Pyana PP, Büscher P, de Koning HP, Horn D, Mäser P. Aquaporin 2 mutations in Trypanosoma brucei gambiense field isolates correlate with decreased susceptibility to pentamidine and melarsoprol. PLoS Negl Trop Dis 2013; 7:e2475. [PMID: 24130910 PMCID: PMC3794916 DOI: 10.1371/journal.pntd.0002475] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/28/2013] [Indexed: 12/29/2022] Open
Abstract
The predominant mechanism of drug resistance in African trypanosomes is decreased drug uptake due to loss-of-function mutations in the genes for the transporters that mediate drug import. The role of transporters as determinants of drug susceptibility is well documented from laboratory-selected Trypanosoma brucei mutants. But clinical isolates, especially of T. b. gambiense, are less amenable to experimental investigation since they do not readily grow in culture without prior adaptation. Here we analyze a selected panel of 16 T. brucei ssp. field isolates that (i) have been adapted to axenic in vitro cultivation and (ii) mostly stem from treatment-refractory cases. For each isolate, we quantify the sensitivity to melarsoprol, pentamidine, and diminazene, and sequence the genomic loci of the transporter genes TbAT1 and TbAQP2. The former encodes the well-characterized aminopurine permease P2 which transports several trypanocides including melarsoprol, pentamidine, and diminazene. We find that diminazene-resistant field isolates of T. b. brucei and T. b. rhodesiense carry the same set of point mutations in TbAT1 that was previously described from lab mutants. Aquaglyceroporin 2 has only recently been identified as a second transporter involved in melarsoprol/pentamidine cross-resistance. Here we describe two different kinds of TbAQP2 mutations found in T. b. gambiense field isolates: simple loss of TbAQP2, or loss of wild-type TbAQP2 allele combined with the formation of a novel type of TbAQP2/3 chimera. The identified mutant T. b. gambiense are 40- to 50-fold less sensitive to pentamidine and 3- to 5-times less sensitive to melarsoprol than the reference isolates. We thus demonstrate for the first time that rearrangements of the TbAQP2/TbAQP3 locus accompanied by TbAQP2 gene loss also occur in the field, and that the T. b. gambiense carrying such mutations correlate with a significantly reduced susceptibility to pentamidine and melarsoprol. Human African Trypanosomiasis, or sleeping sickness, is a fatal disease restricted to sub-Saharan Africa, caused by Trypanosoma brucei gambiense and T. b. rhodesiense. The treatment relies on chemotherapy exclusively. Drug resistance in T. brucei was investigated mainly in laboratory-selected lines and found to be linked to mutations in transporters. The adenosine transporter TbAT1 and the aquaglyceroporin TbAQP2 have been implicated in sensitivity to melarsoprol and pentamidine. Mutations in these transporters rendered trypanosomes less susceptible to either drug. Here we analyze T. brucei isolates from the field, focusing on isolates from patients where melarsoprol treatment has failed. We genotype those isolates to test for mutations in TbAQP2 or TbAT1, and phenotype for sensitivity to pentamidine and melarsoprol. Six T. b. gambiense isolates were found to carry mutations in TbAQP2. These isolates stemmed from relapse patients and exhibited significantly reduced sensitivity to pentamidine and melarsoprol as determined in cell culture. These findings indicate that mutations in TbAQP2 are present in the field, correlate with loss of sensitivity to pentamidine and melarsoprol, and might be responsible for melarsoprol treatment failures.
Collapse
Affiliation(s)
- Fabrice E. Graf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Philipp Ludin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Patient Pati Pyana
- Institut National de Recherche Biomédicale, Kinshasa-Gombe, Democratic Republic of the Congo
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
97
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|
98
|
Berg M, Vanaerschot M, Jankevics A, Cuypers B, Maes I, Mukherjee S, Khanal B, Rijal S, Roy S, Opperdoes F, Breitling R, Dujardin JC. Metabolic adaptations of Leishmania donovani in relation to differentiation, drug resistance, and drug pressure. Mol Microbiol 2013; 90:428-42. [PMID: 24020363 DOI: 10.1111/mmi.12374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 12/31/2022]
Abstract
Antimonial (sodium stibogluconate, SSG) resistance and differentiation have been shown to be closely linked in Leishmania donovani, with SSG-resistant strains showing an increased capacity to generate infectious (metacyclic) forms. This is the first untargeted LC-MS metabolomics study which integrated both phenomena in one experimental design and provided insights into metabolic differences between three clinical L. donovani strains with a similar genetic background but different SSG-susceptibilities. We performed this analysis at different stages during promastigote growth and in the absence or presence of drug pressure. When comparing SSG-resistant and SSG-sensitive strains, a number of metabolic changes appeared to be constitutively present in all growth stages, pointing towards a clear link with SSG-resistance, whereas most metabolic changes were only detected in the stationary stage. These changes reflect the close intertwinement between SSG-resistance and an increased metacyclogenesis in resistant parasites. The metabolic changes suggest that SSG-resistant parasites have (i) an increased capacity for protection against oxidative stress; (ii) a higher fluidity of the plasma membrane; and (iii) a metabolic survival kit to better endure infection. These changes were even more pronounced in a resistant strain kept under Sb(III) drug pressure.
Collapse
Affiliation(s)
- Maya Berg
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Millerioux Y, Ebikeme C, Biran M, Morand P, Bouyssou G, Vincent IM, Mazet M, Riviere L, Franconi JM, Burchmore RJS, Moreau P, Barrett MP, Bringaud F. The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Mol Microbiol 2013; 90:114-29. [PMID: 23899193 PMCID: PMC4034587 DOI: 10.1111/mmi.12351] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
The Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production.
Collapse
Affiliation(s)
- Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR-5536 Université Bordeaux Segalen, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Whole-genome sequencing of Trypanosoma brucei reveals introgression between subspecies that is associated with virulence. mBio 2013; 4:mBio.00197-13. [PMID: 23963174 PMCID: PMC3747575 DOI: 10.1128/mbio.00197-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human African trypanosomiasis is caused by two subspecies of Trypanosoma brucei. Trypanosoma brucei rhodesiense is found in East Africa and frequently causes acute disease, while Trypanosoma brucei gambiense is found in West Africa and is associated with chronic disease. Samples taken from a single focus of a Ugandan outbreak of T. b. rhodesiense in the 1980s were associated with either chronic or acute disease. We sequenced the whole genomes of two of these isolates, which showed that they are genetically distinct from each other. Analysis of single nucleotide polymorphism markers in a panel of 31 Ugandan isolates plus 32 controls revealed a mixture of East African and West African haplotypes, and some of these haplotypes were associated with the different virulence phenotypes. It has been shown recently that T. b. brucei and T. b. rhodesiense populations undergo genetic exchange in natural populations. Our analysis showed that these strains from the Ugandan epidemic were intermediate between the reference genome sequences of T. b. gambiense and T. b. brucei and contained haplotypes that were present in both subspecies. This suggests that the human-infective subspecies of T. brucei are not genetically isolated, and our data are consistent with genomic introgression between East African and West African T. b. brucei subspecies. This has implications for the control of the parasite, the spread of drug resistance, and understanding the variation in virulence and the emergence of human infectivity. IMPORTANCE We present a genetic study of the acute form of "sleeping sickness" caused by the protozoan parasite Trypanosoma brucei rhodesiense from a single outbreak in Uganda. This represents an advance in our understanding of the relationship between the T. b. rhodesiense and Trypanosoma brucei gambiense subspecies that have previously been considered geographically distinct. Our data suggest that introgression of West African-derived T. brucei haplotypes may be associated with differences in disease presentation in the East African disease. These findings are not only of scientific interest but also important for parasite control, as they suggest that the human-infective T. brucei subspecies are not genetically isolated.
Collapse
|