51
|
Lin Y, Liao YY, Huang RX, Li AZ, An SQ, Tang JL, Tang DJ. Extracellular Amylase Is Required for Full Virulence and Regulated by the Global Posttranscriptional Regulator RsmA in Xanthomonas campestris Pathovar campestris. PHYTOPATHOLOGY 2021; 111:1104-1113. [PMID: 33245253 DOI: 10.1094/phyto-08-20-0372-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As with many phytopathogenic bacteria, the virulence of Xanthomonas campestris pv. campestris, the causal agent of black rot disease in cruciferous plants, relies on secretion of a suite of extracellular enzymes that includes cellulase (endoglucanase), pectinase, protease, and amylase. Although the role in virulence of a number of these enzymes has been assessed, the contribution of amylase to X. campestris pv. campestris virulence has yet to be established. In this work, we investigated both the role of extracellular amylase in X. campestris pv. campestris virulence and the control of its expression. Deletion of XC3487 (here renamed amyAXcc), a putative amylase-encoding gene from the genome of X. campestris pv. campestris strain 8004, resulted in a complete loss of extracellular amylase activity and significant reduction in virulence. The extracellular amylase activity and virulence of the amyAXcc mutant could be restored to the wild-type level by expressing amyAXcc in trans. These results demonstrated that amyAXcc is responsible for the extracellular amylase activity of X. campestris pv. campestris and indicated that extracellular amylase plays an important role in X. campestris pv. campestris virulence. We also found that the expression of amyAXcc is strongly induced by starch and requires activation by the global posttranscriptional regulator RsmA. RsmA binds specifically to the 5'-untranslated region of amyAXcc transcripts, suggesting that RsmA regulates amyAXcc directly at the posttranscriptional level. Unexpectedly, in addition to posttranscriptional regulation, the use of a transcriptional reporter demonstrated that RsmA also regulates amyAXcc expression at the transcriptional level, possibly by an indirect mechanism.
Collapse
Affiliation(s)
- Yan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yong-Yan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ru-Xia Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ai-Zhou Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shi-Qi An
- National Biofilms Innovation Centre, Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Dong-Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
52
|
Harrison ZL, Awais R, Harris M, Raji B, Hoffman BC, Baker DL, Jennings JA. 2-Heptylcyclopropane-1-Carboxylic Acid Disperses and Inhibits Bacterial Biofilms. Front Microbiol 2021; 12:645180. [PMID: 34177826 PMCID: PMC8221421 DOI: 10.3389/fmicb.2021.645180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Fatty-acid signaling molecules can inhibit biofilm formation, signal dispersal events, and revert dormant cells within biofilms to a metabolically active state. We synthesized 2-heptylcyclopropane-1-carboxylic acid (2CP), an analog of cis-2-decenoic acid (C2DA), which contains a cyclopropanated bond that may lock the signaling factor in an active state and prevent isomerization to its least active trans-configuration (T2DA). 2CP was compared to C2DA and T2DA for ability to disperse biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. 2CP at 125 μg/ml dispersed approximately 100% of S. aureus cells compared to 25% for C2DA; both 2CP and C2DA had significantly less S. aureus biofilm remaining compared to T2DA, which achieved no significant dispersal. 2CP at 125 μg/ml dispersed approximately 60% of P. aeruginosa biofilms, whereas C2DA and T2DA at the same concentration dispersed 40%. When combined with antibiotics tobramycin, tetracycline, or levofloxacin, 2CP decreased the minimum concentration required for biofilm inhibition and eradication, demonstrating synergistic and additive responses for certain combinations. Furthermore, 2CP supported fibroblast viability above 80% for concentrations below 1 mg/ml. This study demonstrates that 2CP shows similar or improved efficacy in biofilm dispersion, inhibition, and eradication compared to C2DA and T2DA and thus may be promising for use in preventing infection for healthcare applications.
Collapse
Affiliation(s)
- Zoe L Harrison
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Rukhsana Awais
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Michael Harris
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Babatunde Raji
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | - Brian C Hoffman
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | - Daniel L Baker
- Department of Chemistry, University of Memphis, Memphis, TN, United States
| | | |
Collapse
|
53
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R. Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiol Res 2021; 248:126755. [PMID: 33845302 DOI: 10.1016/j.micres.2021.126755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Plants interact with enormous biotic and abiotic components within ecosystem. For instance, microbes, insects, herbivores, animals, nematodes etc. In general, these interactions are studied independently with plants, that condenses only specific information about the interaction. However, the limitation to study the cross-interactions masks the collaborative role of organisms within ecosystem. Beneficial microbes are most prominent organisms that are needed to be studied due to their bidirectional nature towards plants. Fascinatingly, Plant-Parasitic Nematodes (PPNs) have been profoundly observed to cause mass destruction of agricultural crops worldwide. The huge demand for agriculture for present-day population requires optimization of production potential by curbing the damage caused by PPNs. Chemical nematicides combats their proliferation, but their extended usage has abruptly affected flora, fauna and human populations. Because of consistent pressing issues in regard to environment, the use of biocontrol agents are most favourable alternatives for managing agriculture. However, this association is somehow, tug of war, and understanding of plant-nematode-microbial relation would enable the agriculturists to monitor the overall development of plants along with limiting the use of agrochemicals. Soil microbes are contemporary bio-nematicides emerging in the market, that stimulates the plant growth and impedes PPNs populations. They form natural enemies and trap nematodes, henceforth, it is crucial to understand these interactions for ecological and biotechnological perspectives for commercial use. Moreover, acquiring the diversity of their relationship and molecular-based mechanisms, outlines their cascade of signaling events to serve as biotechnological ecosystem engineers. The omics based mechanisms encompassing hormone gene regulatory pathways and elicitors released by microbes are able to modulate pathogenesis-related (PR) genes within plants. This is achieved via Induced Systemic Resistance (ISR) or acquired systemic channels. Taking into account all these validations, the present review mainly advocates the relationship among microbes and nematodes in plants. It is believed that this review will boost zest and zeal within researchers to effectively understand the plant-nematodes-microbes relations and their ecological perspectives.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
54
|
Yi L, Dong X, Grenier D, Wang K, Wang Y. Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143031. [PMID: 33129525 DOI: 10.1016/j.scitotenv.2020.143031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The microbial community is an important part of the natural ecosystem, and the quorum sensing system is a momentous communication tool for the microbial community to connect to the surrounding environment. Quorum sensing is a process of cell-cell communication that relies on the production, release, and detection of extracellular signaling molecules, which are called autoinducers. Quorum sensing systems in bacteria consist of two main components: a receptor protein and an autoinducer. The binding of autoinducer to its receptor activates the target gene, which then performs the corresponding function in bacteria. In a natural environment, different bacterial species possess quorum sensing receptors that are structurally and functionally different. So far, many bacterial quorum sensing receptors have been identified and the structure and function of some receptors have been characterized. There are many reviews about quorum sensing and quorum sensing receptors, but there are few reviews that describe various types of quorum sensing in different environments with receptors as the core. Therefore, we summarize the well-defined quorum sensing receptors involved in intra-species and inter-species cell-cell communication, and describe the structure, function, and characteristics of typical receptors for different types of quorum sensing. A systematic understanding of quorum sensing receptors will help researchers to further explore the signaling mechanism and regulation mechanism of quorum sensing system, provide help to clarify the role and function of quorum sensing in natural ecosystems, then provide theoretical basis for the discovery or synthesis of new targeted drugs that block quorum sensing.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Xiao Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
55
|
HPLC-MS/MS method applied to an untargeted metabolomics approach for the diagnosis of "olive quick decline syndrome". Anal Bioanal Chem 2021; 414:465-473. [PMID: 33765220 PMCID: PMC8748322 DOI: 10.1007/s00216-021-03279-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 11/04/2022]
Abstract
Olive quick decline syndrome (OQDS) is a disorder associated with bacterial infections caused by Xylella fastidiosa subsp. pauca ST53 in olive trees. Metabolic profile changes occurring in infected olive trees are still poorly investigated, but have the potential to unravel reliable biomarkers to be exploited for early diagnosis of infections. In this study, an untargeted metabolomic method using high-performance liquid chromatography coupled to quadrupole-time-of-flight high-resolution mass spectrometry (HPLC-ESI-Q-TOF-MS) was used to detect differences in samples (leaves) from healthy (Ctrl) and infected (Xf) olive trees. Both unsupervised and supervised data analysis clearly differentiated the groups. Different metabolites have been identified as potential specific biomarkers, and their characterization strongly suggests that metabolism of flavonoids and long-chain fatty acids is perturbed in Xf samples. In particular, a decrease in the defence capabilities of the host after Xf infection is proposed because of a significant dysregulation of some metabolites belonging to flavonoid family. Moreover, oleic acid is confirmed as a putative diffusible signal factor (DSF). This study provides new insights into the host-pathogen interactions and confirms LC-HRMS-based metabolomics as a powerful approach for disease-associated biomarkers discovery in plants.
Collapse
|
56
|
Ma Z, Liu X, Nath S, Sun H, Tran TM, Yang L, Mayor S, Miao Y. Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Rep 2021; 34:108884. [PMID: 33789103 DOI: 10.1016/j.celrep.2021.108884] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Plants respond to bacterial infection acutely with actin remodeling during plant immune responses. The mechanisms by which bacterial virulence factors (VFs) modulate plant actin polymerization remain enigmatic. Here, we show that plant-type-I formin serves as the molecular sensor for actin remodeling in response to two bacterial VFs: Xanthomonas campestris pv. campestris (Xcc) diffusible signal factor (DSF), and pathogen-associated molecular pattern (PAMP) flagellin in pattern-triggered immunity (PTI). Both VFs regulate actin assembly by tuning the clustering and nucleation activity of formin on the plasma membrane (PM) at the nano-sized scale. By being integrated within the cell-wall-PM-actin cytoskeleton (CW-PM-AC) continuum, the dynamic behavior and function of formins are highly dependent on each scaffold layer's composition within the CW-PM-AC continuum during both DSF and PTI signaling. Our results reveal a central mechanism for rapid actin remodeling during plant-bacteria interactions, in which bacterial signaling molecules fine tune plant formin nanoclustering in a host mechanical-structure-dependent manner.
Collapse
Affiliation(s)
- Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore 560065, India; Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore 560065, India
| | - He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen 518055, China
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore 560065, India; National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
57
|
Chowdhury R, Pavinski Bitar PD, Keresztes I, Condo AM, Altier C. A diffusible signal factor of the intestine dictates Salmonella invasion through its direct control of the virulence activator HilD. PLoS Pathog 2021; 17:e1009357. [PMID: 33617591 PMCID: PMC7932555 DOI: 10.1371/journal.ppat.1009357] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Successful intestinal infection by Salmonella requires optimized invasion of the gut epithelium, a function that is energetically costly. Salmonella have therefore evolved to intricately regulate the expression of their virulence determinants by utilizing specific environmental cues. Here we show that a powerful repressor of Salmonella invasion, a cis-2 unsaturated long chain fatty acid, is present in the murine large intestine. Originally identified in Xylella fastidiosa as a diffusible signal factor for quorum sensing, this fatty acid directly interacts with HilD, the master transcriptional regulator of Salmonella, and prevents hilA activation, thus inhibiting Salmonella invasion. We further identify the fatty acid binding region of HilD and show it to be selective and biased in favour of signal factors with a cis-2 unsaturation over other intestinal fatty acids. Single mutation of specific HilD amino acids to alanine prevented fatty acid binding, thereby alleviating their repressive effect on invasion. Together, these results highlight an exceedingly sensitive mechanism used by Salmonella to colonize its host by detecting and exploiting specific molecules present within the complex intestinal environment.
Collapse
Affiliation(s)
- Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| | - Paulina D. Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ivan Keresztes
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Anthony M. Condo
- Chemistry NMR Facility, Cornell University, Ithaca, New York, United States of America
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RC); (CA)
| |
Collapse
|
58
|
Dwidar M, Jang H, Sangwan N, Mun W, Im H, Yoon S, Choi S, Nam D, Mitchell RJ. Diffusible Signaling Factor, a Quorum-Sensing Molecule, Interferes with and Is Toxic Towards Bdellovibrio bacteriovorus 109J. MICROBIAL ECOLOGY 2021; 81:347-356. [PMID: 32892232 DOI: 10.1007/s00248-020-01585-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Bdellovibrio bacteriovorus 109J is a predatory bacterium which lives by predating on other Gram-negative bacteria to obtain the nutrients it needs for replication and survival. Here, we evaluated the effects two classes of bacterial signaling molecules (acyl homoserine lactones (AHLs) and diffusible signaling factor (DSF)) have on B. bacteriovorus 109J behavior and viability. While AHLs had a non-significant impact on predation rates, DSF considerably delayed predation and bdelloplast lysis. Subsequent experiments showed that 50 μM DSF also reduced the motility of attack-phase B. bacteriovorus 109J cells by 50% (38.2 ± 14.9 vs. 17 ± 8.9 μm/s). Transcriptomic analyses found that DSF caused genome-wide changes in B. bacteriovorus 109J gene expression patterns during both the attack and intraperiplasmic phases, including the significant downregulation of the flagellum assembly genes and numerous serine protease genes. While the former accounts for the reduced speeds observed, the latter was confirmed experimentally with 50 μM DSF completely blocking protease secretion from attack-phase cells. Additional experiments found that 30% of the total cellular ATP was released into the supernatant when B. bacteriovorus 109J was exposed to 200 μM DSF, implying that this QS molecule negatively impacts membrane integrity.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Naseer Sangwan
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Wonsik Mun
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hansol Im
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sora Yoon
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sooin Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Dougu Nam
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
59
|
Wu L, Luo Y. Bacterial Quorum-Sensing Systems and Their Role in Intestinal Bacteria-Host Crosstalk. Front Microbiol 2021; 12:611413. [PMID: 33584614 PMCID: PMC7876071 DOI: 10.3389/fmicb.2021.611413] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Quorum-sensing (QS) system is a rapidly developing field in which we are gradually expanding our understanding about how bacteria communicate with each other and regulate their activities in bacterial sociality. In addition to collectively modifying bacterial behavior, QS-related autoinducers may also be embedded in the crosstalk between host and parasitic microbes. In this review, we summarize current studies on QS in the intestinal microbiome field and its potential role in maintaining homeostasis under physiological conditions. Additionally, we outline the canonical autoinducers and their related QS signal-response systems by which several pathogens interact with the host under pathological conditions, with the goal of better understanding intestinal bacterial sociality and facilitating novel antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Liang Wu
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Juárez-Rodríguez MM, Cortes-López H, García-Contreras R, González-Pedrajo B, Díaz-Guerrero M, Martínez-Vázquez M, Rivera-Chávez JA, Soto-Hernández RM, Castillo-Juárez I. Tetradecanoic Acids With Anti-Virulence Properties Increase the Pathogenicity of Pseudomonas aeruginosa in a Murine Cutaneous Infection Model. Front Cell Infect Microbiol 2021; 10:597517. [PMID: 33585272 PMCID: PMC7876447 DOI: 10.3389/fcimb.2020.597517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Blocking virulence is a promising alternative to counteract Pseudomonas aeruginosa infections. In this regard, the phenomenon of cell-cell communication by quorum sensing (QS) is an important anti-virulence target. In this field, fatty acids (FA) have gained notoriety for their role as autoinducers, as well as anti-virulence molecules in vitro, like some saturated FA (SAFA). In this study, we analyzed the anti-virulence activity of SAFA with 12 to18 carbon atoms and compared their effect with the putative autoinducer cis-2-decenoic acid (CDA). The effect of SAFA on six QS-regulated virulence factors and on the secretion of the exoenzyme ExoU was evaluated. In addition, a murine cutaneous infection model was used to determine their influence on the establishment and damage caused by P. aeruginosa PA14. Dodecanoic (lauric, C12:0) and tetradecanoic (myristic, C14:0) acids (SAFA C12-14) reduced the production of pyocyanin by 35-58% at 40 and 1,000 µM, while CDA inhibited it 62% at a 3.1 µM concentration. Moreover, the SAFA C12-14 reduced swarming by 90% without affecting biofilm formation. In contrast, CDA reduced the biofilm by 57% at 3 µM but did not affect swarming. Furthermore, lauric and myristic acids abolished ExoU secretion at 100 and 50 µM respectively, while CDA reduced it by ≈ 92% at 100 µM. Remarkably, the coadministration of myristic acid (200 and 1,000 µM) with P. aeruginosa PA14 induced greater damage and reduced survival of the animals up to 50%, whereas CDA to 500 µM reduced the damage without affecting the viability of the PA14 strain. Hence, our results show that SAFA C12-14 and CDA have a role in regulation of P. aeruginosa virulence, although their inhibition/activation molecular mechanisms are different in complex environments such as in vivo systems.
Collapse
Affiliation(s)
| | - Humberto Cortes-López
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Alberto Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
61
|
The HrpG/HrpX Regulon of Xanthomonads-An Insight to the Complexity of Regulation of Virulence Traits in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9010187. [PMID: 33467109 PMCID: PMC7831014 DOI: 10.3390/microorganisms9010187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/05/2022] Open
Abstract
Bacteria of the genus Xanthomonas cause a wide variety of economically important diseases in most crops. The virulence of the majority of Xanthomonas spp. is dependent on secretion and translocation of effectors by the type 3 secretion system (T3SS) that is controlled by two master transcriptional regulators HrpG and HrpX. Since their discovery in the 1990s, the two regulators were the focal point of many studies aiming to decipher the regulatory network that controls pathogenicity in Xanthomonas bacteria. HrpG controls the expression of HrpX, which subsequently controls the expression of T3SS apparatus genes and effectors. The HrpG/HrpX regulon is activated in planta and subjected to tight metabolic and genetic regulation. In this review, we cover the advances made in understanding the regulatory networks that control and are controlled by the HrpG/HrpX regulon and their conservation between different Xanthomonas spp.
Collapse
|
62
|
The Union Is Strength: The Synergic Action of Long Fatty Acids and a Bacteriophage against Xanthomonas campestris Biofilm. Microorganisms 2020; 9:microorganisms9010060. [PMID: 33379305 PMCID: PMC7824728 DOI: 10.3390/microorganisms9010060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Xanthomonas campestris pv. campestris is known as the causative agent of black rot disease, which attacks mainly crucifers, severely lowering their global productivity. One of the main virulence factors of this pathogen is its capability to penetrate and form biofilm structures in the xylem vessels. The discovery of novel approaches to crop disease management is urgent and a possible treatment could be aimed at the eradication of biofilm, although anti-biofilm approaches in agricultural microbiology are still rare. Considering the multifactorial nature of biofilm, an effective approach against Xanthomonas campestris implies the use of a multi-targeted or combinatorial strategy. In this paper, an anti-biofilm strategy based on the use of fatty acids and the bacteriophage (Xccφ1)-hydroxyapatite complex was optimized against Xanthomonas campestris mature biofilm. The synergic action of these elements was demonstrated and the efficient removal of Xanthomonas campestris mature biofilm was also proven in a flow cell system, making the proposed approach an effective solution to enhance plant survival in Xanthomonas campestris infections. Moreover, the molecular mechanisms responsible for the efficacy of the proposed treatment were explored.
Collapse
|
63
|
Tran TM, Ma Z, Triebl A, Nath S, Cheng Y, Gong BQ, Han X, Wang J, Li JF, Wenk MR, Torta F, Mayor S, Yang L, Miao Y. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. Life Sci Alliance 2020; 3:e202000720. [PMID: 32788227 PMCID: PMC7425213 DOI: 10.26508/lsa.202000720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023] Open
Abstract
Quorum sensing (QS) is a recognized phenomenon that is crucial for regulating population-related behaviors in bacteria. However, the direct specific effect of QS molecules on host biology is largely understudied. In this work, we show that the QS molecule DSF (cis-11-methyl-dodecenoic acid) produced by Xanthomonas campestris pv. campestris can suppress pathogen-associated molecular pattern-triggered immunity (PTI) in Arabidopsis thaliana, mediated by flagellin-induced activation of flagellin receptor FLS2. The DSF-mediated attenuation of innate immunity results from the alteration of FLS2 nanoclusters and endocytic internalization of plasma membrane FLS2. DSF altered the lipid profile of Arabidopsis, with a particular increase in the phytosterol species, which impairs the general endocytosis pathway mediated by clathrin and FLS2 nano-clustering on the plasma membrane. The DSF effect on receptor dynamics and host immune responses could be entirely reversed by sterol removal. Together, our results highlighted the importance of sterol homeostasis to plasma membrane organization and demonstrate a novel mechanism by which pathogenic bacteria use their communicating molecule to manipulate pathogen-associated molecular pattern-triggered host immunity.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ben-Qiang Gong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junqi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Feng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus R Wenk
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
64
|
Tran TM, Ma Z, Triebl A, Nath S, Cheng Y, Gong BQ, Han X, Wang J, Li JF, Wenk MR, Torta F, Mayor S, Yang L, Miao Y. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. Life Sci Alliance 2020. [PMID: 32788227 DOI: 10.1101/927731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Quorum sensing (QS) is a recognized phenomenon that is crucial for regulating population-related behaviors in bacteria. However, the direct specific effect of QS molecules on host biology is largely understudied. In this work, we show that the QS molecule DSF (cis-11-methyl-dodecenoic acid) produced by Xanthomonas campestris pv. campestris can suppress pathogen-associated molecular pattern-triggered immunity (PTI) in Arabidopsis thaliana, mediated by flagellin-induced activation of flagellin receptor FLS2. The DSF-mediated attenuation of innate immunity results from the alteration of FLS2 nanoclusters and endocytic internalization of plasma membrane FLS2. DSF altered the lipid profile of Arabidopsis, with a particular increase in the phytosterol species, which impairs the general endocytosis pathway mediated by clathrin and FLS2 nano-clustering on the plasma membrane. The DSF effect on receptor dynamics and host immune responses could be entirely reversed by sterol removal. Together, our results highlighted the importance of sterol homeostasis to plasma membrane organization and demonstrate a novel mechanism by which pathogenic bacteria use their communicating molecule to manipulate pathogen-associated molecular pattern-triggered host immunity.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Triebl
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sangeeta Nath
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, India
| | - Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ben-Qiang Gong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junqi Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Feng Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Markus R Wenk
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Department of Biochemistry, Singapore Lipidomics Incubator (SLING), Yoo Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
65
|
Zhao NL, Zhang QQ, Zhao C, Liu L, Li T, Li CC, He LH, Zhu YB, Song YJ, Liu HX, Bao R. Structural and molecular dynamic studies of Pseudomonas aeruginosa OdaA reveal the regulation role of a C-terminal hinge element. Biochim Biophys Acta Gen Subj 2020; 1865:129756. [PMID: 33010351 DOI: 10.1016/j.bbagen.2020.129756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Crotonase superfamily members exhibit great catalytic diversity towards various acyl-CoA substrates. A common CoA moiety binding pattern is usually observed in this family, understanding the substrate-binding mechanism would facilitate the rational engineering of crotonases for improved properties. METHODS We applied X-ray crystallography to investigate a putative enoyl-CoA hydratase/isomerase OdaA in Pseudomonas aeruginosa. Thermal shift assay (TSA) were performed to explore the binding of OdaA with CoA thioester substrates. Furthermore, we performed molecular dynamics (MD) simulations to elucidate the dynamics of its CoA-binding site. RESULTS We solved the crystal structures of the apo and CoA-bound OdaA. Thermal shift assay (TSA) showed that CoA thioester substrates bind to OdaA with a different degree. MD simulations demonstrated that the C-terminal alpha helix underwent a structural transition and a hinge region would associate with this conformational change. CONCLUSIONS TSA in combination with MD simulations elucidate that the dynamics of C-terminal alpha helix in CoA-binding, and a hinge region play an important role in conformational change. GENERAL SIGNIFICANCE Those results help to extend our knowledge about the nature of crotonases and would be informative for future mechanistic studies and industry applications.
Collapse
Affiliation(s)
- Ning-Lin Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qian-Qian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chang Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Liu
- Department of dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chang-Cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li-Hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yi-Bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ying-Jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Huan-Xiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
66
|
Characterization of a Novel Quorum-Quenching Bacterial Strain, Burkholderia anthina HN-8, and Its Biocontrol Potential against Black Rot Disease Caused by Xanthomonas campestris pv. campestris. Microorganisms 2020; 8:microorganisms8101485. [PMID: 32992637 PMCID: PMC7601453 DOI: 10.3390/microorganisms8101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusible signal factor (DSF) is a type of cis unsaturated fatty acid, with a chemical structure of 11-methyl-2-dodecylene acid. DSF is widely conserved in a variety of Gram-negative bacterial pathogens and is involved in the regulation of pathogenic virulence. Quorum quenching (QQ) is a promising strategy for preventing and controlling quorum sensing (QS)-mediated bacterial infections by interfering with the QS system of pathogens. In this study, a novel DSF-degrading bacterium, Burkholderia anthina strain HN-8, was isolated and characterized for its degradation ability and potential biocontrol of black rot disease caused by Xanthomonas campestris pv. campestris (Xcc). The HN-8 strain exhibited superb DSF degradation activity and completely degraded 2 mM DSF within 48 h. In addition, we present the first evidence of bacterium having a metabolic pathway for the complete degradation and metabolism of DSF. Analysis of DSF metabolic products by gas chromatography–mass spectrometry led to the identification of dodecanal as the main intermediate product, revealing that DSF could be degraded via oxidation–reduction. Furthermore, application of strain HN-8 as a potent biocontrol agent was able to significantly reduce the severity of black rot disease in radishes and Chinese cabbage. Taken together, these results shed light on the QQ mechanisms of DSF, and they provide useful information showing the potential for the biocontrol of infectious diseases caused by DSF-dependent bacterial pathogens.
Collapse
|
67
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
68
|
Kim HS, Cha E, Ham SY, Park JH, Nam S, Kwon H, Byun Y, Park HD. Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor-mediated quorum sensing. Biotechnol Bioeng 2020; 118:82-93. [PMID: 32880907 DOI: 10.1002/bit.27552] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/09/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
Bacterial biofilm formation causes serious problems in various fields of medical, clinical, and industrial settings. Antibiotics and biocide treatments are typical methods used to remove bacterial biofilms, but biofilms are difficult to remove effectively from surfaces due to their increased resistance. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In the present study, we found that linoleic acid (LA), a plant unsaturated fatty acid, inhibits biofilm formation under static and continuous conditions without inhibiting the growth of Pseudomonas aeruginosa. LA also influenced the bacterial motility, extracellular polymeric substance production, and biofilm dispersion by decreasing the intracellular cyclic diguanylate concentration through increased phosphodiesterase activity. Furthermore, quantitative gene expression analysis demonstrated that LA induced the expression of genes associated with diffusible signaling factor-mediated quorum sensing that can inhibit or induce the dispersion of P. aeruginosa biofilms. These results suggest that LA is functionally and structurally similar to a P. aeruginosa diffusible signaling factor (cis-2-decenoic acid) and, in turn, act as an agonist molecule in biofilm dispersion.
Collapse
Affiliation(s)
- Han-Shin Kim
- Korean Peninsula Infrastructure Special Committee, Korea Institute of Civil Engineering and Building Technology, Goyang, South Korea
| | - Eunji Cha
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - So-Young Ham
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Clean Innovation Technology Group, Korea Institute of Industrial Technology, Jeju, South Korea
| | - SangJin Nam
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Hongmok Kwon
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, South Korea.,Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
69
|
Berlanga-Clavero MV, Molina-Santiago C, de Vicente A, Romero D. More than words: the chemistry behind the interactions in the plant holobiont. Environ Microbiol 2020; 22:4532-4544. [PMID: 32794337 DOI: 10.1111/1462-2920.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/04/2023]
Abstract
Plants and microbes have evolved sophisticated ways to communicate and coexist. The simplest interactions that occur in plant-associated habitats, i.e., those involved in disease detection, depend on the production of microbial pathogenic and virulence factors and the host's evolved immunological response. In contrast, microbes can also be beneficial for their host plants in a number of ways, including fighting pathogens and promoting plant growth. In order to clarify the mechanisms directly involved in these various plant-microbe interactions, we must still deepen our understanding of how these interkingdom communication systems, which are constantly modulated by resident microbial activity, are established and, most importantly, how their effects can span physically separated plant compartments. Efforts in this direction have revealed a complex and interconnected network of molecules and associated metabolic pathways that modulate plant-microbe and microbe-microbe communication pathways to regulate diverse ecological responses. Once sufficiently understood, these pathways will be biotechnologically exploitable, for example, in the use of beneficial microbes in sustainable agriculture. The aim of this review is to present the latest findings on the dazzlingly diverse arsenal of molecules that efficiently mediate specific microbe-microbe and microbe-plant communication pathways during plant development and on different plant organs.
Collapse
Affiliation(s)
- María Victoria Berlanga-Clavero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| |
Collapse
|
70
|
Kumar P, Lee JH, Beyenal H, Lee J. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends Microbiol 2020; 28:753-768. [DOI: 10.1016/j.tim.2020.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/09/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
|
71
|
Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 2020; 18:1221-1233. [PMID: 32749905 DOI: 10.1080/14787210.2020.1794815] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Numerous bacterial behaviors are regulated by a cell-density dependent mechanism known as Quorum Sensing (QS). QS relies on communication between bacterial cells using diffusible signaling molecules known as autoinducers. QS regulates physiological processes such as metabolism, virulence, and biofilm formation. Quorum Quenching (QQ) is the inhibition of QS using chemical or enzymatic means to counteract behaviors regulated by QS. AREAS COVERED We examine the main, diverse QS mechanisms present in bacterial species, with a special emphasis on AHL-mediated QS. We also discuss key in vitro and in vivo systems in which interference in QS was investigated. Additionally, we highlight promising developments, such as the substrate preference of the used enzymatic quencher, in the application of interference in QS to counter bacterial virulence. EXPERT OPINION Enabled via the recent isolation of highly stable quorum quenching enzymes and/or molecular engineering efforts, the effects of the interference in QS were recently evaluated outside of the traditional model of single species culture. Signal disruption in complex microbial communities was shown to result in the disruption of complex microbial behaviors, and changes in population structures. These new findings, and future studies, may result in significant changes in the traditional views about QS.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| |
Collapse
|
72
|
Abstract
The regulation and timely expression of bacterial genes during infection is critical for a pathogen to cause an infection. Bacteria have multiple mechanisms to regulate gene expression in response to their environment, one of which is two-component systems (TCS). TCS have two components. One component is a sensory histidine kinase (HK) that autophosphorylates when activated by a signal. The activated sensory histidine kinase then transfers the phosphoryl group to the second component, the response regulator, which activates transcription of target genes. The genus Burkholderia contains members that cause human disease and are often extensively resistant to many antibiotics. The Burkholderia cepacia complex (BCC) can cause severe lung infections in patients with cystic fibrosis (CF) or chronic granulomatous disease (CGD). BCC members have also recently been associated with several outbreaks of bacteremia from contaminated pharmaceutical products. Separate from the BCC is Burkholderia pseudomallei, which is the causative agent of melioidosis, a serious disease that occurs in the tropics, and a potential bioterrorism weapon. Bioinformatic analysis of sequenced Burkholderia isolates predicts that most strains have at least 40 TCS. The vast majority of these TCS are uncharacterized both in terms of the signals that activate them and the genes that are regulated by them. This review will highlight TCS that have been described to play a role in virulence in either the BCC or B. pseudomallei Since many of these TCS are involved in virulence, TCS are potential novel therapeutic targets, and elucidating their function is critical for understanding Burkholderia pathogenesis.
Collapse
|
73
|
Sulfonamide-based diffusible signal factor analogs interfere with quorum sensing in Stenotrophomonas maltophilia and Burkholderia cepacia. Future Med Chem 2020; 11:1565-1582. [PMID: 31469336 DOI: 10.4155/fmc-2019-0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Stenotrophomonas maltophilia (Sm) and Burkholderia cepacia complex (BCC) are Gram-negative bacterial pathogens, which are typically multidrug resistant and excellent biofilm producers. These phenotypes are controlled by quorum sensing (QS) systems from the diffusible signal factor (DSF) family. We aim to interfere with this QS system as an alternative approach in combatting such difficult-to-treat infections. Materials & methods: A library of sulfonamide-based DSF bioisosteres was synthesized and tested against the major phenotypes regulated by QS. Results & conclusion: Several analogs display significant antibiofilm activity while the majority increase the action of the last-resort antibiotic colistin against Sm and BCC. Most compounds inhibit DSF synthesis in the Sm K279a strain. Our results support the strategy of interfering with QS communications to combat multidrug resistance.
Collapse
|
74
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
75
|
A Quorum Quenching Bacterial Isolate Contains Multiple Substrate-Inducible Genes Conferring Degradation of Diffusible Signal Factor. Appl Environ Microbiol 2020; 86:AEM.02930-19. [PMID: 31980426 DOI: 10.1128/aem.02930-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 02/05/2023] Open
Abstract
Quorum quenching, which disrupts quorum sensing (QS) by either degradation of QS signals or interference of signal generation or perception, is a promising strategy for the prevention and control of QS-mediated bacterial infections. Diffusible signal factor (DSF) is widely conserved in many Gram-negative bacterial pathogens. In this study, we developed an efficient method for screening of highly active DSF degradation microorganisms. Among them, Pseudomonas sp. strain HS-18 showed a superior DSF degradation activity. Bioinformatics and genetic analyses showed that at least 4 genes, designated digA to digD, encoding fatty acyl coenzyme A ligase homologues, are responsible for DSF signal degradation. Interestingly, all 4 dig genes were induced by exogenous DSF, with digA being the most significantly induced. Expression of the dig genes in Xanthomonas campestris pv. campestris markedly reduced the accumulation of endogenous DSF, decreased production of virulence factors, and attenuated bacterial virulence on host plants. Similarly, application of strain HS-18 as a biocontrol agent could substantially reduce the disease severity caused by X. campestris pv. campestris These results unveil the molecular basis of a highly efficient DSF degradation bacterial isolate and present useful genes and biocontrol agents for control of the infectious diseases caused by DSF-dependent bacterial pathogens.IMPORTANCE Diffusible signal factor (DSF) represents a family of widely conserved quorum sensing signals involved in the regulation of virulence factor production in many Gram-negative bacterial pathogens. In this study, we developed a novel and efficient method for screening highly active DSF degradation microorganisms. With this method, we identified a bacterial isolate, Pseudomonas sp. strain HS-18, with a superb DSF degradation activity. We further found that strain HS-18 contains 4 genes responsible for DSF signal degradation, and significantly, these were induced by exogenous DSF molecules. These findings unveil the molecular basis of a highly efficient DSF degradation bacterial isolate and present useful methods, genes, and agents for control of the infectious diseases caused by DSF-dependent bacterial pathogens.
Collapse
|
76
|
Wang FF, Qian W. The roles of histidine kinases in sensing host plant and cell-cell communication signal in a phytopathogenic bacterium. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180311. [PMID: 30967026 DOI: 10.1098/rstb.2018.0311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It has long been known that phytopathogenic bacteria react to plant-specific stimuli or environmental factors. However, how bacterial cells sense these environmental cues remains incompletely studied. Recently, three kinds of histidine kinases (HKs) were identified as receptors to perceive plant-associated or quorum-sensing signals. Among these kinases, HK VgrS detects iron depletion by binding to ferric iron via an ExxE motif, RpfC binds diffusible signal factor (DSF) by its N-terminal peptide and activates its autokinase activity through relaxation of autoinhibition, and PcrK specifically senses plant hormone-cytokinin and elicits bacterial responses to oxidative stress. These HKs are critical sensors that regulate the virulence of a Gram-negative bacterium, Xanthomonas campestris pv. campestris. Research progress on the signal perception of phytopathogenic bacterial HKs suggests that inter-kingdom signalling between host plants and pathogens controls pathogenesis and can be used as a potential molecular target to protect plants from bacterial diseases. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| |
Collapse
|
77
|
Herbrík A, Corretto E, Chroňáková A, Langhansová H, Petrásková P, Hrdý J, Čihák M, Krištůfek V, Bobek J, Petříček M, Petříčková K. A Human Lung-Associated Streptomyces sp. TR1341 Produces Various Secondary Metabolites Responsible for Virulence, Cytotoxicity and Modulation of Immune Response. Front Microbiol 2020; 10:3028. [PMID: 32010093 PMCID: PMC6978741 DOI: 10.3389/fmicb.2019.03028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Streptomycetes, typical soil dwellers, can be detected as common colonizers of human bodies, especially the skin, the respiratory tract, the guts and the genital tract using molecular techniques. However, their clinical manifestations and isolations are rare. Recently they were discussed as possible "coaches" of the human immune system in connection with certain immune disorders and cancer. This work aimed for the characterization and evaluation of genetic adaptations of a human-associated strain Streptomyces sp. TR1341. The strain was isolated from sputum of a senior male patient with a history of lung and kidney TB, recurrent respiratory infections and COPD. It manifested remarkably broad biological activities (antibacterial, antifungal, beta-hemolytic, etc.). We found that, by producing specific secondary metabolites, it is able to modulate host immune responses and the niche itself, which increase its chances for long-term survival in the human tissue. The work shows possible adaptations or predispositions of formerly soil microorganism to survive in human tissue successfully. The strain produces two structural groups of cytotoxic compounds: 28-carbon cytolytic polyenes of the filipin type and actinomycin X2. Additionally, we summarize and present data about streptomycete-related human infections known so far.
Collapse
Affiliation(s)
- Andrej Herbrík
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Erika Corretto
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Petra Petrásková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Matouš Čihák
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Václav Krištůfek
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| | - Jan Bobek
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Department of Chemistry, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czechia
| | - Miroslav Petříček
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
78
|
Zaman N, Azam SS. From normal to competo-allosteric regulation: insights into the binding pattern dynamics of DSPI protein of Pseudomonas aeruginosa. J Biomol Struct Dyn 2020; 39:538-557. [PMID: 31903856 DOI: 10.1080/07391102.2020.1711805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DSPI, a putative enoyl-coenzyme A (CoA) hydratase/isomerase, is anticipated to be involved in the synthesis of cis-2-decenoic acid (CDA), a quorum sensing (QS) signal molecule present in the superbug Pseudomonas aeruginosa. The current study not only adapts a broad-spectrum strategy for the lucid design of small molecule modulators but also provides novel allosteric inhibitors for DSPI, to investigate its function and potential as a therapeutic target. Docking analysis revealed that the compound 10252273, bound to the specific allosteric site, interacted with Glu118, unique amino acid residue of the active binding pocket, hence indicates the presence of a competitive allosteric site. The current study thus identifies and characterizes inhibitors by targeting the normal binding site and also reports the presence of the competo-allosteric site in the same binding tunnel as the normal site. Molecular docking studies proposed two chemical compounds that share a benzamide-benzimidazole (BB) backbone as potent inhibitors that can obstruct the mechanism of DSPI by targeting both the normal and proposed allosteric binding sites. MD simulations further revealed the disruption of the normal binding site due to the displacement of critical residues Cys146 and Glu118. The rearrangement of H-bond pattern, pi-pi interactions, and strong hydrophobic interactions were observed at both the binding sites. The allosteric pocket inhibitor exhibited improved binding energy than the normal site inhibitor based on MMGBSA and MMPBSA analysis. With subsequent characterization, the current study reveals the allosteric binding site and provides insights into the drug binding mechanism of DSPI.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
79
|
Ye T, Zhou T, Fan X, Bhatt P, Zhang L, Chen S. Acinetobacter lactucae Strain QL-1, a Novel Quorum Quenching Candidate Against Bacterial Pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2019; 10:2867. [PMID: 31921047 PMCID: PMC6929412 DOI: 10.3389/fmicb.2019.02867] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) is a cell–cell communication mechanism among bacterial populations that is regulated through gene expression in response to cell density. The pathogenicity of Xanthomonas campestris pv. campestris (Xcc) is modulated by the diffusible signal factor (DSF)-mediated QS system. DSF is widely conserved in a variety of gram-negative bacterial pathogens. In this study, DSF-degrading bacteria and their enzymes were thoroughly explored as a biocontrol agent against Xcc. The results indicated that a novel DSF-degrading bacterium, Acinetobacter lactucae QL-1, effectively attenuated Xcc virulence through quorum quenching. Lab-based experiments indicated that plants inoculated with QL-1 and Xcc had less tissue decay than those inoculated with Xcc alone. Co-inoculation of strains Xcc and QL-1 significantly reduced the incidence and severity of disease in plants. Similarly, the application of crude enzymes of strain QL-1 substantially reduced the disease severity caused by Xcc. The results showed that strain QL-1 and its enzymes possess promising potential, which could be further investigated to better protect plants from DSF-dependent pathogens.
Collapse
Affiliation(s)
- Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
80
|
Interspecies and Intraspecies Signals Synergistically Regulate Lysobacter enzymogenes Twitching Motility. Appl Environ Microbiol 2019; 85:AEM.01742-19. [PMID: 31540995 DOI: 10.1128/aem.01742-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
The twitching motility of bacteria is closely related to environmental adaptability and pathogenic behaviors. Lysobacter is a good genus in which to study twitching motility because of the complex social activities and distinct movement patterns of its members. Regardless, the mechanism that induces twitching motility is largely unknown. In this study, we found that the interspecies signal indole caused Lysobacter to have irregular, random twitching motility with significantly enhanced speed. Deletion of qseC or qseB from the two-component system for indole signaling perception resulted in the disappearance of rapid, random movements and significantly decreased twitching activity. Indole-induced, rapid, random twitching was achieved through upregulation of expression of gene cluster pilE1-pilY11-pilX1-pilW1-pilV1-fimT1 In addition, under conditions of extremely low bacterial density, individual Lysobacter cells grew and divided in a stable manner in situ without any movement. The intraspecies quorum-sensing signaling factor 13-methyltetradecanoic acid, designated L. enzymogenes diffusible signaling factor (LeDSF), was essential for Lysobacter to produce twitching motility through indirect regulation of gene clusters pilM-pilN-pilO-pilP-pilQ and pilS1-pilR-pilA-pilB-pilC These results demonstrate that the motility of Lysobacter is induced and regulated by indole and LeDSF, which reveals a novel theory for future studies of the mechanisms of bacterial twitching activities.IMPORTANCE The mechanism underlying bacterial twitching motility is an important research area because it is closely related to social and pathogenic behaviors. The mechanism mediating cell-to-cell perception of twitching motility is largely unknown. Using Lysobacter as a model, we found in this study that the interspecies signal indole caused Lysobacter to exhibit irregular, random twitching motility via activation of gene cluster pilE1-pilY11-pilX1-pilW1-pilV1-fimT1 In addition, population-dependent behavior induced by 13-methyltetradecanoic acid, a quorum-sensing signaling molecule designated LeDSF, was involved in twitching motility by indirectly regulating gene clusters pilM-pilN-pilO-pilP-pilQ and pilS1-pilR-pilA-pilB-pilC The results demonstrate that the twitching motility of Lysobacter is regulated by these two signaling molecules, offering novel clues for exploring the mechanisms of twitching motility and population-dependent behaviors of bacteria.
Collapse
|
81
|
Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev Anti Infect Ther 2019; 17:877-893. [PMID: 31658838 DOI: 10.1080/14787210.2019.1685875] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Infections caused by the opportunistic Stenotrophomonas maltophilia pathogen in immunocompromised patients are complicated to treat due to antibiotic resistance and the ability of the bacteria to produce biofilm.Areas covered: A MEDLINE/PubMed search was performed of available literature to describe the role of biofilm produced by S. maltophilia in the diseases it causes, including biofilm-influencing factors, the biofilm forming process and composition. The antimicrobial resistance due to S. maltophilia biofilm production and current antibiofilm strategies is also included.Expert opinion: Through the production of biofilm, S. maltophilia strains can easily adhere to the surfaces in hospital settings and aid in its transmission. The biofilm can also cause antibiotic tolerance rendering some of the therapeutic options ineffective, causing setbacks in the selection of an appropriate treatment. Conventional susceptibility tests do not yet offer therapeutic guidelines to treat biofilm-associated infections. Current S. maltophilia biofilm control strategies include natural and synthetic compounds, chelating agents, and commonly prescribed antibiotics. As biofilm age and matrix composition affect the level of antibiotic tolerance, their characterization should be included in biofilm susceptibility testing, in addition to molecular and proteomic analyzes. As for now, several commonly recommended antibiotics can be used to treat biofilm-related S. maltophilia infections.
Collapse
Affiliation(s)
- Samantha Flores-Treviño
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Paola Bocanegra-Ibarias
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Humberto Antonio Salazar-Sesatty
- Unidad de Terapias Experimentales, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario y Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
82
|
Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Res Int 2019; 127:108754. [PMID: 31882100 DOI: 10.1016/j.foodres.2019.108754] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/27/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
Food can harbor a variety of microorganisms including spoilage and pathogenic bacteria. Many bacterial processes, including production of degrading enzymes, virulence factors, and biofilm formation are known to depend on cell density through a process called quorum sensing (QS), in which cells communicate by synthesizing, detecting and reacting to small diffusible signaling molecules - autoinducers (AI). The disruption of QS could decisively contribute to control the expression of many harmful bacterial phenotypes. Several quorum sensing inhibitors (QSI) have been extensively studied, being many of them of natural origin. This review provides an analysis on the role of QS in food spoilage and biofilm formation within the food industry. QSI from natural sources are also reviewed towards their putative future applications to prolong shelf life of food products and decrease foodborne pathogenicity.
Collapse
|
83
|
Samal B, Chatterjee S. New insight into bacterial social communication in natural host: Evidence for interplay of heterogeneous and unison quorum response. PLoS Genet 2019; 15:e1008395. [PMID: 31527910 PMCID: PMC6764700 DOI: 10.1371/journal.pgen.1008395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/27/2019] [Accepted: 08/30/2019] [Indexed: 01/31/2023] Open
Abstract
Many microbes exhibit quorum sensing (QS) to cooperate, share and perform a social task in unison. Recent studies have shown the emergence of reversible phenotypic heterogeneity in the QS-responding pathogenic microbial population under laboratory conditions as a possible bet-hedging survival strategy. However, very little is known about the dynamics of QS-response and the nature of phenotypic heterogeneity in an actual host-pathogen interaction environment. Here, we investigated the dynamics of QS-response of a Gram-negative phytopathogen Xanthomonas pv. campestris (Xcc) inside its natural host cabbage, that communicate through a fatty acid signal molecule called DSF (diffusible signal factor) for coordination of several social traits including virulence functions. In this study, we engineered a novel DSF responsive whole-cell QS dual-bioreporter to measure the DSF mediated QS-response in Xcc at the single cell level inside its natural host plant in vivo. Employing the dual-bioreporter strain of Xcc, we show that QS non-responsive cells coexist with responsive cells in microcolonies at the early stage of the disease; whereas in the late stages, the QS-response is more homogeneous as the QS non-responders exhibit reduced fitness and are out competed by the wild-type. Furthermore, using the wild-type Xcc and its QS mutants in single and mixed infection studies, we show that QS mutants get benefit to some extend at the early stage of disease and contribute to localized colonization. However, the QS-responding cells contribute to spread along xylem vessel. These results contrast with the earlier studies describing that expected cross-induction and cooperative sharing at high cell density in vivo may lead to synchronize QS-response. Our findings suggest that the transition from heterogeneity to homogeneity in QS-response within a bacterial population contributes to its overall virulence efficiency to cause disease in the host plant under natural environment. Pathogenic bacteria synchronize and coordinate the production of virulence associated function-components in a density dependent fashion via quorum sensing. In general, QS-response and regulation has been studied under laboratory conditions in vitro, where the QS-responding bacterial population exhibits heterogeneous QS-response with the emergence of both QS responders and non-responders irrespective of their parental kind, as a possible bet hedging strategy. However, very little is known about the dynamics of QS-response inside the host. Using Xanthomonas campestris pv. campestris (Xcc) and cabbage as a model plant pathogen-host, we show that there is stage specific interplay of heterogeneous and homogeneous QS-response in the wild-type Xcc population inside the host plant. We show that at the initial stage of the disease, Xcc maintains a stochastically heterogeneous population wherein, the QS non-responders are localized locally and QS-responders contribute to the migration and spread. However at the later stage of disease, the non-responders are outcompeted by the responders, thus minimizing QS signal benefit and in turn maximizing the utilization and optimizing limited recourses in the host. Our findings suggest that the interplay of heterogeneity and homogeneity in QS-response gives a stage specific adaptive advantage in a host-pathogen natural environment.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- * E-mail:
| |
Collapse
|
84
|
Leng M, Lu Z, Qin Z, Qi Y, Lu G, Tang J. Flp, a Fis-like protein, contributes to the regulation of type III secretion and virulence processes in the phytopathogen Xanthomonas campestris pv. campestris. MOLECULAR PLANT PATHOLOGY 2019; 20:1119-1133. [PMID: 31090173 PMCID: PMC6640185 DOI: 10.1111/mpp.12818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) to cause disease is dependent on its ability to adapt quickly to the host environment during infection. Like most bacterial pathogens, Xcc has evolved complex regulatory networks that ensure expression and regulation of their virulence genes. Here, we describe the identification and characterization of a Fis-like protein (named Flp), which plays an important role in virulence and type III secretion system (T3SS) gene expression in Xcc. Deletion of flp caused reduced virulence and hypersensitive response (HR) induction of Xcc and alterations in stress tolerance. Global transcriptome analyses revealed the Flp had a broad regulatory role and that most T3SS HR and pathogenicity (hrp) genes were down-regulated in the flp mutant. β-glucuronidase activity assays implied that Flp regulates the expression of hrp genes via controlling the expression of hrpX. More assays confirmed that Flp binds to the promoter of hrpX and affected the transcription of hrpX directly. Interestingly, the constitutive expression of hrpX in the flp mutant restored the HR phenotype but not full virulence. Taken together, the findings describe the unrecognized regulatory role of Flp protein that controls hrp gene expression and pathogenesis in Xcc.
Collapse
Affiliation(s)
- Ming Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Zhuo‐Jian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Zuo‐Shu Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Yan‐Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| |
Collapse
|
85
|
Kanugala S, Kumar CG, Rachamalla HKR, Palakeeti B, Kallaganti VSR, Nimmu NV, Cheemalamarri C, Patel HK, Thipparapu G. Chumacin-1 and Chumacin-2 from Pseudomonas aeruginosa strain CGK-KS-1 as novel quorum sensing signaling inhibitors for biocontrol of bacterial blight of rice. Microbiol Res 2019; 228:126301. [PMID: 31422232 DOI: 10.1016/j.micres.2019.126301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 11/19/2022]
Abstract
The in vitro inhibition of quorum sensing signal, xanthan gum secretion, biofilm formation in different Xanthomonas pathovars and biological control of bacterial blight of rice by the two bioactive extrolites produced by Pseudomonas aeruginosa strain CGK-KS-1 were explored. These extrolites were extracted from Diaion HP-20 resin with methanol and purified by preparative-thin layer chromatography. Further, spectroscopic structural elucidation revealed the tentative identity of these extrolites to be (R,3E,5E,9Z,11E)-13-((3S,5R)-5-acetyl-2,6-dimethylheptan-3-yl)-10-hydroxy-4-methyl-1,8-diazabicyclo[9.3.1]pentadeca-3,5,9,11(15),13-pentaen-2-one and (R,3E,5E,8E,11E)-13-((3S,5R)-5-acetyl-2,6-dimethylheptan-3-yl)-4-methyl-1,8-diazabicyclo[9.3.1]pentadeca-3,5,8,11(15),13-pentaene-2,10-dione, named as Chumacin-1 and Chumacin-2, respectively. Antimicrobial assay showed Chumacin-1 and Chumacin-2 exhibited a strong in vitro growth inhibition against various Xanthomonas pathovars. Quorum sensing overlay assay using a reporter strain Chromobacterium violaceum strain CV026 showed that Chumacin-1 and Chumacin-2 inhibited quorum sensing signaling. The mechanistic studies revealed that these extrolites inhibited the production of quorum sensing signaling factor, cis-11-methyl-2-dodecenoic acid; suppressed the xanthan gum secretion and also inhibited the biofilms formed by various Xanthomonas pathovars. Both Chumacin-1 and Chumacin-2 showed ROS generation in the test Xanthomonas strains, resulting in in vitro cell membrane damage was revealed through CSLM and FE-SEM micrographs. Further, greenhouse experiments using Samba Mashuri (BPT-5204) revealed that seed treatment with Chumacin-1 and Chumacin-2 along with foliar spray groups showed up to ˜80% reduction in bacterial blight disease in rice. To the best of our knowledge, this is the first report on new quorum sensing inhibitors, Chumacin-1 and Chumacin-2 produced by Pseudomonas aeruginosa strain CGK-KS-1 exhibiting DSF inhibition activity in Xanthomonas oryzae pv. oryzae.
Collapse
Affiliation(s)
- Sirisha Kanugala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - C Ganesh Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| | - Hari Krishna Reddy Rachamalla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Babji Palakeeti
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | | | - Narendra Varma Nimmu
- Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Chandrasekhar Cheemalamarri
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Hitendra Kumar Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Ganapathi Thipparapu
- Stem Cell Research Division, Department of Biochemistry, ICMR-National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
86
|
Yang F, Xue D, Tian F, Hutchins W, Yang CH, He C. Identification of c-di-GMP Signaling Components in Xanthomonas oryzae and Their Orthologs in Xanthomonads Involved in Regulation of Bacterial Virulence Expression. Front Microbiol 2019; 10:1402. [PMID: 31354637 PMCID: PMC6637768 DOI: 10.3389/fmicb.2019.01402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. Xoo produces a range of virulence-related factors to facilitate its pathogenesis in rice, however, the regulatory mechanisms of Xoo virulence expression have been not fully elucidated. Recent studies have revealed that virulence factor production is regulated via cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway that is well-conserved in Xoo and other Xanthomonas species. A set of GGDEF, EAL, HD-GYP, and PilZ domain proteins with diverse signal sensory domains for c-di-GMP synthesis, hydrolysis, and binding is encoded in the Xoo genome. Bioinformatic, genetic, and biochemical analysis has identified an array of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), as well as degenerate GGDEF/EAL, PilZ domain proteins along with a transcription regulator. These signaling components have been characterized to regulate various bacterial cellular processes, such as virulence, exopolysaccharide (EPS) production, biofilm formation, motility, and adaptation at the transcriptional, post-translational, and protein-protein interaction levels. This review summarized the recent progress in understanding the importance and complexity of c-di-GMP signaling in regulating bacterial virulence expression, highlighting the identified key signal elements and orthologs found in Xanthomonads, discussing the diverse functions of GGDEF/EAL/HD-GYP domains, existence of a complicated multifactorial network between DGCs, PDEs, and effectors, and further exploration of the new c-di-GMP receptor domains. These findings and knowledge lay the groundwork for future experimentation to further elucidate c-di-GMP regulatory circuits involved in regulation of bacterial pathogenesis.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dingrong Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - William Hutchins
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
87
|
Guo W, Gao J, Chen Q, Ma B, Fang Y, Liu X, Chen G, Liu JZ. Crp-Like Protein Plays Both Positive and Negative Roles in Regulating the Pathogenicity of Bacterial Pustule Pathogen Xanthomonas axonopodis pv. glycines. PHYTOPATHOLOGY 2019; 109:1171-1183. [PMID: 30730787 DOI: 10.1094/phyto-07-18-0225-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The global regulator Crp-like protein (Clp) is positively involved in the production of virulence factors in some of the Xanthomonas spp. However, the functional importance of Clp in X. axonopodis pv. glycines has not been investigated previously. Here, we showed that deletion of clp led to significant reduction in the virulence of X. axonopodis pv. glycines in soybean, which was highly correlated with the drastic reductions in carbohydrates utilization, extracellular polysaccharide (EPS) production, biofilm formation, cell motility, and synthesis of cell wall degrading enzymes (CWDEs). These significantly impaired properties in the clp mutant were completely rescued by a single-copy integration of the wild-type clp into the mutant chromosome via homologous recombination. Interestingly, overexpression of clp in the wild-type strain resulted in significant increases in cell motility and synthesis of the CWDEs. To our surprise, significant reductions in carbohydrates utilization, EPS production, biofilm formation, and the protease activity were observed in the wild-type strain overexpressing clp, suggesting that Clp also plays a negative role in these properties. Furthermore, quantitative reverse transcription polymerase chain reaction analysis suggested that clp was positively regulated by the diffusible signal factor-mediated quorum-sensing system and the HrpG/HrpX cascade. Taken together, our results reveal that Clp functions as both activator and repressor in multiple biological processes in X. axonopodis pv. glycines that are essential for its full virulence.
Collapse
Affiliation(s)
- Wei Guo
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Gao
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qingshan Chen
- 2 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; and
| | - Bojun Ma
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuan Fang
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xia Liu
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Gongyou Chen
- 3 College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Zhong Liu
- 1 Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
88
|
van Hoek ML, Hoang KV, Gunn JS. Two-Component Systems in Francisella Species. Front Cell Infect Microbiol 2019; 9:198. [PMID: 31263682 PMCID: PMC6584805 DOI: 10.3389/fcimb.2019.00198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Bacteria alter gene expression in response to changes in their environment through various mechanisms that include signal transduction systems. These signal transduction systems use membrane histidine kinase with sensing domains to mediate phosphotransfer to DNA-binding proteins that alter the level of gene expression. Such regulators are called two-component systems (TCSs). TCSs integrate external signals and information from stress pathways, central metabolism and other global regulators, thus playing an important role as part of the overall regulatory network. This review will focus on the knowledge of TCSs in the Gram-negative bacterium, Francisella tularensis, a biothreat agent with a wide range of potential hosts and a significant ability to cause disease. While TCSs have been well-studied in several bacterial pathogens, they have not been well-studied in non-model organisms, such as F. tularensis and its subspecies, whose canonical TCS content surprisingly ranges from few to none. Additionally, of those TCS genes present, many are orphan components, including KdpDE, QseC, QseB/PmrA, and an unnamed two-component system (FTN_1452/FTN_1453). We discuss recent advances in this field related to the role of TCSs in Francisella physiology and pathogenesis and compare the TCS genes present in human virulent versus. environmental species and subspecies of Francisella.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Ky V Hoang
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
89
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
90
|
Homa M, Sándor A, Tóth E, Szebenyi C, Nagy G, Vágvölgyi C, Papp T. In vitro Interactions of Pseudomonas aeruginosa With Scedosporium Species Frequently Associated With Cystic Fibrosis. Front Microbiol 2019; 10:441. [PMID: 30894846 PMCID: PMC6414507 DOI: 10.3389/fmicb.2019.00441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Abstract
Members of the Scedosporium apiospermum species complex are the second most frequently isolated pathogens after Aspergillus fumigatus from cystic fibrosis (CF) patients with fungal pulmonary infections. Even so, the main risk factors for the infection are unrevealed. According to previous studies, bacterial infections might reduce the risk of a fungal infection, but an antibacterial therapy may contribute to the airway colonization by several fungal pathogens. Furthermore, corticosteroids, which are often used to reduce lung inflammation in children and adults with CF, are also proved to enhance the growth of A. fumigatus in vitro. Considering all the above discussed points, we aimed to test how Pseudomonas aeruginosa influences the growth of scedosporia and to investigate the potential effect of commonly applied antibacterial agents and corticosteroids on Scedosporium species. Direct interactions between fungal and bacterial strains were tested using the disk inhibition method. Indirect interactions via volatile compounds were investigated by the plate-in-plate method, while the effect of bacterial media-soluble molecules was tested using a modified cellophane assay and also in liquid culture media conditioned by P. aeruginosa. To test the effect of bacterial signal molecules, antibacterial agents and corticosteroids on the fungal growth, the broth microdilution method was used. We also investigated the germination ability of Scedosporium conidia in the presence of pyocyanin and diffusible signal factor by microscopy. According to our results, P. aeruginosa either inhibited or enhanced the growth of scedosporia depending on the culture conditions and the mode of interactions. When the two pathogens were cultured physically separately from each other in the plate-in-plate tests, the presence of the bacteria was able to stimulate the growth of several fungal isolates. While in direct physical contact, bacterial strains inhibited the fungal growth. This effect might be attributed to bacterial signal molecules, which also proved to inhibit the germination and growth of scedosporia. In addition, antibacterial agents showed growth-promoting, while corticosteroids exhibited growth inhibitory effect on several Scedosporium isolates. These data raise the possibility that a P. aeruginosa infection or a previously administered antibacterial therapy might be able to increase the chance of a Scedosporium colonization in a CF lung.
Collapse
Affiliation(s)
- Mónika Homa
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Alexandra Sándor
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csilla Szebenyi
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Tamás Papp
- MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary.,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
91
|
Li L, Li J, Zhang Y, Wang N. Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease. BMC Genomics 2019; 20:55. [PMID: 30654743 PMCID: PMC6337780 DOI: 10.1186/s12864-018-5384-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background The gram-negative Xanthomonas genus contains a large group of economically important plant pathogens, which cause severe diseases on many crops worldwide. The diffusible signal factor (DSF) - mediated quorum sensing (QS) system coordinates expression of virulence factors in plant pathogenic Xanthomonas spp. However, the regulatory effects of this system during the Xanthomonas- plant interactions remain unclear from both the pathogen and host aspects. Results In this study, we investigated the in planta DSF- mediated QS regulon of X. citri subsp. citri (Xac), the causal agent of citrus canker. We also characterized the transcriptional responses of citrus plants to DSF-mediated Xac infection via comparing the gene expression patterns of citrus trigged by wild type Xac strain 306 with those trigged by its DSF- deficient (∆rpfF) mutant using the dual RNA-seq approach. Comparative global transcript profiles of Xac strain 306 and the ∆rpfF mutant during host infection revealed that DSF- mediated QS specifically modulates bacterial adaptation, nutrition uptake and metabolisms, stress tolerance, virulence, and signal transduction to favor host infection. The transcriptional responses of citrus to DSF-mediated Xac infection are characterized by downregulation of photosynthesis genes and plant defense related genes, suggesting photosynthetically inactive reactions and repression of defense responses. Alterations of phytohormone metabolism and signaling pathways were also triggered by DSF-mediated Xac infection to benefit the pathogen. Conclusions Collectively, our findings provide new insight into the DSF- mediated QS regulation during plant-pathogen interactions and advance the understanding of traits used by Xanthomonas to promote infection on host plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5384-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Li
- Chinese Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Beijing, 100081, China.,Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
92
|
Liu G, Su H, Sun H, Lu G, Tang J. Competitive control of endoglucanase gene engXCA expression in the plant pathogen Xanthomonas campestris by the global transcriptional regulators HpaR1 and Clp. MOLECULAR PLANT PATHOLOGY 2019; 20:51-68. [PMID: 30091270 PMCID: PMC6430473 DOI: 10.1111/mpp.12739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transcriptional regulators are key players in pathways that allow bacteria to alter gene expression in response to environmental conditions. However, work to understand how such transcriptional regulatory networks interact in bacterial plant pathogens is limited. Here, in the phytopathogen Xanthomonas campestris, we demonstrate that the global transcriptional regulator HpaR1 influences many of the same genes as another global regulator Clp, including the engXCA gene that encodes extracellular endoglucanase. We demonstrate that HpaR1 facilitates the binding of RNA polymerase to the engXCA promoter. In addition, we show that HpaR1 binds directly to the engXCA promoter. Furthermore, our in vitro tests characterize two binding sites for Clp within the engXCA promoter. Interestingly, one of these sites overlaps with the HpaR1 binding site. Mobility shift assays reveal that HpaR1 has greater affinity for binding to the engXCA promoter. This observation is supported by promoter activity assays, which show that the engXCA expression level is lower when both HpaR1 and Clp are present together, rather than alone. The data also reveal that HpaR1 and Clp activate engXCA gene expression by binding directly to its promoter. This transcriptional activation is modulated as both regulators compete to bind to overlapping sites on the engXCA promoter. Bioinformatics analysis suggests that this mechanism may be used broadly in Xanthomonas campestris pv. campestris (Xcc) and is probably widespread in Xanthomonads and, potentially, other bacteria. Taken together, these data support a novel mechanism of competitive activation by two global regulators of virulence gene expression in Xcc which is probably widespread in Xanthomonads and, potentially, other bacteria.
Collapse
Affiliation(s)
- Guo‐Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Hui‐Zhao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Han‐Yang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| |
Collapse
|
93
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
94
|
Liu L, Li T, Peng CT, Sun CZ, Li CC, Xiao QJ, He LH, Wang NY, Song YJ, Zhu YB, Li H, Kang M, Tang H, Xiong X, Bao R. Structural characterization of a Δ 3, Δ 2-enoyl-CoA isomerase from Pseudomonas aeruginosa: implications for its involvement in unsaturated fatty acid metabolism. J Biomol Struct Dyn 2018; 37:2695-2702. [PMID: 30052139 DOI: 10.1080/07391102.2018.1495102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gene PA4980 from Pseudomonas aeruginosa encodes a putative enoyl-coenzyme A hydratase/isomerase that is associated with the function of the biofilm dispersion-inducing signal molecule cis-2-decenoic acid. To elucidate the role of PA4980 in cis-2-decenoic acid biosynthesis, we reported the crystal structure of its protein product at 2.39 Å. The structural analysis and substrate binding prediction suggest that it acts as a monofunctional enoyl-coenzyme A isomerase, implicating an alternative pathway of the cis-2-decenoic acid synthesis.
Collapse
Affiliation(s)
- Li Liu
- a Department of Dermatology , Affiliated Hospital, Southwest Medical University , Luzhou , China.,b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Tao Li
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Cui-Ting Peng
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Chang-Zhen Sun
- e Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital , Southwest Medical University , Luzhou , China
| | - Chang-Cheng Li
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Qing-Jie Xiao
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Li-Hui He
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Ning-Yu Wang
- c School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , P.R. China
| | - Ying-Jie Song
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Yi-Bo Zhu
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Hong Li
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Mei Kang
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Hong Tang
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China
| | - Xia Xiong
- a Department of Dermatology , Affiliated Hospital, Southwest Medical University , Luzhou , China
| | - Rui Bao
- b Center of Infectious Diseases, West China Hospital , Sichuan University , Chengdu , P.R. China.,d State Key Laboratory of Biotherapy and Cancer Center and Healthy Food Evaluation Research Center , Sichuan University , Chengdu , P.R. China
| |
Collapse
|
95
|
An SQ, Tang JL. Diffusible signal factor signaling regulates multiple functions in the opportunistic pathogen Stenotrophomonas maltophilia. BMC Res Notes 2018; 11:569. [PMID: 30097057 PMCID: PMC6086056 DOI: 10.1186/s13104-018-3690-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 11/10/2022] Open
Abstract
Objective Stenotrophomonas maltophilia is a Gram-negative bacterium commonly isolated from nosocomial infections. Analysis of the genome of the clinical S. maltophilia isolate K279a indicates that it encodes a diffusible signal factor (DSF)-dependent cell–cell signaling mechanism that is highly similar to the system previously described in phytopathogens from the genera Xanthomonas and Xylella. Our objective was to study the function of DSF signaling in the clinical strain S. maltophilia K279a using genetic and functional genomic analyses. Results We compared the wild-type strain with a mutant deficient in the rpfF (regulation of pathogenicity factors) gene that is essential for the synthesis of DSF. The effects of disruption of DSF signaling were pleiotropic with an impact on virulence, biofilm formation and pathogenesis. The phenotypic effects of rpfF mutation in S. maltophilia could be reversed by addition of exogenous DSF. Taken together, we demonstrate that DSF signaling regulates factors contributing to virulence, biofilm formation and motility of this important opportunistic pathogen.
Collapse
Affiliation(s)
- Shi-Qi An
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Ji-Liang Tang
- College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
96
|
Yang LY, Yang LC, Gan YL, Wang L, Zhao WZ, He YQ, Jiang W, Jiang BL, Tang JL. Systematic Functional Analysis of Sigma (σ) Factors in the Phytopathogen Xanthomonas campestris Reveals Novel Roles in the Regulation of Virulence and Viability. Front Microbiol 2018; 9:1749. [PMID: 30123197 PMCID: PMC6085468 DOI: 10.3389/fmicb.2018.01749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
The black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is a model organism for the study of plant bacterial pathogenesis mechanisms. In bacteria, σ factors serve as important regulatory elements that respond to various environmental signals and cues. Though Xcc encodes 15 putative σ factors little is known about their roles. As an approach to identify the potential role of each σ factor, we constructed mutations in each of the σ-factor genes as well as generating mutants deficient in multiple σ factors to assess these regulators potential additive functions. The work identified two σ70 factors essential for growth. Furthermore, the work discovered a third σ70 factor, RpoE1, important for virulence. Further studies revealed that RpoE1 positively regulates the expression of the hrp gene cluster that encodes the type III secretion system (T3SS) which determines the pathogenicity and hypersensitive response of Xcc on plants. In vivo and in vitro studies demonstrated that RpoE1 could bind to the promoter region and promote transcription of hrpX, a gene encoding a key regulator of the hrp genes. Overall, this systematic analysis reveals important roles in Xcc survival and virulence for previously uncharacterized σ70 factors that may become important targets for disease control.
Collapse
Affiliation(s)
- Li-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Li-Chao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong-Liang Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wan-Zong Zhao
- Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning, China
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bo-Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
97
|
Wang FF, Cheng ST, Wu Y, Ren BZ, Qian W. A Bacterial Receptor PcrK Senses the Plant Hormone Cytokinin to Promote Adaptation to Oxidative Stress. Cell Rep 2018; 21:2940-2951. [PMID: 29212037 DOI: 10.1016/j.celrep.2017.11.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 09/18/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Recognition of the host plant is a prerequisite for infection by pathogenic bacteria. However, how bacterial cells sense plant-derived stimuli, especially chemicals that function in regulating plant development, remains completely unknown. Here, we have identified a membrane-bound histidine kinase of the phytopathogenic bacterium Xanthomonas campestris, PcrK, as a bacterial receptor that specifically detects the plant cytokinin 2-isopentenyladenine (2iP). 2iP binds to the extracytoplasmic region of PcrK to decrease its autokinase activity. Through a four-step phosphorelay, 2iP stimulation decreased the phosphorylation level of PcrR, the cognate response regulator of PcrK, to activate the phosphodiesterase activity of PcrR in degrading the second messenger 3',5'-cyclic diguanylic acid. 2iP perception by the PcrK-PcrR remarkably improves bacterial tolerance to oxidative stress by regulating the transcription of 56 genes, including the virulence-associated TonB-dependent receptor gene ctrA. Our results reveal an evolutionarily conserved, inter-kingdom signaling by which phytopathogenic bacteria intercept a plant hormone signal to promote adaptation to oxidative stress.
Collapse
Affiliation(s)
- Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Ting Cheng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Zhen Ren
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
98
|
|
99
|
Colino CI, Millán CG, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int J Mol Sci 2018; 19:E1627. [PMID: 29857492 PMCID: PMC6032068 DOI: 10.3390/ijms19061627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/09/2023] Open
Abstract
Advances in nanoparticle-based systems constitute a promising research area with important implications for the treatment of bacterial infections, especially against multidrug resistant strains and bacterial biofilms. Nanosystems may be useful for the diagnosis and treatment of viral and fungal infections. Commercial diagnostic tests based on nanosystems are currently available. Different methodologies based on nanoparticles (NPs) have been developed to detect specific agents or to distinguish between Gram-positive and Gram-negative microorganisms. Also, biosensors based on nanoparticles have been applied in viral detection to improve available analytical techniques. Several point-of-care (POC) assays have been proposed that can offer results faster, easier and at lower cost than conventional techniques and can even be used in remote regions for viral diagnosis. Nanoparticles functionalized with specific molecules may modulate pharmacokinetic targeting recognition and increase anti-infective efficacy. Quorum sensing is a stimuli-response chemical communication process correlated with population density that bacteria use to regulate biofilm formation. Disabling it is an emerging approach for combating its pathogenicity. Natural or synthetic inhibitors may act as antibiofilm agents and be useful for treating multi-drug resistant bacteria. Nanostructured materials that interfere with signal molecules involved in biofilm growth have been developed for the control of infections associated with biofilm-associated infections.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - Carmen Gutiérrez Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
100
|
Huedo P, Coves X, Daura X, Gibert I, Yero D. Quorum Sensing Signaling and Quenching in the Multidrug-Resistant Pathogen Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2018; 8:122. [PMID: 29740543 PMCID: PMC5928129 DOI: 10.3389/fcimb.2018.00122] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic Gram-negative pathogen with increasing incidence in clinical settings. The most critical aspect of S. maltophilia is its frequent resistance to a majority of the antibiotics of clinical use. Quorum Sensing (QS) systems coordinate bacterial populations and act as major regulatory mechanisms of pathogenesis in both pure cultures and poly-microbial communities. Disruption of QS systems, a phenomenon known as Quorum Quenching (QQ), represents a new promising paradigm for the design of novel antimicrobial strategies. In this context, we review the main advances in the field of QS in S. maltophilia by paying special attention to Diffusible Signal Factor (DSF) signaling, Acyl Homoserine Lactone (AHL) responses and the controversial Ax21 system. Advances in the DSF system include regulatory aspects of DSF synthesis and perception by both rpf-1 and rpf-2 variant systems, as well as their reciprocal communication. Interaction via DSF of S. maltophilia with unrelated organisms including bacteria, yeast and plants is also considered. Finally, an overview of the different QQ mechanisms involving S. maltophilia as quencher and as object of quenching is presented, revealing the potential of this species for use in QQ applications. This review provides a comprehensive snapshot of the interconnected QS network that S. maltophilia uses to sense and respond to its surrounding biotic or abiotic environment. Understanding such cooperative and competitive communication mechanisms is essential for the design of effective anti QS strategies.
Collapse
Affiliation(s)
- Pol Huedo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|