51
|
Gào X, Schöttker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 2017; 8:51888-51906. [PMID: 28881698 PMCID: PMC5584299 DOI: 10.18632/oncotarget.17128] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress results from an imbalance of the reactive oxygen species/reactive nitrogen species (ROS/RNS) production and the oxidants defense system. Extensive research during the last decades has revealed that oxidative stress can mediate cancer initiation and development by leading not only to molecular damage but also to a disruption of reduction-oxidation (redox) signaling. In order to provide a global overview of the redox signaling pathways, which play a role in cancer formation, we conducted a systematic literature search in PubMed and ISI Web of Science and identified 185 relevant reviews published in the last 10 years. The 20 most frequently described pathways were selected to be presented in this systematic review and could be categorized into 3 groups: Intracellular ROS/RNS generating organelles and enzymes, signal transduction cascades kinases/phosphatases and transcription factors. Intracellular ROS/RNS generation organelles are mitochondria, endoplasmic reticulum and peroxisomes. Enzymes, including NOX, COX, LOX and NOS, are the most prominent enzymes generating ROS/RNS. ROS/RNS act as redox messengers of transmembrane receptors and trigger the activation or inhibition of signal transduction kinases/phosphatases, such as the family members of protein tyrosine kinases and protein tyrosine phosphatases. Furthermore, these reactions activate downstream signaling pathways including protein kinase of the MAPK cascade, PI3K and PKC. The kinases and phosphatases regulate the phosphorylation status of transcription factors including APE1/Ref-1, HIF-1α, AP-1, Nrf2, NF-κB, p53, FOXO, STAT, and β-catenin. Finally, we briefly discuss cancer prevention and treatment opportunities, which address redox pathways and further research needs.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany.,Institute of Health Care and Social Sciences, FOM University, Essen, Germany
| |
Collapse
|
52
|
Minami A, Ogino M, Nakano N, Ichimura M, Nakanishi A, Murai T, Kitagishi Y, Matsuda S. Roles of oncogenes and tumor-suppressor genes in osteoclastogenesis (Review). Int J Mol Med 2017; 39:261-267. [DOI: 10.3892/ijmm.2017.2847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
|
53
|
Nakano N, Matsuda S, Ichimura M, Minami A, Ogino M, Murai T, Kitagishi Y. PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). Int J Mol Med 2016; 39:253-260. [DOI: 10.3892/ijmm.2016.2833] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/12/2016] [Indexed: 11/05/2022] Open
|
54
|
Rodney GG, Pal R, Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 2016; 98:103-112. [PMID: 27184957 PMCID: PMC4975974 DOI: 10.1016/j.freeradbiomed.2016.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/15/2016] [Accepted: 05/12/2016] [Indexed: 01/02/2023]
Abstract
Autophagy is a cellular degradative pathway that involves the delivery of cytoplasmic components, including proteins and organelles, to the lysosome for degradation. Autophagy is implicated in the maintenance of skeletal muscle; increased autophagy leads to muscle atrophy while decreased autophagy leads to degeneration and weakness. A growing body of work suggests that reactive oxygen species (ROS) are important cellular signal transducers controlling autophagy. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria are major sources of ROS generation in skeletal muscle that are likely regulating autophagy through different signaling cascades based on localization of the ROS signals. This review aims to provide insight into the redox control of autophagy in skeletal muscle. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for skeletal muscle diseases.
Collapse
Affiliation(s)
- George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Reem Abo-Zahrah
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
55
|
Zhao J, Chen Y, Xu Y, Pi G. Effects of PTEN inhibition on the regulation of Tau phosphorylation in rat cortical neuronal injury after oxygen and glucose deprivation. Brain Inj 2016; 30:1150-9. [PMID: 27245882 DOI: 10.3109/02699052.2016.1161828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This report investigated the involvement of the PTEN pathway in the regulation of Tau phosphorylation using an oxygen and glucose deprivation (OGD) model with rat cortical neurons. METHODS Primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro. These were randomly divided into control, OGD, bpV+OGD, As+OGD, Se+OGD and Mock treatment groups. The neuron viability was assessed by MTT, the cell apoptosis was detected using TUNEL staining. The expression of Phospho-PTEN/PTEN, Phospho-Tau/Tau, Phospho-Akt/Akt and Phospho-GSK-3β/GSK-3β were detected by Western blotting. RESULTS OGD induced Tau phosphorylation through PTEN and glycogen synthase kinase-3β (GSK-3β) activation, together with a decrease in AKT activity. Pre-treatment with bpv, a potent PTEN inhibitor, and PTEN antisense nucleotides decreased PTEN and GSK-3β activity and caused alterations in Tau phosphorylation. Neuronal apoptosis was also reduced. CONCLUSIONS The PTEN/Akt/GSK-3β/Tau pathway is involved in the regulation of neuronal injury, providing a novel route for protecting neurons following neonatal HI.
Collapse
Affiliation(s)
- Jing Zhao
- a Department of Neonatology , Affiliated Hospital of North Sichuan Medical College , Nanchong , PR China.,b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| | - Yurong Chen
- a Department of Neonatology , Affiliated Hospital of North Sichuan Medical College , Nanchong , PR China.,b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| | - Yuxia Xu
- b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| | - Guanghuan Pi
- b Department of Pediatrics , North Sichuan Medical College , Nanchong , PR China
| |
Collapse
|
56
|
Zhang J, Jiang H, Xie L, Hu J, Li L, Yang M, Cheng L, Liu B, Qian X. Antitumor effect of manumycin on colorectal cancer cells by increasing the reactive oxygen species production and blocking PI3K-AKT pathway. Onco Targets Ther 2016; 9:2885-95. [PMID: 27307747 PMCID: PMC4888730 DOI: 10.2147/ott.s102408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Manumycin is a natural, well-tolerated microbial metabolite and is regarded as a farnesyltransferase inhibitor. Some data suggest that manumycin inhibits proliferation of diverse cancer cells through various pathways. However, the antitumor effect of manumycin on colorectal cancer (CRC) remains unknown. In the present study, we investigated the antitumor effect of manumycin on CRC in vitro and in vivo. The results of cell viability assay revealed that the proliferation of the CRC cells was significantly inhibited by manumycin. Moreover, cell apoptosis induced by manumycin was also found in a time- and dose-dependent manner. Interestingly, treatment of the CRC cells with manumycin resulted in increased generation of reactive oxygen species. Subsequently, manumycin also decreased the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT, as well as the expression of caspase-9 and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. In addition, we found that N-acetyl-l-cysteine (NAC) attenuated the effect of manumycin on the PI3K-AKT pathway, and wortmannin reduced the effect of manumycin on caspase-9 and PARP expression. More importantly, the anticancer effect of manumycin was also observed in established tumor xenografts. Taken together, these findings supported the potential application of manumycin against colorectal carcinoma.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Jiang
- Department of Oncology, Affiliated Changzhou No 2 People's Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Xie
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Hu
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Li
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mi Yang
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lei Cheng
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baorui Liu
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoping Qian
- Department of the Comprehensive Cancer Center, Affiliated Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
57
|
Lee MH, Hong SH, Park C, Kim GY, Leem SH, Choi SH, Keum YS, Hyun JW, Kwon TK, Hong SH, Choi YH. Hwang-Heuk-San induces apoptosis in HCT116 human colorectal cancer cells through the ROS-mediated activation of caspases and the inactivation of the PI3K/Akt signaling pathway. Oncol Rep 2016; 36:205-14. [PMID: 27221553 DOI: 10.3892/or.2016.4812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/22/2016] [Indexed: 11/05/2022] Open
Abstract
Hwang-Heuk-San (HHS) is a polyherbal formulation that has been used in traditional Korean medicine for hundreds of years to treat gastrointestinal malignancy. However, to date, the mechanisms responsible for the anticancer effects remain unclear. In the present study, we investigated the anticancer effects of HHS using HCT116 human colorectal cancer (CRC) cells. Our results showed that HHS treatment significantly reduced cell survival and increased apoptotic cell death in a concentration-dependent manner. The treatment of HCT116 cells with HHS also significantly elevated the accumulation of reactive oxygen species (ROS), which was followed by the attenuation of the mitochondrial membrane potential through the upregulation of Bax and the downregulation of Bcl-2, which was accompanied by the release of cytochrome c to the cytosol. In addition, HHS treatment caused the truncation of Bid and activated the caspases (caspase-8, -9 and -3), which was associated with the induction of the Fas ligand, the death receptors (DRs), DR4 and DR5, downregulation of the inhibitors of protein expression in the apoptosis protein family, and the degradation of poly(ADP-ribose)-polymerase. However, a pan-caspase inhibitor reversed the HHS-induced apoptosis and growth suppression, indicating that HHS induces apoptosis though a caspase-dependent intrinsic and extrinsic apoptotic pathway in HCT116 cells. Moreover, HHS treatment inhibited the activation of phosphatidylinositol-3-kinase (PI3K)/Akt signaling, and a pharmacological inhibitor of PI3K significantly potentiated the apoptotic effects of HHS when employed in combination in HCT116 cells. Furthermore, the blocking of ROS generation by antioxidant N-acetyl cysteine attenuated the HHS-induced release of cytochrome c, caspase activation and PI3K/Akt inactivation, thereby preventing HHS-induced apoptosis and reduction in cell viability. These findings suggest that HHS-induced ROS generation is required for caspase-dependent apoptotic cell death involving inhibition of the PI3K/Akt signaling pathway in HCT116 cells. Overall, our findings suggest that HHS may be an effective treatment for CRC cancer, and further studies are required to identify the active compounds in HHS.
Collapse
Affiliation(s)
- Moon Hee Lee
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, Dongeui University, Busan 614-714, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 604‑714, Republic of Korea
| | - Sung Hyun Choi
- Department of Safety and System Management, Korea Lift College, Geochang 670-802, Republic of Korea
| | - Young-Sam Keum
- College of Pharmacy, Dongguk University, Goyang 410-773, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 609-756, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 614-052, Republic of Korea
| |
Collapse
|
58
|
Weaver CJ, Leung YF, Suter DM. Expression dynamics of NADPH oxidases during early zebrafish development. J Comp Neurol 2015; 524:2130-41. [PMID: 26662995 DOI: 10.1002/cne.23938] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/03/2015] [Accepted: 11/24/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Cory J. Weaver
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907
| | - Yuk Fai Leung
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907
| | - Daniel M. Suter
- Department of Biological Sciences; Purdue University; West Lafayette Indiana 47907
- Bindley Bioscience Center; Purdue University; West Lafayette Indiana 47907
| |
Collapse
|
59
|
Guidotti S, Minguzzi M, Platano D, Cattini L, Trisolino G, Mariani E, Borzì RM. Lithium Chloride Dependent Glycogen Synthase Kinase 3 Inactivation Links Oxidative DNA Damage, Hypertrophy and Senescence in Human Articular Chondrocytes and Reproduces Chondrocyte Phenotype of Obese Osteoarthritis Patients. PLoS One 2015; 10:e0143865. [PMID: 26618897 PMCID: PMC4664288 DOI: 10.1371/journal.pone.0143865] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction Recent evidence suggests that GSK3 activity is chondroprotective in osteoarthritis (OA), but at the same time, its inactivation has been proposed as an anti-inflammatory therapeutic option. Here we evaluated the extent of GSK3β inactivation in vivo in OA knee cartilage and the molecular events downstream GSK3β inactivation in vitro to assess their contribution to cell senescence and hypertrophy. Methods In vivo level of phosphorylated GSK3β was analyzed in cartilage and oxidative damage was assessed by 8-oxo-deoxyguanosine staining. The in vitro effects of GSK3β inactivation (using either LiCl or SB216763) were evaluated on proliferating primary human chondrocytes by combined confocal microscopy analysis of Mitotracker staining and reactive oxygen species (ROS) production (2',7'-dichlorofluorescin diacetate staining). Downstream effects on DNA damage and senescence were investigated by western blot (γH2AX, GADD45β and p21), flow cytometric analysis of cell cycle and light scattering properties, quantitative assessment of senescence associated β galactosidase activity, and PAS staining. Results In vivo chondrocytes from obese OA patients showed higher levels of phosphorylated GSK3β, oxidative damage and expression of GADD45β and p21, in comparison with chondrocytes of nonobese OA patients. LiCl mediated GSK3β inactivation in vitro resulted in increased mitochondrial ROS production, responsible for reduced cell proliferation, S phase transient arrest, and increase in cell senescence, size and granularity. Collectively, western blot data supported the occurrence of a DNA damage response leading to cellular senescence with increase in γH2AX, GADD45β and p21. Moreover, LiCl boosted 8-oxo-dG staining, expression of IKKα and MMP-10. Conclusions In articular chondrocytes, GSK3β activity is required for the maintenance of proliferative potential and phenotype. Conversely, GSK3β inactivation, although preserving chondrocyte survival, results in functional impairment via induction of hypertrophy and senescence. Indeed, GSK3β inactivation is responsible for ROS production, triggering oxidative stress and DNA damage response.
Collapse
Affiliation(s)
- Serena Guidotti
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
| | - Manuela Minguzzi
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
| | - Daniela Platano
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie-DIBINEM, Università di Bologna, Bologna, Italy
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Trisolino
- Chirurgia ricostruttiva articolare dell’anca e del ginocchio, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Erminia Mariani
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche-DIMEC, Università di Bologna, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
- * E-mail:
| |
Collapse
|
60
|
Bekhite MM, Müller V, Tröger SH, Müller JP, Figulla HR, Sauer H, Wartenberg M. Involvement of phosphoinositide 3-kinase class IA (PI3K 110α) and NADPH oxidase 1 (NOX1) in regulation of vascular differentiation induced by vascular endothelial growth factor (VEGF) in mouse embryonic stem cells. Cell Tissue Res 2015; 364:159-74. [PMID: 26553657 DOI: 10.1007/s00441-015-2303-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 09/28/2015] [Indexed: 02/02/2023]
Abstract
The impact of reactive oxygen species and phosphoinositide 3-kinase (PI3K) in differentiating embryonic stem (ES) cells is largely unknown. Here, we show that the silencing of the PI3K catalytic subunit p110α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX1) by short hairpin RNA or pharmacological inhibition of NOX and ras-related C3 botulinum toxin substrate 1 (Rac1) abolishes superoxide production by vascular endothelial growth factor (VEGF) in mouse ES cells and in ES-cell-derived fetal liver kinase-1(+) (Flk-1(+)) vascular progenitor cells, whereas the mitochondrial complex I inhibitor rotenone does not have an effect. Silencing p110α or inhibiting Rac1 arrests vasculogenesis at initial stages in embryoid bodies, even under VEGF treatment, as indicated by platelet endothelial cell adhesion molecule-1 (PECAM-1)-positive areas and branching points. In the absence of p110α, tube-like structure formation on matrigel and cell migration of Flk-1(+) cells in scratch migration assays are totally impaired. Silencing NOX1 causes a reduction in PECAM-1-positive areas, branching points, cell migration and tube length upon VEGF treatment, despite the expression of vascular differentiation markers. Interestingly, silencing p110α but not NOX1 inhibits the activation of Rac1, Ras homologue gene family member A (RhoA) and Akt leading to the abrogation of VEGF-induced lamellipodia structure formation. Thus, our data demonstrate that the PI3K p110α-Akt/Rac1 and NOX1 signalling pathways play a pivotal role in VEGF-induced vascular differentiation and cell migration. Rac1, RhoA and Akt phosphorylation occur downstream of PI3K and upstream of NOX1 underscoring a role of PI3K p110α in the regulation of cell polarity and migration.
Collapse
Affiliation(s)
- Mohamed M Bekhite
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany. .,Department of Zoology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Veronika Müller
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Sebastian H Tröger
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Reiner Figulla
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Maria Wartenberg
- University Heart Center, Clinic of Internal Medicine I, Department of Cardiology, Friedrich Schiller University Jena, Erlanger Allee 101, 07743, Jena, Germany
| |
Collapse
|
61
|
Wang LY, Li X, Han YZ. Neuroprotection by epigallo catechin gallate against bupivacaine anesthesia induced toxicity involves modulation of PI3/Akt/PTEN signalling in N2a and SH-SY5Y cells. Int J Clin Exp Med 2015; 8:15065-15075. [PMID: 26628990 PMCID: PMC4658879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Bupivacaine, an amide type long-acting local anaesthetic is commonly employed for epidural anesthesia and as well for nerve blockades. However, studies have shown neurotoxicity following local administration of bupivacaine raising concerns over the use of the drug. Compounds that could minimize or inhibit toxic effects of bupivacaine are of high value in operative settings and in pain management. The present study aims to investigate if epigallo catechin gallate (EGCG) could inhibit or prevent bupivacaine toxicity in neuroblastoma cells (N2a and SH-SY5Y). The viability of N2a and SH-SY5Y cells following exposure to EGCG (10-50 µM) were assessed by MTT assay and Annexin V/PI staining. The influence of EGCG on ROS generation was determined. The expression of apoptotic cascade proteins (Caspases-3, -8 and -9, Bcl-xL, Bad, Bax, Bcl-2) and PI3/Akt pathway proteins (Akt, p-Akt, GSK-3β, p-GSK-3β, PTEN) were analyzed by western blotting. EGCG improved the viability of the cells and inhibited apoptosis by potentially decreasing the expression of caspases and pro-apoptotic proteins. Bupivacaine induced ROS generations were reduced on EGCG exposure. EGCG significantly promoted the phosphorylation of Akt and GSK-3β and down-regulated PTEN, thus activating PI3/Akt signalling. EGCG effectively improved the cell viability and inhibited apoptosis of N2a and SH-SY5Y cells via suppression of ROS generation and modulation of PI3K/Akt signalling cascade.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| | - Xia Li
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| | - Yu-Zeng Han
- Department of Pediatric Surgery, Linyi People's Hospital Linyi 276003, Shandong, China
| |
Collapse
|
62
|
Zhuo B, Li Y, Li Z, Qin H, Sun Q, Zhang F, Shen Y, Shi Y, Wang R. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma. Biochem Biophys Res Commun 2015; 464:401-6. [PMID: 26116768 DOI: 10.1016/j.bbrc.2015.06.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 11/18/2022]
Abstract
Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-d-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS.
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Yuan Li
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Zhengwei Li
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Haihui Qin
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Qingzeng Sun
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Fengfei Zhang
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Yang Shen
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Yingchun Shi
- Department of Surgery, The Children's Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006, PR China
| | - Rong Wang
- Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006, PR China.
| |
Collapse
|
63
|
PI3K/Akt signaling in osteosarcoma. Clin Chim Acta 2015; 444:182-92. [PMID: 25704303 DOI: 10.1016/j.cca.2014.12.041] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is the most common nonhematologic bone malignancy in children and adolescents. Despite the advances of adjuvant chemotherapy and significant improvement of survival, the prognosis remains generally poor. As such, the search for more effective anti-OS agents is urgent. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is thought to be one of the most important oncogenic pathways in human cancer. An increasing body of evidence has shown that this pathway is frequently hyperactivated in OS and contributes to disease initiation and development, including tumorigenesis, proliferation, invasion, cell cycle progression, inhibition of apoptosis, angiogenesis, metastasis and chemoresistance. Inhibition of this pathway through small molecule compounds represents an attractive potential therapeutic approach for OS. The aim of this review is to summarize the roles of the PI3K/Akt pathway in the development and progression of OS, and to highlight the therapeutic potential of targeting this signaling pathway. Knowledge obtained from the application of these compounds will help in further understanding the pathogenesis of OS and designing subsequent treatment strategies.
Collapse
|
64
|
Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. MicroRNAs in osteosarcoma. Clin Chim Acta 2015; 444:9-17. [PMID: 25661090 DOI: 10.1016/j.cca.2015.01.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity that principally emerges in children and adolescents. Presently, the prognosis of OS patients remains poor due to resistance to chemotherapy, highlighting the need for new therapeutic approaches. MicroRNAs (miRNAs), a class of small noncoding RNA molecules, can negatively modulate protein expression at the post-transcriptional level. miRNAs regulate a variety of normal physiologic processes and are involved in tumorigenesis and development of multiple malignancies, including OS. Some miRNAs are differentially expressed in OS tissues, cell lines and serum, and have been shown to correlate with the malignant phenotype and prognosis. These altered miRNAs function as oncogenes or tumor suppressor genes in this process. Moreover, restoration of miRNA expression has shown promise for the treatment of OS. Here, we describe miRNA biochemistry with a focus on expression profile, role and therapeutic potential in OS. A better understanding will facilitate the identification and characterization of novel biomarkers and development of miRNA-targeted therapies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
65
|
Minami A, Nakanishi A, Ogura Y, Kitagishi Y, Matsuda S. Connection between Tumor Suppressor BRCA1 and PTEN in Damaged DNA Repair. Front Oncol 2014; 4:318. [PMID: 25426449 PMCID: PMC4226230 DOI: 10.3389/fonc.2014.00318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 12/19/2022] Open
Abstract
Genomic instability finally induces cell death or apoptosis. The tumor suppressor, phosphatase and tensin homolog on chromosome 10 (PTEN), is a dual-specificity phosphatase, which has protein phosphatase activity and lipid phosphatase activity that antagonizes PI3K activity. Cells that lack PTEN have constitutively higher levels of PIP3 and activated downstream PI3K/AKT targets. BRCA1, a well-known breast cancer tumor suppressor, is to associate with breast cancer risk and genetic susceptibility. Many studies have demonstrated that PTEN, as well as BRCA1, plays a critical role in DNA damage responses. The BRCA1 functionally cooperates with PTEN and might be an essential blockage in the development of several tumors. Actually, the PTEN and BRCA1 genes are recognized as one of the most frequently deleted and/or mutated in many human cancers. The PI3K/AKT pathway is constitutively active in BRCA1-defective human cancer cells. Loss or decrease of these PTEN or BRCA1 function, by either mutation or reduced expression, has a role in various tumor developments. This review summarizes recent findings of the function of BRCA1 and PTEN involved in genomic stability and cancer cell signaling.
Collapse
Affiliation(s)
- Akari Minami
- Department of Food Science and Nutrition, Nara Women's University , Nara , Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University , Nara , Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University , Nara , Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University , Nara , Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University , Nara , Japan
| |
Collapse
|
66
|
Tokuhira N, Kitagishi Y, Suzuki M, Minami A, Nakanishi A, Ono Y, Kobayashi K, Matsuda S, Ogura Y. PI3K/AKT/PTEN pathway as a target for Crohn's disease therapy (Review). Int J Mol Med 2014; 35:10-6. [PMID: 25352295 DOI: 10.3892/ijmm.2014.1981] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease, is a subject of increasing interest. Loss-of-function mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) are strong genetic factors linked to Crohn's disease, which eventually leads to an excessive mucosal inflammatory response directed against components of normal gut microbiota. Reactive oxygen species (ROS) play an important role in inflammation processes, as well as in transduction of signals from receptors for several cytokines, such as tumor necrosis factor α (TNFα). ROS activate nuclear factor-κB (NF-κB) via IκB kinase (IKK) through the PI3K/AKT/PTEN pathway. Therefore, this pathway is recognized to play a key role in Crohn's disease. Loss of function has been demonstrated to occur as an early event in a wide variety of diseases. Given this prevalent involvement in a number of diseases, the molecular development that modulates this pathway has been the subject of several studies. In addition, it has been the focus of extensive research and drug discovery activities. A better understanding of the molecular assemblies may reveal novel targets for the therapeutic development against Crohn's disease.
Collapse
Affiliation(s)
- Nana Tokuhira
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yuna Ono
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Keiko Kobayashi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| |
Collapse
|