51
|
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M, Zhang LG. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 2018; 132:252-269. [PMID: 30053441 PMCID: PMC6226324 DOI: 10.1016/j.addr.2018.07.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Compared to traditional therapeutic strategies, three-dimensional (3D) bioprinting is one of the most advanced techniques for creating complicated cardiovascular implants with biomimetic features, which are capable of recapitulating both the native physiochemical and biomechanical characteristics of the cardiovascular system. The present review provides an overview of the cardiovascular system, as well as describes the principles of, and recent advances in, 3D bioprinting cardiovascular tissues and models. Moreover, this review will focus on the applications of 3D bioprinting technology in cardiovascular repair/regeneration and pharmacological modeling, further discussing current challenges and perspectives.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, USA
| | | | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
52
|
Iop L, Palmosi T, Dal Sasso E, Gerosa G. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J Thorac Dis 2018; 10:S2390-S2411. [PMID: 30123578 PMCID: PMC6081367 DOI: 10.21037/jtd.2018.04.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
The treatment of cardiac alterations is still nowadays a dramatic issue in the cardiosurgical practice. Synthetic materials applied in this surgery have failed in their long-term therapeutic efficacy due to low biocompatibility and compliance, especially when used in contractile sites. In order to overcome these treatment pitfalls, novel solutions have been developed based on biological tissues. Patches in pericardium, small intestinal submucosa, as well as engineered tissues of myocardium, heart valves and blood vessels have undergone a large preclinical investigation in regenerative medicine studies. Clinical translation has been started or reached by several of these new bioengineered treatment alternatives. This review will describe the preclinical and clinical experiences realized so far with the application of biological tissues in cardiovascular surgery. It will depict the progressive steps realized in the evolution of this research, as well as it will point out the challenges yet to face in order to generate the ideal biomaterial for cardiovascular repair, corrective and reconstructive surgery.
Collapse
Affiliation(s)
- Laura Iop
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Tiziana Palmosi
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Eleonora Dal Sasso
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gino Gerosa
- Cardiovascular Regenerative Medicine, Department of Cardiac, Thoracic and Vascular Surgery, University of Padua and Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
53
|
Skardal A. Perspective: “Universal” bioink technology for advancing extrusion bioprinting-based biomanufacturing. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.e00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
54
|
Stevens KR, Scull MA, Ramanan V, Fortin CL, Chaturvedi RR, Knouse KA, Xiao JW, Fung C, Mirabella T, Chen AX, McCue MG, Yang MT, Fleming HE, Chung K, de Jong YP, Chen CS, Rice CM, Bhatia SN. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci Transl Med 2018; 9:9/399/eaah5505. [PMID: 28724577 DOI: 10.1126/scitranslmed.aah5505] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 07/12/2016] [Accepted: 03/06/2017] [Indexed: 12/29/2022]
Abstract
Control of both tissue architecture and scale is a fundamental translational roadblock in tissue engineering. An experimental framework that enables investigation into how architecture and scaling may be coupled is needed. We fabricated a structurally organized engineered tissue unit that expanded in response to regenerative cues after implantation into mice with liver injury. Specifically, we found that tissues containing patterned human primary hepatocytes, endothelial cells, and stromal cells in a degradable hydrogel expanded more than 50-fold over the course of 11 weeks in mice with injured livers. There was a concomitant increase in graft function as indicated by the production of multiple human liver proteins. Histologically, we observed the emergence of characteristic liver stereotypical microstructures mediated by coordinated growth of hepatocytes in close juxtaposition with a perfused vasculature. We demonstrated the utility of this system for probing the impact of multicellular geometric architecture on tissue expansion in response to liver injury. This approach is a hybrid strategy that harnesses both biology and engineering to more efficiently deploy a limited cell mass after implantation.
Collapse
Affiliation(s)
- Kelly R Stevens
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Departments of Bioengineering and Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Margaret A Scull
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Vyas Ramanan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chelsea L Fortin
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Departments of Bioengineering and Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ritika R Chaturvedi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin A Knouse
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jing W Xiao
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Canny Fung
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | | | - Amanda X Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret G McCue
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Heather E Fleming
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.,Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Christopher S Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Bioengineering, Boston University, Boston, MA 02215, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. .,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
55
|
Abstract
The human gut microbiome performs prodigious physiological functions such as production of microbial metabolites, modulation of nutrient digestion and drug metabolism, control of immune system, and prevention of infection. Paradoxically, gut microbiome can also negatively orchestrate the host responses in diseases or chronic disorders, suggesting that the regulated and balanced host-gut microbiome crosstalk is a salient prerequisite in gastrointestinal physiology. To understand the pathophysiological role of host-microbiome crosstalk, it is critical to recreate in vivo relevant models of the host-gut microbiome ecosystem in human. However, controlling the multi-species microbial communities and their uncontrolled growth has remained a notable technical challenge. Furthermore, conventional two-dimensional (2D) or 3D culture systems do not recapitulate multicellular microarchitectures, mechanical dynamics, and tissue-specific functions. Here, we review recent advances and current pitfalls of in vitro and ex vivo models that display human GI functions. We also discuss how the disruptive technologies such as 3D organoids or a human organ-on-a-chip microphysiological system can contribute to better emulate host-gut microbiome crosstalks in health and disease. Finally, the medical and pharmaceutical significance of the gut microbiome-based personalized interventions is underlined as a future perspective.
Collapse
|
56
|
In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018; 36:834-849. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Other than a few avascular tissues, almost all human tissues are connected to the systemic circulation via blood vessels that promote metabolism and function. Accordingly, engineered vascularization is a vital goal in tissue engineering for regenerative medicine. Endothelial cells (ECs) play a central role in vascularization with two significant specificities: physical interfaces between vascular stroma and blood, and phenotypic organ-specificity. Biomaterial scaffolding technologies that address these unique properties of ECs have been developed to promote the vascularization of various engineered tissues, and these have advanced from mimicking vascular architectures ex situ towards promoting spontaneous angiogenic remodeling in situ. Simultaneously, endothelial progenitor cells (EPCs) and organ-specific ECs are attracting more and more attention with the increasing awareness of the diversity of ECs in different organs.
Collapse
|
57
|
Fitzsimmons REB, Aquilino MS, Quigley J, Chebotarev O, Tarlan F, Simmons CA. Generating vascular channels within hydrogel constructs using an economical open-source 3D bioprinter and thermoreversible gels. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Song HHG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell 2018; 22:340-354. [PMID: 29499152 PMCID: PMC5849079 DOI: 10.1016/j.stem.2018.02.009] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the clinical demand for bioengineered blood vessels continues to rise, current options for vascular conduits remain limited. The synergistic combination of emerging advances in tissue fabrication and stem cell engineering promises new strategies for engineering autologous blood vessels that recapitulate not only the mechanical properties of native vessels but also their biological function. Here we explore recent bioengineering advances in creating functional blood macro and microvessels, particularly featuring stem cells as a seed source. We also highlight progress in integrating engineered vascular tissues with the host after implantation as well as the exciting pre-clinical and clinical applications of this technology.
Collapse
Affiliation(s)
- H-H Greco Song
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rowza T Rumma
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elazer R Edelman
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Cardiology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
59
|
|
60
|
Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biol 2018; 78-79:337-345. [PMID: 29438729 DOI: 10.1016/j.matbio.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/02/2023]
Abstract
Hyaluronan is a ubiquitous constituent of mammalian extracellular matrices and, because of its excellent intrinsic biocompatibility and chemical modification versatility, has been widely employed in a multitude of biomedical applications. In this article, we will survey the approaches used to tailor hyaluronan to specific needs of tissue engineering, regenerative and reconstructive medicine and overall biomedical research. We will also describe recent examples of applications in these broader areas, such as 3D cell culture, bioprinting, organoid biofabrication, and precision medicine that are facilitated by the use of hyaluronan as a biomaterial.
Collapse
|
61
|
Mazzocchi A, Soker S, Skardal A. Biofabrication Technologies for Developing In Vitro Tumor Models. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-60511-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Turunen S, Kaisto S, Skovorodkin I, Mironov V, Kalpio T, Vainio S, Rak-Raszewska A. 3D bioprinting of the kidney—hype or hope? ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.3.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
63
|
Grover H, Spatarelu CP, De'De' K, Zhao S, Yang K, Shrike Zhang Y, Chen Z. Vascularization in 3D printed tissues: emerging technologies to overcome longstanding obstacles. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.3.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
64
|
Campbell M, Chabria M, Figtree GA, Polonchuk L, Gentile C. Stem Cell-Derived Cardiac Spheroids as 3D In Vitro Models of the Human Heart Microenvironment. Methods Mol Biol 2018; 2002:51-59. [PMID: 30159827 DOI: 10.1007/7651_2018_187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our laboratory has recently developed a novel three-dimensional in vitro model of the human heart, which we call the vascularized cardiac spheroid (VCS). These better recapitulate the human heart's cellular and extracellular microenvironment compared to the existing in vitro models. To achieve this, human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes, cardiac fibroblasts, and human coronary artery endothelial cells are co-cultured in hanging drop culture in ratios similar to those found in the human heart in vivo. The resulting three-dimensional cellular organization, extracellular matrix, and microvascular network formation throughout the VCS has been shown to mimic the one present in the human heart tissue. Therefore, VCSs offer a promising platform to study cardiac physiology, disease, and pharmacology, as well as bioengineering constructs to regenerate heart tissue.
Collapse
Affiliation(s)
| | - Mamta Chabria
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Gemma A Figtree
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Liudmila Polonchuk
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Carmine Gentile
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia.
| |
Collapse
|
65
|
Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS. Skin tissue engineering using 3D bioprinting: An evolving research field. J Plast Reconstr Aesthet Surg 2017; 71:615-623. [PMID: 29306639 DOI: 10.1016/j.bjps.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Commercially available tissue engineered skin remains elusive despite extensive research because the multi-stratified anisotropic structure is difficult to replicate in vitro using traditional tissue engineering techniques. Bioprinting, involving computer-controlled deposition of cells and scaffolds into spatially controlled patterns, is able to control not only the macro but also micro and nanoarchitecture and could offer the potential to more faithfully replicate native skin. METHODS We conducted a literature review using PubMed, EMBASE and Web of Science for studies on skin 3D bioprinting between 2009 and 2016, evaluating the bioprinting technique, cell source, scaffold type and in vitro and in vivo outcomes. RESULTS We outline the evolution of biological skin replacements, principles of bioprinting and how they apply to the skin tissue engineering field, potential clinical applications as well the current limitations and future avenues for research. Of the studies analysed, the most common types of bioinks consisted of keratinocytes and fibroblasts combined with collagen, although stem cells are gaining increasing recognition. Laser assisted deposition was the most common printing modality, although ink-jet and pneumatic extrusion have also been tested. Bioprinted skin promoted accelerated wound healing, was able to mimic stratified epidermis but not the thick, elastic, vascular dermis. CONCLUSIONS Although 3D bioprinting shows promise in engineering skin, evidenced by large collective investments from the cosmetic industry, the research is still in its infancy. The resolution, vascularity, optimal cell and scaffold combinations and cost of bioprinted skin are hurdles that need to be overcome before the clinical applicability can be realised. Small scale 3D skin tissue models for cosmetics, drug and toxicity testing as well as tumour modelling are likely to be translated first before we see this technology used in reconstructive surgery patients.
Collapse
Affiliation(s)
- Sam P Tarassoli
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Zita M Jessop
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Ayesha Al-Sabah
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Neng Gao
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Sairan Whitaker
- Department of Dermatology, Royal Gwent Hospital, Newport, UK
| | - Shareen Doak
- In Vitro Toxicology Research Group, Swansea University Medical School, Swansea, UK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK; Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK.
| |
Collapse
|
66
|
Spheroids as vascularization units: From angiogenesis research to tissue engineering applications. Biotechnol Adv 2017; 35:782-791. [DOI: 10.1016/j.biotechadv.2017.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
|
67
|
Elomaa L, Yang YP. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:436-450. [PMID: 27981886 PMCID: PMC5652978 DOI: 10.1089/ten.teb.2016.0348] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.
Collapse
Affiliation(s)
- Laura Elomaa
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
- Department of Materials Science and Engineering, Stanford University School of Engineering, Stanford, California
- Department of Bioengineering, Stanford University School of Engineering, Stanford, California
| |
Collapse
|
68
|
Bulanova EA, Koudan EV, Degosserie J, Heymans C, Pereira FDAS, Parfenov VA, Sun Y, Wang Q, Akhmedova SA, Sviridova IK, Sergeeva NS, Frank GA, Khesuani YD, Pierreux CE, Mironov VA. Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 2017; 9:034105. [DOI: 10.1088/1758-5090/aa7fdd] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
69
|
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017; 117:10212-10290. [PMID: 28756658 PMCID: PMC5553103 DOI: 10.1021/acs.chemrev.7b00074] [Citation(s) in RCA: 1246] [Impact Index Per Article: 155.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.
Collapse
Affiliation(s)
- Samuel Clark Ligon
- Laboratory
for High Performance Ceramics, Empa, The
Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Robert Liska
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Jürgen Stampfl
- Institute of Applied
Synthetic Chemistry and Institute of Materials Science and
Technology, TU Wien, Getreidemarkt 9, Vienna A-1060, Austria
| | - Matthias Gurr
- H.
B. Fuller Deutschland GmbH, An der Roten Bleiche 2-3, Lüneburg D-21335, Germany
| | - Rolf Mülhaupt
- Freiburg
Materials Research Center (FMF) and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, Freiburg D-79104, Germany
| |
Collapse
|
70
|
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.7b00074 impact factor 2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Samuel Clark Ligon
- Laboratory
for High Performance Ceramics, Empa, The Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | | | | | - Matthias Gurr
- H. B. Fuller Deutschland GmbH, An der Roten Bleiche 2-3, Lüneburg D-21335, Germany
| | - Rolf Mülhaupt
- Freiburg
Materials Research Center (FMF) and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Straße 31, Freiburg D-79104, Germany
| |
Collapse
|
71
|
Polonchuk L, Chabria M, Badi L, Hoflack JC, Figtree G, Davies MJ, Gentile C. Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 2017; 7:7005. [PMID: 28765558 PMCID: PMC5539326 DOI: 10.1038/s41598-017-06385-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional in vitro cell systems are a promising alternative to animals to study cardiac biology and disease. We have generated three-dimensional in vitro models of the human heart ("cardiac spheroids", CSs) by co-culturing human primary or iPSC-derived cardiomyocytes, endothelial cells and fibroblasts at ratios approximating those present in vivo. The cellular organisation, extracellular matrix and microvascular network mimic human heart tissue. These spheroids have been employed to investigate the dose-limiting cardiotoxicity of the common anti-cancer drug doxorubicin. Viability/cytotoxicity assays indicate dose-dependent cytotoxic effects, which are inhibited by the nitric oxide synthase (NOS) inhibitor L-NIO, and genetic inhibition of endothelial NOS, implicating peroxynitrous acid as a key damaging agent. These data indicate that CSs mimic important features of human heart morphology, biochemistry and pharmacology in vitro, offering a promising alternative to animals and standard cell cultures with regard to mechanistic insights and prediction of toxic effects in human heart tissue.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Mamta Chabria
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Laura Badi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Jean-Christophe Hoflack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Gemma Figtree
- Sydney Medical School, University of Sydney, Sydney, 2000, Australia
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Carmine Gentile
- Sydney Medical School, University of Sydney, Sydney, 2000, Australia.
- Heart Research Institute, Newtown, 2041, Australia.
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
72
|
Sego TJ, Kasacheuski U, Hauersperger D, Tovar A, Moldovan NI. A heuristic computational model of basic cellular processes and oxygenation during spheroid-dependent biofabrication. Biofabrication 2017; 9:024104. [DOI: 10.1088/1758-5090/aa6ed4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
73
|
Mirabella T, MacArthur J, Cheng D, Ozaki C, Woo Y, Yang M, Chen C. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 2017; 1:0083. [PMID: 29515935 PMCID: PMC5837070 DOI: 10.1038/s41551-017-0083] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Arterial bypass grafts remain the gold standard for the treatment of end-stage ischaemic disease. Yet patients unable to tolerate the cardiovascular stress of arterial surgery or those with unreconstructable disease would benefit from grafts that are able to induce therapeutic angiogenesis. Here, we introduce an approach whereby implantation of 3D-printed grafts containing endothelial-cell-lined lumens induces spontaneous, geometrically guided generation of collateral circulation in ischaemic settings. In rodent models of hind-limb ischaemia and myocardial infarction, we demonstrate that the vascular patches rescue perfusion of distal tissues, preventing capillary loss, muscle atrophy and loss of function. Inhibiting anastomoses between the construct and the host's local capillary beds, or implanting constructs with unpatterned endothelial cells, abrogates reperfusion. Our 3D-printed grafts constitute an efficient and scalable approach to engineer vascular patches able to guide rapid therapeutic angiogenesis and perfusion for the treatment of ischaemic diseases.
Collapse
Affiliation(s)
- T. Mirabella
- Department of Bioengineering and the Biological Design Center, Boston University; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - J.W. MacArthur
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - D. Cheng
- Department of Bioengineering and the Biological Design Center, Boston University; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - C.K. Ozaki
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Y.J. Woo
- Department of Cardiothoracic Surgery, Stanford University, Palo Alto, CA
| | - M. Yang
- Innolign Biomedical, Boston, MA
| | - C.S. Chen
- Department of Bioengineering and the Biological Design Center, Boston University; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| |
Collapse
|
74
|
Fang Y, Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS DISCOVERY 2017. [DOI: 10.1177/2472555217696795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Corning Research and Development Corporation, Corning Incorporated, Corning, NY, USA
| | | |
Collapse
|
75
|
Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 2017; 51:1-20. [PMID: 28087487 DOI: 10.1016/j.actbio.2017.01.035] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Abstract
Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. STATEMENT OF SIGNIFICANCE Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication.
Collapse
|
76
|
Whitford W, Hoying JB. Digital biomanufacturing supporting vascularization in 3D bioprinting. Int J Bioprint 2017; 3:002. [PMID: 33094177 PMCID: PMC7575623 DOI: 10.18063/ijb.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
Synergies in bioprinting are appearing from individual researchers focusing on divergent aspects of the technology. Many are now evolving from simple mono-dimensional operations to model-controlled multi-material, interpenetrating networks using multi-modal deposition techniques. Bioinks are being designed to address numerous critical process parameters. Both the cellular constructs and architectural design for the necessary vascular component in digitally biomanufactured tissue constructs are being addressed. Advances are occurring from the topology of the circuits to the source of the of the biological microvessel components. Instruments monitoring and control of these activates are becoming interconnected. More and higher quality data are being collected and analysis is becoming richer. Information management and model generation is now describing a "process network." This is promising; more efficient use of both locally and imported raw data supporting accelerated strategic as well as tactical decision making. This allows real time optimization of the immediate bioprinting bioprocess based on such high value criteria as instantaneous progress assessment and comparison to previous activities. Finally, operations up- and down-stream of the deposition are being included in a supervisory enterprise control.
Collapse
Affiliation(s)
- William Whitford
- BioProcess, GE Healthcare Life Sciences, 925 West 1800 South, Logan, UT 84321, USA
| | - James B. Hoying
- Advanced Solutions Life Sciences, 1901 Nelson Miller Parkway, Louisville, KY 40223, USA
| |
Collapse
|
77
|
Genome engineering of stem cell organoids for disease modeling. Protein Cell 2017; 8:315-327. [PMID: 28102490 PMCID: PMC5413597 DOI: 10.1007/s13238-016-0368-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022] Open
Abstract
Precision medicine emerges as a new approach that takes into account individual variability. Successful realization of precision medicine requires disease models that are able to incorporate personalized disease information and recapitulate disease development processes at the molecular, cellular and organ levels. With recent development in stem cell field, a variety of tissue organoids can be derived from patient specific pluripotent stem cells and adult stem cells. In combination with the state-of-the-art genome editing tools, organoids can be further engineered to mimic disease-relevant genetic and epigenetic status of a patient. This has therefore enabled a rapid expansion of sophisticated in vitro disease models, offering a unique system for fundamental and biomedical research as well as the development of personalized medicine. Here we summarize some of the latest advances and future perspectives in engineering stem cell organoids for human disease modeling.
Collapse
|
78
|
Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomater Sci Eng 2017; 3:1175-1194. [PMID: 33440508 DOI: 10.1021/acsbiomaterials.6b00370] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in bioprinting technology have been used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. Organ printing and biofabrication provides great potential for the freeform fabrication of 3D living organs using cellular spheroids, biocomposite nanofibers, or bioinks as building blocks for regenerative therapy. Vascularization is often identified as a main technological barrier for building 3D organs in tissue engineering. 3D printing of living tissues starts with potential support of biomaterials to maintain structural integrity and degradation of certain time periods after printing of the scaffolds. Biofabrication is the production of complex living and nonliving biological products from raw materials such as cells, molecules, ECM, and biomaterials. Generally, two basic methods are used for the fabrication of scaffolds such as conventional/traditional fabrication processes and advance fabrication processes for engineering organs. A wide range of polymers and biomaterials are used for the fabrication of scaffolds in tissue engineering applications. 3D additive manufacturing is advancing day-by-day; however, there are various critical challenging factors used for fabricating 3D scaffolds. This review is aimed at understanding the various scaffold fabrication techniques, types of polymers and biomaterials used for the fabrication processes, various fields of applications, and different challenges faced in their fabrication of scaffolds in regenerative therapy.
Collapse
Affiliation(s)
- Greeshma Ratheesh
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Amutha Chinappan
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Hariharan Ezhilarasu
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Asif Sadiq
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
79
|
Cui H, Nowicki M, Fisher JP, Zhang LG. 3D Bioprinting for Organ Regeneration. Adv Healthc Mater 2017; 6:10.1002/adhm.201601118. [PMID: 27995751 PMCID: PMC5313259 DOI: 10.1002/adhm.201601118] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Indexed: 12/19/2022]
Abstract
Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Margaret Nowicki
- Department of Biomedical Engineering, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - John P. Fisher
- Department of Bioengineering University of Maryland 3238 Jeong H. Kim Engineering Building College Park, MD 20742, USA
| | - Lijie Grace Zhang
- Department of Medicine, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| |
Collapse
|
80
|
Andréa Dernowsek JD, Rezende RA, Lopes da Silva JV. The role of information technology in the future of 3D biofabrication. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2016-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Information technology (IT) is ubiquitous in recent human existence. The aim of this article is to present some basic concepts and specific demands that biofabrication may place on IT. Some of these technologies are already available, with a need for improvement, while others will need to be newly developed. Technologies that clearly, precisely and unambiguously specify a tissue or organ are unavailable. A move from expensive in vitro and in vivo assays toward in silico technologies will allow for exhaustive tests and optimization of human substitutes by means of computer biological systems. To complete this substitution, biofabrication lines shall be established; integrating what was planned and designed into physical processes executed by automatic machines. Biofabrication will impose great challenges, since many tools will need to be developed by engineers together with biologists. Many other concerns and challenges will be faced in the path to an autonomous biofabrication line, including cybernetic and biological safety issues. Therefore, the main aim of this paper is to shed some light and establish a primary nexus between the present and future applications of IT in biofabrication.
Collapse
Affiliation(s)
- Janaina de Andréa Dernowsek
- Three-Dimensional Technologies Division – DT3D, Renato Archer Information Technology Center – CTI, Rodovia Dom Pedro I (SP-65), Km 143,6, 13069–901 Campinas – SP, Brazil
| | - Rodrigo Alvarenga Rezende
- Three-Dimensional Technologies Division – DT3D, Renato Archer Information Technology Center – CTI, Rodovia Dom Pedro I (SP-65), Km 143,6, 13069–901 Campinas – SP, Brazil
| | - Jorge Vicente Lopes da Silva
- Three-Dimensional Technologies Division – DT3D, Renato Archer Information Technology Center – CTI, Rodovia Dom Pedro I (SP-65), Km 143,6, 13069–901 Campinas – SP, Brazil
| |
Collapse
|
81
|
Mawad D, Figtree G, Gentile C. Current Technologies Based on the Knowledge of the Stem Cells Microenvironments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:245-262. [DOI: 10.1007/978-3-319-69194-7_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
82
|
|
83
|
Cubo N, Garcia M, del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and
in vivo
analysis. Biofabrication 2016; 9:015006. [DOI: 10.1088/1758-5090/9/1/015006] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
84
|
Li X, He J, Zhang W, Jiang N, Li D. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations. MATERIALS 2016; 9:ma9110909. [PMID: 28774030 PMCID: PMC5457198 DOI: 10.3390/ma9110909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 0C3, Canada.
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Weijie Zhang
- Department of Knee Joint Surgery, Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
85
|
Abstract
Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies.
Collapse
Affiliation(s)
- Xiaolei Yin
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin E Mead
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Helia Safaee
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | - Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
86
|
Moriyama K, Naito S, Wakabayashi R, Goto M, Kamiya N. Enzymatically prepared redox-responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation. Biotechnol J 2016; 11:1452-1460. [PMID: 27617786 DOI: 10.1002/biot.201600087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Kousuke Moriyama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST); Ibaraki Japan
| | - Shono Naito
- Department of Applied Chemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
- Division of Biotechnology, Center for Future Chemistry; Kyushu University; Fukuoka Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering; Kyushu University; Fukuoka Japan
- Division of Biotechnology, Center for Future Chemistry; Kyushu University; Fukuoka Japan
| |
Collapse
|
87
|
Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Adv Healthc Mater 2016; 5:2353-62. [PMID: 27281607 DOI: 10.1002/adhm.201600182] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/30/2016] [Indexed: 12/22/2022]
Abstract
The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Gráinne M. Cunniffe
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Binulal N. Sathy
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| | - Oju Jeon
- Departments of Biomedical Engineering and Orthopedic Surgery, and the National Centre for Regenerative Medicine; Case Western Reserve University; Cleveland OH USA
| | - Eben Alsberg
- Departments of Biomedical Engineering and Orthopedic Surgery, and the National Centre for Regenerative Medicine; Case Western Reserve University; Cleveland OH USA
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering and Department of Mechanical and Manufacturing Engineering; Trinity College Dublin; The University of Dublin; Dublin 2 Ireland
| |
Collapse
|
88
|
Moschouris K, Firoozi N, Kang Y. The application of cell sheet engineering in the vascularization of tissue regeneration. Regen Med 2016; 11:559-70. [PMID: 27527673 PMCID: PMC5007660 DOI: 10.2217/rme-2016-0059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scaffold-free cell sheet engineering (CSE) is a new technology to regenerate injured or damaged tissues, which has shown promising potential in tissue regeneration. CSE uses a thermosensitive surface to form a dense cell sheet that can be detached when temperature decreases. The detached cell sheet can be stacked on top of one another according to the thickness of cell sheet for the specific tissue regeneration application. One of the key challenges of tissue engineering is vascularization. CSE technique provides excellent microenvironment for vascularization since the technique can maintain the intact cell matrix that is crucial for angiogenesis. In this review paper, we will highlight the principle technique of CSE and its application in tissue regeneration.
Collapse
Affiliation(s)
- Kathryn Moschouris
- Department of Biological Sciences, College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Negar Firoozi
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
89
|
Malheiro A, Wieringa P, Mota C, Baker M, Moroni L. Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomater Sci Eng 2016; 2:1694-1709. [DOI: 10.1021/acsbiomaterials.6b00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Afonso Malheiro
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Carlos Mota
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew Baker
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
90
|
Gu Q, Zhu H, Li J, Li X, Hao J, Wallace GG, Zhou Q. Three-dimensional bioprinting speeds up smart regenerative medicine. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Biological materials can actively participate in the formation of bioactive organs and can even control cell fate to form functional tissues that we name as the smart regenerative medicine (SRM). The SRM requires interdisciplinary efforts to finalize the pre-designed organs. Three-dimensional (3D) printing, as an additive manufacturing technology, has been widely used in various fields due to its high resolution and individuation. In SRM, with the assistance of 3D printing, cells and biomaterials could be precisely positioned to construct complicated tissues. This review summarizes the state of the SRM advances and focuses in particular on the 3D printing application in biofabrication. We further discuss the issues of SRM development and finally propose some approaches for future 3D printing, which involves SRM.
Collapse
Affiliation(s)
- Qi Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | - He Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522, Australia
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
91
|
Yu Y, Ozbolat IT. Tissue strands as "bioink" for scale-up organ printing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1428-31. [PMID: 25570236 DOI: 10.1109/embc.2014.6943868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organ printing, takes tissue spheroids as building blocks together with additive manufacturing technique to engineer tissue or organ replacement parts. Although a wide array of cell aggregation techniques has been investigated, and gained noticeable success, the application of tissue spheroids for scale-up tissue fabrication is still worth investigation. In this paper, we introduce a new micro-fabrication technique to create tissue strands at the scale of 500-700μm as a "bioink" for future robotic tissue printing. Printable alginate micro-conduits are used as semi-permeable capsules for tissue strand fabrication. Mouse insulinoma beta TC3 cell tissue strands were formed upon 4 days post fabrication with reasonable mechanical strength, high cell viability close to 90%, and tissue specific markers expression. Fusion was readily observed between strands when placing them together as early as 24h. Also, tissue strands were deposited with human umbilical vein smooth muscle cells (HUVSMCs) vascular conduits together to fabricated miniature pancreatic tissue analog. Our study provided a novel technique using tissue strands as "bioink" for scale-up bioprinting of tissues or organs.
Collapse
|
92
|
Abstract
Worldwide, increasing numbers of patients are developing end-stage renal disease, and at present, the only treatment options are dialysis or kidney transplantation. Dialysis is associated with increased morbidity and mortality, poor life quality and high economic costs. Transplantation is by far the better option, but there are insufficient numbers of donor kidneys available. Therefore, there is an urgent need to explore alternative approaches. In this review, we discuss how this problem could potentially be addressed by using autologous cells and appropriate scaffolds to develop 'bioengineered' kidneys for transplantation. In particular, we will highlight recent breakthroughs in pluripotent stem cell biology that have led to the development of autologous renal progenitor cells capable of differentiating to all renal cell types and will discuss how these cells could be combined with appropriate scaffolds to develop a bioengineered kidney.
Collapse
Affiliation(s)
- Bettina Wilm
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Riccardo Tamburrini
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Giuseppe Orlando
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Patricia Murray
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| |
Collapse
|
93
|
3D Bioprinting for Vascularized Tissue Fabrication. Ann Biomed Eng 2016; 45:132-147. [PMID: 27230253 DOI: 10.1007/s10439-016-1653-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/14/2016] [Indexed: 12/12/2022]
Abstract
3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication.
Collapse
|
94
|
Skardal A, Devarasetty M, Kang HW, Seol YJ, Forsythe SD, Bishop C, Shupe T, Soker S, Atala A. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink. J Vis Exp 2016:e53606. [PMID: 27166839 DOI: 10.3791/53606] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences;
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| | - Hyun-Wook Kang
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| | - Young-Joon Seol
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| | - Steven D Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest Univeristy Health Sciences
| |
Collapse
|
95
|
3D Printing of Organs for Transplantation: Where Are We and Where Are We Heading? CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0089-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
96
|
Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. NANOTECHNOLOGY 2016; 27:064001. [PMID: 26758780 PMCID: PMC5055473 DOI: 10.1088/0957-4484/27/6/064001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.
Collapse
Affiliation(s)
- Benjamin Holmes
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Kartik Bulusu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Michael Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
- Division of Genomic Medicine, Department of Medicine, The George Washington University Medical Center, Washington DC 20052, USA
| |
Collapse
|
97
|
Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2015; 18:539-553. [PMID: 28458612 PMCID: PMC5407188 DOI: 10.1016/j.mattod.2015.05.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell-cell, cell-matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing.
Collapse
Affiliation(s)
- Waseem Asghar
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Computer Engineering & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rami El Assal
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Hadi Shafiee
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sharon Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratories, Division of Biomedical Engineering, Division of Infectious Diseases, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
98
|
Ibrahim AMS, Jose RR, Rabie AN, Gerstle TL, Lee BT, Lin SJ. Three-dimensional Printing in Developing Countries. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e443. [PMID: 26301132 PMCID: PMC4527617 DOI: 10.1097/gox.0000000000000298] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 01/24/2023]
Abstract
The advent of 3-dimensional (3D) printing technology has facilitated the creation of customized objects. The lack of regulation in developing countries renders conventional means of addressing various healthcare issues challenging. 3D printing may provide a venue for addressing many of these concerns in an inexpensive and easily accessible fashion. These may potentially include the production of basic medical supplies, vaccination beads, laboratory equipment, and prosthetic limbs. As this technology continues to improve and prices are reduced, 3D printing has the potential ability to promote initiatives across the entire developing world, resulting in improved surgical care and providing a higher quality of healthcare to its residents.
Collapse
Affiliation(s)
- Ahmed M. S. Ibrahim
- From the Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.; Department of Biomedical Engineering, Tufts University, Medford, Mass.; and Department of Otolaryngology, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Rod R. Jose
- From the Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.; Department of Biomedical Engineering, Tufts University, Medford, Mass.; and Department of Otolaryngology, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Amr N. Rabie
- From the Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.; Department of Biomedical Engineering, Tufts University, Medford, Mass.; and Department of Otolaryngology, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Theodore L. Gerstle
- From the Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.; Department of Biomedical Engineering, Tufts University, Medford, Mass.; and Department of Otolaryngology, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Bernard T. Lee
- From the Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.; Department of Biomedical Engineering, Tufts University, Medford, Mass.; and Department of Otolaryngology, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Samuel J. Lin
- From the Division of Plastic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.; Department of Biomedical Engineering, Tufts University, Medford, Mass.; and Department of Otolaryngology, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| |
Collapse
|
99
|
3D bioprinting of tissues and organs. Nat Biotechnol 2015; 32:773-85. [PMID: 25093879 DOI: 10.1038/nbt.2958] [Citation(s) in RCA: 3568] [Impact Index Per Article: 356.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
Abstract
Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Collapse
|
100
|
Fan R, Sun Y, Wan J. Leaf-inspired artificial microvascular networks (LIAMN) for three-dimensional cell culture. RSC Adv 2015. [DOI: 10.1039/c5ra20265e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Leaf-inspired artificial microvascular networks (LIAMN) for 3D cell culture in hydrogel constructs.
Collapse
Affiliation(s)
- Rong Fan
- Department of Microsystems Engineering
- Rochester Institute of Technology
- USA
| | - Yihang Sun
- Department of Imaging Science
- Rochester Institute of Technology
- USA
| | - Jiandi Wan
- Department of Microsystems Engineering
- Rochester Institute of Technology
- USA
| |
Collapse
|