51
|
The TLR-4/NF-κB signaling pathway activation in cochlear inflammation of rats with noise-induced hearing loss. Hear Res 2019; 379:59-68. [DOI: 10.1016/j.heares.2019.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
|
52
|
Wang Y, Qu Y, Chen X, Zhang P, Su D, Wang L, Yang F, Yang J. Effects of D-methionine in mice with noise-induced hearing loss mice. J Int Med Res 2019; 47:3874-3885. [PMID: 31327277 PMCID: PMC6726779 DOI: 10.1177/0300060519860679] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To study the effects of D-methionine in a mouse model of noise-induced hearing loss (NIHL). Methods We investigated changes in auditory function and microscopic cochlear structure in a mouse model of NIHL, and carried out 4-hydroxynonenal (4-HNE) immunostaining and terminal deoxynucleotidyl transferase dUTP nick-end labeling, and examined expression levels of connexins 26 and 30 by western blot. Results The auditory brainstem response threshold was significantly increased by noise exposure. Noise exposure also damaged the inner and particularly the outer hair cells in the cochlear basement membrane, while histochemistry demonstrated only scattered loss of hair cells in the basement membrane in mice treated with D-methionine before or after noise exposure. D-methionine inhibited apoptosis in the cochlear basement membrane, stria vascularis, and spiral ligament. 4-HNE expression in the basement membrane, stria vascularis, and spiral collateral ligament was increased by noise exposure, but this increase was attenuated by D-methionine. Connexin 26 and connexin 30 expression levels were reduced by noise exposure, and this effect was similarly attenuated by D-methionine administered either before or after noise exposure. Conclusion D-methionine administered before or after noise exposure could rescue NIHL by protecting cochlear morphology, inhibiting apoptosis, and maintaining connexin 26 and 30 expression.
Collapse
Affiliation(s)
- Yanru Wang
- 1 Department of Otorhinolaryngology, The 980th Hospital of the Joint Logistics Support Force of the Chinese Peopole's Liberation Army, Shijiazhuang, China
| | - Yan Qu
- 2 Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuzhen Chen
- 1 Department of Otorhinolaryngology, The 980th Hospital of the Joint Logistics Support Force of the Chinese Peopole's Liberation Army, Shijiazhuang, China
| | - Pu Zhang
- 2 Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Su
- 2 Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Wang
- 2 Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Yang
- 2 Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiangdong Yang
- 2 Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
53
|
Rybak LP, Dhukhwa A, Mukherjea D, Ramkumar V. Local Drug Delivery for Prevention of Hearing Loss. Front Cell Neurosci 2019; 13:300. [PMID: 31338024 PMCID: PMC6629775 DOI: 10.3389/fncel.2019.00300] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Systemic delivery of therapeutics for targeting the cochlea to prevent or treat hearing loss is challenging. Systemic drugs have to cross the blood-labyrinth barrier (BLB). BLB can significantly prevent effective penetration of drugs in appropriate concentrations to protect against hearing loss caused by inflammation, ototoxic drugs, or acoustic trauma. This obstacle may be obviated by local administration of protective agents. This route can deliver higher concentration of drug compared to systemic application and preclude systemic side effects. Protective agents have been administered by intra-tympanic injection in numerous preclinical studies. Drugs such as steroids, etanercept, D and L-methionine, pifithrin-alpha, adenosine agonists, melatonin, kenpaullone (a cyclin-dependent kinase 2 (CDK2) inhibitor) have been reported to show efficacy against cisplatin ototoxicity in animal models. Several siRNAs have been shown to ameliorate cisplatin ototoxicity when administered by intra-tympanic injection. The application of corticosteroids and a number of other drugs with adjuvants appears to enhance efficacy. Administration of siRNAs to knock down AMPK kinase, liver kinase B1 (LKB1) or G9a in the cochlea have been found to ameliorate noise-induced hearing loss. The local administration of these compounds appears to be effective in protecting the cochlea against damage from cisplatin or noise trauma. Furthermore the intra-tympanic route yields maximum protection in the basal turn of the cochlea which is most vulnerable to cisplatin ototoxicity and noise trauma. There appears to be very little transfer of these agents to the systemic circulation. This would avoid potential side effects including interference with anti-tumor efficacy of cisplatin. Nanotechnology offers strategies to effectively deliver protective agents to the cochlea. This review summarizes the pharmacology of local drug delivery by intra-tympanic injection to prevent hearing loss caused by cisplatin and noise exposure in animals. Future refinements in local protective agents provide exciting prospects for amelioration of hearing loss resulting from cisplatin or noise exposure.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States.,Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Asmita Dhukhwa
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| |
Collapse
|
54
|
Chen Y, Zhang M, Qiu W, Sun X, Wang X, Dong Y, Chen Z, Hu W. Prevalence and determinants of noise-induced hearing loss among workers in the automotive industry in China: A pilot study. J Occup Health 2019; 61:387-397. [PMID: 31183937 PMCID: PMC6718839 DOI: 10.1002/1348-9585.12066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Objective Data on noise‐induced hearing loss (NIHL) in the automotive industry are rare. This pilot study aimed to investigate the prevalence and determinants of NIHL among workers in the automotive industry in China. Methods A cross‐sectional survey was conducted with 6557 participants from the automotive industry. The questionnaire survey was administered, and individual noise exposure level (LAeq.8h) and hearing loss level were measured. Results Of participants, 96.43% were male; the median age was 27.0 years and 28.82% had NIHL defined as adjusted high‐frequency noise‐induced hearing loss (AHFNIHL). Concerning individual noise levels (LAeq.8h), 62.53% exceeded 85 dB(A), which were mainly concentrated in various jobs, including metal cutting, surface treatment, stamping, welding, grinding, assembly, plastic molding, and forging. Each typical noise source generated its own unique temporal waveform shape with the type of non‐Gaussian noise. Of workers, 53.15% regularly used hearing protector devices (HPD), and the proportion of regular HPD use increased with LAeq.8h. The trend test showed that the prevalence of AHFNIHL in male workers significantly increased with an increase in LAeq.8h at <94 dB(A) and cumulative noise exposure (CNE) in each age group (P < 0.05 or P < 0.01). A logistic regression analysis showed that CNE and HPD usage frequency were important factors contributing to AHFNIHL. Conclusions CNE and HPD usage frequency were the determinants for NIHL. Much more human surveys are needed to understand the prevalence and determinants of NIHL in the automotive industry in China.
Collapse
Affiliation(s)
- Yali Chen
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Meibian Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Wei Qiu
- Auditory Research Laboratories, State University of New York at Plattsburgh, Plattsburgh, New York
| | - Xin Sun
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Xin Wang
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Yiwen Dong
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| | - Zhenlong Chen
- Wuhan Prevention and Treatment Center for Occupational Disease, Wuhan, China
| | - Weijiang Hu
- Chinese Center for Disease Control and Prevention, National Institute for Occupational Health and Poison Control, Beijing, China
| |
Collapse
|
55
|
Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019; 135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Hearing loss caused by exposure to recreational and occupational noise remains a worldwide disabling condition and dysregulation of redox homeostasis is the hallmark of cochlear damage induced by noise exposure. In this review we discuss the dual function of ROS to both promote cell damage (oxidative stress) and cell adaptive responses (ROS signaling) in the cochlea undergoing a stressful condition such as noise exposure. We focus on animal models of noise-induced hearing loss (NIHL) and on the function of exogenous antioxidants to maintaining a physiological role of ROS signaling by distinguishing the effect of exogenous "direct" antioxidants (i.e. CoQ10, NAC), that react with ROS to decrease oxidative stress, from the exogenous "indirect" antioxidants (i.e. nutraceutics and phenolic compounds) that can activate cellular redox enzymes through the Keap1-Nrf2-ARE pathway. The anti-inflammatory properties of Nrf2 signaling are discussed in relation to the ROS/inflammation interplay in noise exposure. Unveiling the mechanisms of ROS regulating redox-associated signaling pathways is essential in providing relevant targets for innovative and effective therapeutic strategies against NIHL.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
56
|
Wagner EL, Shin JB. Mechanisms of Hair Cell Damage and Repair. Trends Neurosci 2019; 42:414-424. [PMID: 30992136 DOI: 10.1016/j.tins.2019.03.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 01/22/2023]
Abstract
Sensory hair cells of the inner ear are exposed to continuous mechanical stress, causing damage over time. The maintenance of hair cells is further challenged by damage from a variety of other ototoxic factors, including loud noise, aging, genetic defects, and ototoxic drugs. This damage can manifest in many forms, from dysfunction of the hair cell mechanotransduction complex to loss of specialized ribbon synapses, and may even result in hair cell death. Given that mammalian hair cells do not regenerate, the repair of hair cell damage is important for continued auditory function throughout life. Here, we discuss how several key hair cell structures can be damaged, and what is known about how they are repaired.
Collapse
Affiliation(s)
- Elizabeth L Wagner
- Department of Neuroscience, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
57
|
Eshraghi AA, Jung HD, Mittal R. Recent Advancements in Gene and Stem Cell-Based Treatment Modalities: Potential Implications in Noise-Induced Hearing Loss. Anat Rec (Hoboken) 2019; 303:516-526. [PMID: 30859735 DOI: 10.1002/ar.24107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/24/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Noise-induced hearing loss (NIHL) poses a significant burden on not only the economics of health care but also the quality of life of an individual, as we approach an unprecedented age of longevity. In this article, we will delineate the current landscape of management of NIHL. We discuss the most recent results from in vitro and in vivo studies that determine the effectiveness of established pharmacotherapy such as corticosteroid and potential emerging therapies like N-acetyl cysteine and neurotrophins (NTs), as well as highlight ongoing clinical trials for these therapeutic agents. We present an overview of how the recent advancements in the field of gene-based and stem cell-based therapies can help in developing effective therapeutic strategies for NIHL. Gene-based therapies have shown exciting results demonstrating cochlear cellular regeneration using Atoh1, NRF2 as well as NT gene therapy employing viral vectors. In addition, we will discuss the recent advancements in genome-editing technologies, such as CRISPR/Cas9, and its potential role in NIHL therapy. We will further discuss the current state of stem cell therapy as it pertains to treating neurodegenerative conditions including NIHL. Embryonic stem cells, adult-derived stem cells, and induced pluripotent stem cells all represent an enticing reservoir of replacing damaged cells as a result of NIHL. Finally, we will discuss the barriers that need to be overcome to translate these promising treatment modalities to the clinical practice in pursuit of improving quality of life of patients having NIHL. Anat Rec, 303:516-526, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Hyunseo D Jung
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
58
|
Joubert K, Botha D. Contributing factors to high prevalence of hearing impairment in the Elias Motsoaledi Local Municipal area, South Africa: A rural perspective. SOUTH AFRICAN JOURNAL OF COMMUNICATION DISORDERS 2019; 66:e1-e7. [PMID: 30843412 PMCID: PMC6407449 DOI: 10.4102/sajcd.v66i1.611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022] Open
Abstract
Background There is evidence that the factors contributing to the prevalence and aetiology of hearing impairment vary widely from one country to another. In South Africa, as in other low-income and middle-income countries, more context-specific information on the estimated prevalence of hearing impairment and the factors that contribute to its onset is required. Aim The aim of this study was to provide decision-makers and hearing health professionals with local and accurate information on the prevalence of ear and hearing disorders in the Elias Motsoaledi Local Municipal (EMLM) area of the Limpopo province, South Africa. Methods The World Health Organization (WHO) protocol for population-based surveys of prevalence and causes of deafness, hearing impairment and other ear diseases was utilised. A random multi-stage cluster sampling strategy, two-stage sampling, was utilised to select the seven municipal wards and 357 households through the probability proportional to size method. A total of 850 participants were included in the study. Results The overall prevalence of hearing impairment was 19.88% (95% confidence interval [CI]: 0.15–0.2) and 8.94 (95% CI: 0.08–0.12) for disabling hearing impairment. The prevalence of ear disease was 13.19% (95% CI: 0.10–0.15), with impacted cerumen and otitis media reported most often. Associations with hearing impairment were established for age, gender and hypertension. Conclusion The study has shown a higher prevalence of disabling hearing impairment in the rural EMLM area of the Limpopo province compared to global prevalence rates. In addition, known factors associated with hearing impairment were confirmed.
Collapse
Affiliation(s)
- Karin Joubert
- Department of Speech Pathology and Audiology, University of the Witwatersrand, South Africa; and Ndlovu Wits Audiology Clinic and Outreach Programme, South Africa.
| | | |
Collapse
|
59
|
Wang X, Zhu Y, Long H, Pan S, Xiong H, Fang Q, Hill K, Lai R, Yuan H, Sha SH. Mitochondrial Calcium Transporters Mediate Sensitivity to Noise-Induced Losses of Hair Cells and Cochlear Synapses. Front Mol Neurosci 2019; 11:469. [PMID: 30670946 PMCID: PMC6331433 DOI: 10.3389/fnmol.2018.00469] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria modulate cellular calcium homeostasis by the combined action of the mitochondrial calcium uniporter (MCU), a selective calcium entry channel, and the sodium calcium exchanger (NCLX), which extrudes calcium from mitochondria. In this study, we investigated MCU and NCLX in noise-induced hearing loss (NIHL) using adult CBA/J mice and noise-induced alterations of inner hair cell (IHC) synapses in MCU knockout mice. Following noise exposure, immunoreactivity of MCU increased in cochlear sensory hair cells of the basal turn, while immunoreactivity of NCLX decreased in a time- and exposure-dependent manner. Inhibition of MCU activity via MCU siRNA pretreatment or the specific pharmacological inhibitor Ru360 attenuated noise-induced loss of sensory hair cells and synaptic ribbons, wave I amplitudes, and NIHL in CBA/J mice. This protection was afforded, at least in part, through reduced cleavage of caspase 9 (CC9). Furthermore, MCU knockout mice on a hybrid genetic CD1 and C57/B6 background showed resistance to noise-induced seizures compared to wild-type littermates. Owing to the CD1 background, MCU knockouts and littermates suffer genetic high frequency hearing loss, but their IHCs remain intact. Noise-induced loss of IHC synaptic connections and reduction of auditory brainstem response (ABR) wave I amplitude were recovered in MCU knockout mice. These results suggest that cellular calcium influx during noise exposure leads to mitochondrial calcium overload via MCU and NCLX. Mitochondrial calcium overload, in turn, initiates cell death pathways and subsequent loss of hair cells and synaptic connections, resulting in NIHL.
Collapse
Affiliation(s)
- Xianren Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanping Zhu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haishan Long
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Song Pan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hao Xiong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Kayla Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ruosha Lai
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hu Yuan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
60
|
Kouhi A, Dabiri S, Amali A, Yazdani N, Baroodabi M, Kouchakinejad T, Mohseni A. Study of steroid effects on graft and inner ear outcomes in tympanoplasty: Randomized controlled trial. EAR, NOSE & THROAT JOURNAL 2018; 97:163-166. [PMID: 30036412 DOI: 10.1177/014556131809700613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
More studies are needed to investigate the side effects of steroids in tympanoplasty, owing to the paucity of such studies in the literature. This randomized, controlled clinical trial included 59 patients with chronic otitis media who underwent tympanoplasty and were randomized after surgery to a systemic steroid or no steroid treatment. Patients were randomized into two groups. Perforation size, graft outcome, and complications such as tinnitus and hearing loss were compared between the two groups. Postsurgical steroid injection had no effect on graft outcome (p = 0.927) or tinnitus (p = 0.478). Tympanic membrane perforation (p = 0.92), plaque size (p = 0.94), bleeding amount (p = 0.38), and mucosal status (p = 0.96) during surgery had no effect on graft outcome after the tympanoplasty. In conclusion, administration of steroids after tympanoplasty failed to improve outcome and may put the patient at risk of side effects.
Collapse
Affiliation(s)
- Ali Kouhi
- Otorhinolaryngology Research Center, Amir-A'lam Hospital, North Sa'adi Ave., Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
61
|
Miegel J, Branch P, Blamey P. Wireless communication between personal electronic devices and hearing aids using high frequency audio and ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2598. [PMID: 30404497 DOI: 10.1121/1.5063813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Hearing aids continue to be the main intervention for hearing loss but ease of use and control is of concern due to the small size of these aids. While technological advances in Bluetooth Low Energy have allowed for improved wireless control, in particular between personal electronic devices, its use for communication with hearing aids is problematic due to limited battery life. This paper outlines the implementation of acoustic wireless communication between personal electronic devices and hearing aids using On-Off Keying (OOK) and Frequency Shift Keying (FSK) between the frequencies of 16 and 20 kHz. Reliable communication with bit error rates less than 10-3 were achieved for OOK with maximum data signalling rates of 50, 35.7, and 27.8 bits per second (bps) obtained over 1, 2, and 3 metres respectively, while FSK provided maximum data signalling rates of 83.3, 50, and 27.8 bps over the same distances.
Collapse
Affiliation(s)
- Jonathon Miegel
- Australian Research Council Training Centre in Biodevices, Swinburne University of Technology, Melbourne 3122, Australia
| | - Philip Branch
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Melbourne 3122, Australia
| | - Peter Blamey
- Blamey Saunders hears, Melbourne 3002, Australia
| |
Collapse
|
62
|
Habybabady RH, Mortazavi SB, Khavanin A, Mirzaei R, Arab MR, Mesbahzadeh B, Hoseini M, Mohammadi M. Protective Effects of N-Acetyl-L-Cysteine on the Density of Spiral Ganglion Cells and Histological Changes Induced by Continuous Noise Exposure in Rats. Malays J Med Sci 2018; 25:48-58. [PMID: 30914862 PMCID: PMC6419893 DOI: 10.21315/mjms2018.25.5.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Noise exposure causes loss of cochlea hair cells, leading to permanent sensorineural hearing loss, and initiates pathological changes to the bipolar primary auditory neurons (ANs). This study focuses on the effects of N-acetyl-l-cysteine (NAC) in protecting the density of spiral ganglion cells and in histological changes induced by continuous noise exposure in rats. METHODS Twenty-four male Wistar rats were randomly allocated into four experimental groups to receive NAC, saline, noise, or both noise and NAC. Noise exposure continued for ten days. Saline and NAC were injected daily during the noise exposure, and 2 days before and after the noise exposure. Evaluation of cochlear histopathology and the density of spiral ganglion cells was performed 21 days after exposure. RESULTS In the animals exposed to noise, a reduction in the density of spiral ganglion cells was evident in both the basal and middle turns of the cochlea. This improved on receiving NAC treatment (P = 0.046). In the histopathology evaluation, some histological changes, such as disorganised architecture of the outer hair and supporting cells and a slightly thickened basilar membrane, were found in the basal turns in the noise group. CONCLUSION NAC offered partial protection against noise exposure by improving the density of spiral ganglion cells and reducing morphological changes.
Collapse
Affiliation(s)
- Raheleh Hashemi Habybabady
- Health Promotion Research Center, Department of Occupational Health Engineering, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Bagher Mortazavi
- Department of Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ramazan Mirzaei
- Department of Occupational Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Arab
- Cell and Molecular Research Center, Department of Anatomical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Behzad Mesbahzadeh
- Department of Physiology and Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hoseini
- Expert of Public Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohammadi
- Health Promotion Research Center, Department of Biostatistics & Epidemiology, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
63
|
Global burden of hearing impairment and ear disease. The Journal of Laryngology & Otology 2018; 133:18-25. [DOI: 10.1017/s0022215118001275] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractBackgroundHearing loss can present at birth or be acquired as a result of illness, middle-ear disease, injury, age, overuse of certain medications, and/or induced by exposure to damaging noise levels. There are serious short-term consequences for people living with hearing impairment, including the effects on language acquisition, education, employment and overall wellbeing. There are also complex long-term implications.ObjectivesThis review aimed to present some of the leading causes of ear disease and hearing loss globally, and to identify their impact at both an individual and societal level.
Collapse
|
64
|
Factors Associated With the Benefits of Concurrent Administration of Intratympanic Steroid Injection With Oral Steroids in Patients With Acute Acoustic Trauma. Otol Neurotol 2018; 39:565-570. [DOI: 10.1097/mao.0000000000001784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Jiang L, Xu J, Jin R, Bai H, Zhang M, Yang S, Zhang X, Zhang X, Han Z, Zeng S. Transcriptomic analysis of chicken cochleae after gentamicin damage and the involvement of four signaling pathways (Notch, FGF, Wnt and BMP) in hair cell regeneration. Hear Res 2018; 361:66-79. [DOI: 10.1016/j.heares.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
66
|
Gupta A, Gupta A, Jain K, Gupta S. Noise Pollution and Impact on Children Health. Indian J Pediatr 2018; 85:300-306. [PMID: 29313308 DOI: 10.1007/s12098-017-2579-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/14/2017] [Indexed: 01/14/2023]
Abstract
With rapid urbanization and life style changes, loud noise is omnipresent and has become a part of life. Indoor and outdoor environmental noise pollution have been documented as a serious health hazard with increasing adverse effects on fetus, infants, children, adolescents and adults. Noise induced hearing loss and non-auditory adverse effects due to noise pollution, are being increasingly diagnosed in all age groups including the fetus. Outdated motorized vehicles, machinery, increasing traffic, congested residential areas, crowded educational institutions and workplaces, unregulated commercial and industrial noise have become a source of noise pollution with long-term disability. Areas of noise pollution must be identified and corrective measures be taken. Toys, personal, domestic, commercial, industrial equipment should be within the safe sound intensity. Loudspeakers and vehicular horns should be banned except in emergencies. Nocturnal noise pollution must be avoided near residential areas as sleep disturbances have serious long-term health consequences. Pregnant women, fetus, newborns, infants and children are most susceptible to noise induced health hazards and should be given utmost protection. Educational institutions, workplaces, commercial and industrial areas should be regularly monitored for noise levels and protective ear muffs and plugs be used. Public be educated repeatedly regarding health hazards of noise. Traffic noise should be regulated to be within safe limits. Bus-stands, railway stations and airports should be moved away from residential areas. Houses should be sound proofed suitably. Long term studies should be conducted in pregnant women, newborn children and adults to have more data on hazards of noise pollution.
Collapse
Affiliation(s)
- Alok Gupta
- Pediatric Specialties Clinic, Mansarovar Polyclinic, Agarwal Farm, Mansarovar, Jaipur, Rajasthan, 302 020, India.
| | - Anant Gupta
- Department of Gastroenterology, SMS Medical College, Jaipur, Rajasthan, India
| | - Khushbu Jain
- Department of Pathology, Bhagwan Mahaveer Cancer Hospital & Research Center, Jaipur, Rajasthan, India
| | - Sweta Gupta
- Department of Microbiology, Mahatma Gandhi Medical College & Hospital, Jaipur, Rajasthan, India
| |
Collapse
|
67
|
Münzel T, Sørensen M, Schmidt F, Schmidt E, Steven S, Kröller-Schön S, Daiber A. The Adverse Effects of Environmental Noise Exposure on Oxidative Stress and Cardiovascular Risk. Antioxid Redox Signal 2018; 28:873-908. [PMID: 29350061 PMCID: PMC5898791 DOI: 10.1089/ars.2017.7118] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022]
Abstract
Epidemiological studies have provided evidence that traffic noise exposure is linked to cardiovascular diseases such as arterial hypertension, myocardial infarction, and stroke. Noise is a nonspecific stressor that activates the autonomous nervous system and endocrine signaling. According to the noise reaction model introduced by Babisch and colleagues, chronic low levels of noise can cause so-called nonauditory effects, such as disturbances of activity, sleep, and communication, which can trigger a number of emotional responses, including annoyance and subsequent stress. Chronic stress in turn is associated with cardiovascular risk factors, comprising increased blood pressure and dyslipidemia, increased blood viscosity and blood glucose, and activation of blood clotting factors, in animal models and humans. Persistent chronic noise exposure increases the risk of cardiometabolic diseases, including arterial hypertension, coronary artery disease, diabetes mellitus type 2, and stroke. Recently, we demonstrated that aircraft noise exposure during nighttime can induce endothelial dysfunction in healthy subjects and is even more pronounced in coronary artery disease patients. Importantly, impaired endothelial function was ameliorated by acute oral treatment with the antioxidant vitamin C, suggesting that excessive production of reactive oxygen species contributes to this phenomenon. More recently, we introduced a novel animal model of aircraft noise exposure characterizing the underlying molecular mechanisms leading to noise-dependent adverse oxidative stress-related effects on the vasculature. With the present review, we want to provide an overview of epidemiological, translational clinical, and preclinical noise research addressing the nonauditory, adverse effects of noise exposure with focus on oxidative stress. Antioxid. Redox Signal. 28, 873-908.
Collapse
Affiliation(s)
- Thomas Münzel
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frank Schmidt
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Erwin Schmidt
- Institute for Molecular Genetics, Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Swenja Kröller-Schön
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
68
|
Peppi M, Marie A, Belline C, Borenstein JT. Intracochlear drug delivery systems: a novel approach whose time has come. Expert Opin Drug Deliv 2018; 15:319-324. [PMID: 29480039 DOI: 10.1080/17425247.2018.1444026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M Peppi
- a Biomedical Engineering Center , Draper , Cambridge , MA , USA
| | - A Marie
- b CILcare, Montpellier, FR/Cambridge , Cambridge , MA , USA
| | - C Belline
- b CILcare, Montpellier, FR/Cambridge , Cambridge , MA , USA
| | - J T Borenstein
- a Biomedical Engineering Center , Draper , Cambridge , MA , USA
| |
Collapse
|
69
|
Teitz T, Fang J, Goktug AN, Bonga JD, Diao S, Hazlitt RA, Iconaru L, Morfouace M, Currier D, Zhou Y, Umans RA, Taylor MR, Cheng C, Min J, Freeman B, Peng J, Roussel MF, Kriwacki R, Guy RK, Chen T, Zuo J. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med 2018. [PMID: 29514916 PMCID: PMC5881471 DOI: 10.1084/jem.20172246] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss.
Collapse
Affiliation(s)
- Tal Teitz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Asli N Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Justine D Bonga
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Shiyong Diao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Robert A Hazlitt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| | - Luigi Iconaru
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Marie Morfouace
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yinmei Zhou
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Robyn A Umans
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Michael R Taylor
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Burgess Freeman
- Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, TN
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
70
|
Fluvastatin protects cochleae from damage by high-level noise. Sci Rep 2018; 8:3033. [PMID: 29445111 PMCID: PMC5813011 DOI: 10.1038/s41598-018-21336-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure to noise and ototoxic drugs are responsible for much of the debilitating hearing loss experienced by about 350 million people worldwide. Beyond hearing aids and cochlear implants, there have been no other FDA approved drug interventions established in the clinic that would either protect or reverse the effects of hearing loss. Using Auditory Brainstem Responses (ABR) in a guinea pig model, we demonstrate that fluvastatin, an inhibitor of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, protects against loss of cochlear function initiated by high intensity noise. A novel synchrotron radiation based X-ray tomographic method that imaged soft tissues at micrometer resolution in unsectioned cochleae, allowed an efficient, qualitative evaluation of the three-dimensional internal structure of the intact organ. For quantitative measures, plastic embedded cochleae were sectioned followed by hair cell counting. Protection in noise-exposed cochleae is associated with retention of inner and outer hair cells. This study demonstrates the potential of HMG-CoA reductase inhibitors, already vetted in human medicine for other purposes, to protect against noise induced hearing loss.
Collapse
|
71
|
The histone deacetylase inhibitor sodium butyrate protects against noise-induced hearing loss in Guinea pigs. Neurosci Lett 2017; 660:140-146. [DOI: 10.1016/j.neulet.2017.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022]
|
72
|
Wang X, Wu D, Zhao Y, Li D, He D. Knowledge and attitude of mothers regarding infant hearing loss in Changsha, Hunan province, China. Int J Audiol 2017; 56:997-1002. [PMID: 29034761 DOI: 10.1080/14992027.2017.1366671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The objective of this study was to explore the knowledge and attitude among mothers of newborns regarding infant hearing loss (HL) in Changsha, Hunan province, China. DESIGN A questionnaire including 18 items was given to mothers. STUDY SAMPLE A total of 115 mothers participated in the study. RESULTS Seven risk factors for hearing loss were identified correctly by above 60% of respondents and the top three were prolonged noise (88.7%), high fever (82.6%) and ear discharge (82.6%). Poor knowledge was demonstrated on risk factors jaundice (20.0%), measles (22.6%), convulsion (33.0%) and traditional Chinese medicine (39.1%). Maternal knowledge scores in identification and intervention (2.68 ± 0.31) was slightly higher than the score in risk factors (2.47 ± 0.34). Ninety-nine per cent of the mothers expressed the willingness to test baby's hearing soon after birth and concern about hearing. CONCLUSIONS Mothers were concerned about baby's hearing and the attitude was positive. However, the correct recognition rate towards some risk factors for HL was low. Action needs to be taken to raise awareness about ear and hearing care, prevent HL caused by preventable causes and prompt early identification, early diagnosis and intervention of HL.
Collapse
Affiliation(s)
- Xiaoli Wang
- a Department of Pediatric Ophthalmology and Otorhinolaryngology , Hunan Provincial Maternal and Child Health Care Hospital , Changsha , Hunan Province , China
| | - Dan Wu
- a Department of Pediatric Ophthalmology and Otorhinolaryngology , Hunan Provincial Maternal and Child Health Care Hospital , Changsha , Hunan Province , China
| | - Yali Zhao
- a Department of Pediatric Ophthalmology and Otorhinolaryngology , Hunan Provincial Maternal and Child Health Care Hospital , Changsha , Hunan Province , China
| | - Danhui Li
- a Department of Pediatric Ophthalmology and Otorhinolaryngology , Hunan Provincial Maternal and Child Health Care Hospital , Changsha , Hunan Province , China
| | - Dinghua He
- a Department of Pediatric Ophthalmology and Otorhinolaryngology , Hunan Provincial Maternal and Child Health Care Hospital , Changsha , Hunan Province , China
| |
Collapse
|
73
|
Nasezadeh P, Shahi F, Fridoni M, Seydi E, Izadi M, Salimi A. Moderate O 3/O 2 therapy enhances enzymatic and non-enzymatic antioxidant in brain and cochlear that protects noise-induced hearing loss. Free Radic Res 2017; 51:828-837. [PMID: 29022413 DOI: 10.1080/10715762.2017.1381695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondrial damage and oxidative stress are known to contribute to the pathogenesis of noise-induced hearing loss (NIHL). In this study, we examined the protective effect of O2/O3 mixture (ozone/oxygen) therapy against mitochondrial induced damage and oxidative stress by noise exposure in rat brain and cochlear. For this purpose, rats were divided into four groups: 1 - control group; 2 - noise-exposed group (100 dB); 3 - noise + O2/O3, and 4 - O2/O3 (30 µg/ml). After 14 d, animals were anesthetised. Rat brain and cochlear tissue were removed for evaluation of the histopathological damages, oxidative stress, and mitochondrial dysfunction in both tissues. Our findings indicated that noise caused pathological damage, oxidative stress, and mitochondrial dysfunction in rat brain and cochlear. Also, daily administration of an O2/O3 therapy (30 µg/ml intravenous) efficiently increased enzymatic and non-enzymatic antioxidant in brain and cochlear that this action led to inhibition of pathological damages, oxidative stress, reactive oxygen species formation, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, and cytochrome c release resulting from noise. These findings suggest that the moderate O2/O3 therapy enhances the capacity of enzymatic and non-enzymatic antioxidant in brain and cochlear that protects against NIHL.
Collapse
Affiliation(s)
- Parvaneh Nasezadeh
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Farshad Shahi
- b Young Researchers and Elite Club, Islamic Azad University, Tehran Medical Sciences Branch , Zanjan , Iran
| | - Mohammadjavad Fridoni
- c Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Enayatollah Seydi
- d Department of Occupational Health Engineering , Alborz University of Medical Sciences , Karaj , Iran
| | - Morteza Izadi
- e Ozone Complementary Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ahmad Salimi
- f Department of Pharmacology and Toxicology, School of Pharmacy , Ardabil University of Medical Science , Ardabil , Iran
| |
Collapse
|
74
|
Chang YS, Bang KH, Jeong B, Lee GG. Effects of early intratympanic steroid injection in patients with acoustic trauma caused by gunshot noise. Acta Otolaryngol 2017; 137:716-719. [PMID: 28125313 DOI: 10.1080/00016489.2017.1280850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONCLUSION This study evaluated the efficacy of concurrent administration of ITSI and systemic steroids in delayed treatment of NIHL after gunshot noise exposure. The results showed additional hearing benefits with administration of ITSI. Further evaluation is warranted to confirm this efficacy. OBJECTIVE This investigation evaluated the effects of early administration of an intratympanic steroid injection (ITSI) in combination with systemic steroids treatment in patients with acoustic trauma caused by gunshot noise. METHODS Nineteen patients eligible under the criteria established concerning delayed treatment for noise-induced hearing loss (NIHL) were enrolled in this study. Patients were divided into two groups: those who received prednisolone (PD) only (n = 8), and those who received PD with ITSI (n = 11). ITSI treatment was initiated simultaneously alongside systemic PD administration. These patients received ITSI every other day for a total of four treatments. Pure-tone air conduction threshold audiometry, to record the pure-tone average (PTA) at 2, 4, and 8 kHz, was conducted upon each patient's initial visit, and 1 month after starting treatment, to evaluate the degree of hearing gain (hearing gain (dB) = (initial PTA) - (final PTA)). RESULTS The initial PTA in PD-only and PD with ITSI groups were 52.75 ± 15.50 dB and 50.27 ± 12.01 dB, respectively. There were no significant differences in the baseline characteristics of the two groups, which include age and the number of days that treatment was delayed. In the multivariable linear regression analysis, both the initial PTA and the treatment method showed a significant association (R2 = 0.41). The unstandardized regression coefficient of the initial PTA was 0.47 (p = 0.02). Patients with additional ITSI showed significant improvement in the degree of hearing gain compared with the PD-only group (unstandardized regression coefficient =11.48, p = 0.03).
Collapse
Affiliation(s)
- Young-Soo Chang
- Department of Otorhinolaryngology, ROK Armed Forces Yangju Hospital, Yangju, Republic of Korea
| | - Kang Hyun Bang
- Department of Otorhinolaryngology, ROK Armed Forces Yangju Hospital, Yangju, Republic of Korea
| | - Byoungseo Jeong
- Department of Otorhinolaryngology, ROK Armed Forces Yangju Hospital, Yangju, Republic of Korea
| | - Gang-Gyu Lee
- Department of Otorhinolaryngology, ROK Armed Forces Yangju Hospital, Yangju, Republic of Korea
| |
Collapse
|
75
|
Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise. Neural Plast 2017; 2017:3026749. [PMID: 28589040 PMCID: PMC5446865 DOI: 10.1155/2017/3026749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks) and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.
Collapse
|
76
|
Noise-induced cochlear synaptopathy: Past findings and future studies. Hear Res 2017; 349:148-154. [DOI: 10.1016/j.heares.2016.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/08/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023]
|
77
|
Affiliation(s)
- Lema Imam
- Medical Student, University College London, London WC1E 6BT
| | - S Alam Hannan
- Consultant, Department of Ear, Nose and Throat, Royal National Throat, Nose and Ear Hospital, London
| |
Collapse
|
78
|
Bruno M, Rizzo IM, Romero-Guevara R, Bernacchioni C, Cencetti F, Donati C, Bruni P. Sphingosine 1-phosphate signaling axis mediates fibroblast growth factor 2-induced proliferation and survival of murine auditory neuroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:814-824. [PMID: 28188805 DOI: 10.1016/j.bbamcr.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/11/2017] [Accepted: 02/06/2017] [Indexed: 01/12/2023]
Abstract
Hearing loss affects millions of people in the world. In mammals the auditory system comprises diverse cell types which are terminally differentiated and with no regenerative potential. There is a tremendous research interest aimed at identifying cell therapy based solutions or pharmacological approaches that could be applied therapeutically alongside auditory devices to prevent hair cell and neuron loss. Sphingosine 1-phosphate (S1P) is a pleiotropic bioactive sphingolipid that plays key role in the regulation of many physiological and pathological functions. S1P is intracellularly produced by sphingosine kinase (SK) 1 and SK2 and exerts many of its action consequently to its ligation to S1P specific receptors (S1PR), S1P1-5. In this study, murine auditory neuroblasts named US/VOT-N33 have been used as progenitors of neurons of the spiral ganglion. We demonstrated that the fibroblast growth factor 2 (FGF2)-induced proliferative action was dependent on SK1, SK2 as well as S1P1 and S1P2. Moreover, the pro-survival effect of FGF2 from apoptotic cell death induced by staurosporine treatment was dependent on SK but not on S1PR. Additionally, ERK1/2 and Akt signaling pathways were found to mediate the mitogenic and survival action of FGF2, respectively. Taken together, these findings demonstrate a crucial role for S1P signaling axis in the proliferation and the survival of otic vesicle neuroprogenitors, highlighting the identification of possible novel therapeutical approaches to prevent neuronal degeneration during hearing loss.
Collapse
Affiliation(s)
- Marina Bruno
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Ilaria Maria Rizzo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Ricardo Romero-Guevara
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Caterina Bernacchioni
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Francesca Cencetti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| | - Chiara Donati
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy.
| | - Paola Bruni
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "M. Serio", viale G B Morgagni 50, 50134 Firenze, Italy
| |
Collapse
|
79
|
Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 2016; 26:85-96. [PMID: 27918210 DOI: 10.1080/13543784.2017.1269171] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) due to industrial, military, and recreational noise exposure is a major, but also potentially preventable cause of acquired hearing loss. For the United States it is estimated that 26 million people (15% of the population) between the ages of 20 and 69 have a high-frequency NIHL at a detriment to the quality of life of the affected individuals and great economic cost to society. Areas covered: This review outlines the pathology and pathophysiology of hearing loss as seen in humans and animal models. Results from molecular studies are presented that have provided the basis for therapeutic strategies successfully applied to animals. Several compounds emerging from these studies (mostly antioxidants) are now being tested in field trials. Expert opinion: Although no clinically applicable intervention has been approved yet, recent trials are encouraging. In order to maximize protective therapies, future work needs to apply stringent criteria for noise exposure and outcome parameters. Attention needs to be paid not only to permanent NIHL due to death of sensory cells but also to temporary effects that may show delayed consequences. Existing results combined with the search for efficacious new therapies should establish a viable treatment within a decade.
Collapse
Affiliation(s)
- Su-Hua Sha
- a Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Jochen Schacht
- b Kresge Hearing Research Institute , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
80
|
Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY. Cellular mechanisms of noise-induced hearing loss. Hear Res 2016; 349:129-137. [PMID: 27916698 PMCID: PMC6750278 DOI: 10.1016/j.heares.2016.11.013] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Elizabeth M Keithley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Gary D Housley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States.
| | - Ann C-Y Wong
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| |
Collapse
|
81
|
Nguyen K, Kempfle JS, Jung DH, McKenna CE. Recent advances in therapeutics and drug delivery for the treatment of inner ear diseases: a patent review (2011-2015). Expert Opin Ther Pat 2016; 27:191-202. [PMID: 27855527 DOI: 10.1080/13543776.2017.1252751] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kim Nguyen
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Judith S. Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - David H. Jung
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
82
|
Differential effects of pannexins on noise-induced hearing loss. Biochem J 2016; 473:4665-4680. [PMID: 27784763 DOI: 10.1042/bcj20160668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Hearing loss, including noise-induced hearing loss, is highly prevalent and severely hinders an individual's quality of life, yet many of the mechanisms that cause hearing loss are unknown. The pannexin (Panx) channel proteins, Panx1 and Panx3, are regionally expressed in many cell types along the auditory pathway, and mice lacking Panx1 in specific cells of the inner ear exhibit hearing loss, suggesting a vital role for Panxs in hearing. We proposed that Panx1 and/or Panx3 null mice would exhibit severe hearing loss and increased susceptibility to noise-induced hearing loss. Using the auditory brainstem response, we surprisingly found that Panx1-/- and Panx3-/- mice did not harbor hearing or cochlear nerve deficits. Furthermore, while Panx1-/- mice displayed no protection against loud noise-induced hearing loss, Panx3-/- mice exhibited enhanced 16- and 24-kHz hearing recovery 7 days after a loud noise exposure (NE; 12 kHz tone, 115 dB sound pressure level, 1 h). Interestingly, Cx26, Cx30, Cx43, and Panx2 were up-regulated in Panx3-/- mice compared with wild-type and/or Panx1-/- mice, and assessment of the auditory tract revealed morphological changes in the middle ear bones of Panx3-/- mice. It is unclear if these changes alone are sufficient to provide protection against loud noise-induced hearing loss. Contrary to what we expected, these data suggest that Panx1 and Panx3 are not essential for baseline hearing in mice tested, but the therapeutic targeting of Panx3 may prove protective against mid-high-frequency hearing loss caused by loud NE.
Collapse
|
83
|
Micro-optical coherence tomography of the mammalian cochlea. Sci Rep 2016; 6:33288. [PMID: 27633610 PMCID: PMC5025881 DOI: 10.1038/srep33288] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022] Open
Abstract
The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research.
Collapse
|
84
|
Jahani L, Mehrparvar AH, Esmailidehaj M, Rezvani ME, Moghbelolhossein B, Razmjooei Z. The Effect of Atorvastatin on Preventing Noise-Induced Hearing Loss: An Experimental Study. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2016; 7:15-21. [PMID: 26772594 PMCID: PMC6816516 DOI: 10.15171/ijoem.2016.627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/29/2015] [Indexed: 12/17/2022]
Abstract
Background: Noise-induced hearing loss (NIHL) is a common, irreversible occupational disease. Statins have recently been proposed to prevent NIHL. Objective: To assess the effect of atorvastatin for the prevention of NIHL in rats. Methods: In this experimental study, forty 2–3-month-old Wistar male rats were divided into 5 groups of 8 animals. 3 groups of rats received atorvastatin at doses of 5, 25, and 50 mg/kg daily for 14 days. The 4th group of rats received normal saline; another group was the control group. After 2 weeks of treatment, the rats were exposed to broad-band noise (125– 20 000 Hz) at 110 dB-SPL intensity for 2 hours. Response amplitude of all ears at 5 frequencies was assessed by distortion product otoacoustic emissions (DP-OAE) at baseline, 2 hours, and 2 weeks after the exposure. Results: Response amplitude was significantly decreased at all frequencies immediately after exposure to noise in all studied groups. The amplitude increased after 72 hours to a level higher than temporary threshold shift (TTS); this change was only significant in the group received 5 mg/kg atorvastatin. Conclusion: Low dose atorvastatin (5 mg/kg) used before exposure to noise can probably prevent NIHL in rats. This effect was not observed with higher doses of the drug.
Collapse
Affiliation(s)
- L Jahani
- Department of Occupational Medicine, Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | | | | | | | | |
Collapse
|
85
|
Krauss P, Tziridis K, Buerbank S, Schilling A, Schulze H. Therapeutic Value of Ginkgo biloba Extract EGb 761® in an Animal Model (Meriones unguiculatus) for Noise Trauma Induced Hearing Loss and Tinnitus. PLoS One 2016; 11:e0157574. [PMID: 27315063 PMCID: PMC4912078 DOI: 10.1371/journal.pone.0157574] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Noise induced hearing loss (NIHL) is a common disease in modern societies and may lead to maladaptations within the auditory system that finally result in subjective tinnitus. Available therapies may only alleviate the symptoms rather than restore normal hearing. In a previous study we demonstrated that the prophylactic application of Ginkgo biloba extract EGb 761® significantly reduces NIHL and tinnitus development in our Mongolian gerbil (Meriones unguiculatus) animal model. Here, we tested whether the application of EGb 761® has beneficial effects after the formation of permanent NIHL and tinnitus. To this end we monitored the therapeutic effects of EGb 761® on noise trauma-induced changes in signal processing within the auditory system of our animal model by behavioral (acoustic startle response, ASR) and electrophysiological approaches (auditory brainstem responses, ABR). We found that–in contrast to vehicle–three weeks of daily oral EGb 761® treatment (100 mg/kg body weight) led to a restoration of hearing thresholds back to pre-trauma conditions. In addition, all 9 animals that displayed behavioral signs of subjective tinnitus showed improvement, with 7 of them showing complete relief of tinnitus symptoms during the time of EGb 761® treatment. After discontinuation of EGb 761® treatment, tinnitus related behavior reappeared in all but one of these animals while auditory thresholds remained restored. A detailed analysis of ABR waves revealed that EGb 761® treatment did not simply change auditory processing back to pre-trauma conditions, but led to subtle changes of ABR wave amplitude and latency at different levels of the auditory pathway, with an overall increase of response to low stimulus intensities and a decrease at high intensities. The functional relevance of these changes may be the observed improvement of hearing thresholds while at the same time suppression of responses to high stimulus intensities may point to a global inhibitory mechanism that counteracts tinnitus.
Collapse
Affiliation(s)
- Patrick Krauss
- Experimental Otolaryngology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 1, 91054, Erlangen, Germany
| | - Konstantin Tziridis
- Experimental Otolaryngology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 1, 91054, Erlangen, Germany
| | - Stefanie Buerbank
- Experimental Otolaryngology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 1, 91054, Erlangen, Germany
| | - Achim Schilling
- Experimental Otolaryngology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 1, 91054, Erlangen, Germany
| | - Holger Schulze
- Experimental Otolaryngology, Friedrich-Alexander Universität Erlangen-Nürnberg, Waldstrasse 1, 91054, Erlangen, Germany
- * E-mail:
| |
Collapse
|
86
|
Ye R, Liu J, Jia Z, Wang H, Wang Y, Sun W, Wu X, Zhao Z, Niu B, Li X, Dai G, Li J. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs. Med Sci Monit 2016; 22:2006-12. [PMID: 27292522 PMCID: PMC4913814 DOI: 10.12659/msm.898150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. Material/Methods Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen’s cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. Results ATP (0.1–10 μM) reduced the potassium current (IK+) in the majority of the recorded Hensen’s cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 μM to 10 mM), which was reversibly blocked by 100 μM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. Conclusions Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL).
Collapse
Affiliation(s)
- Rui Ye
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Jun Liu
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Zhiying Jia
- , Xinjiang Cancer Hospital, Urumqi, Xinjiang, China (mainland)
| | - Hongyang Wang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - YongAn Wang
- , Academy of Military Medical Sciences, Beijing, China (mainland)
| | - Wei Sun
- Center for Hearing & Deafness, State University of New York (SUNY) at Buffalo, Buffalo, NY, American Samoa
| | - Xuan Wu
- Department of Radiation Oncology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, China (mainland)
| | - Zhifei Zhao
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Baolong Niu
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Xingqi Li
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Guanghai Dai
- Department of Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Jianxiong Li
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
87
|
LI YUNLONG, ZHU BAOSHENG. Genotypes and phenotypes of a family with a deaf child carrying combined heterozygous mutations in SLC26A4 and GJB3 genes. Mol Med Rep 2016; 14:319-24. [DOI: 10.3892/mmr.2016.5280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/29/2016] [Indexed: 11/06/2022] Open
|
88
|
Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss. J Assoc Res Otolaryngol 2016; 17:289-302. [PMID: 27095478 DOI: 10.1007/s10162-016-0567-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/27/2022] Open
Abstract
Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL.
Collapse
|
89
|
Herr DR, Reolo MJY, Peh YX, Wang W, Lee CW, Rivera R, Paterson IC, Chun J. Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: implications for otoprotective therapy. Sci Rep 2016; 6:24541. [PMID: 27080739 PMCID: PMC4832229 DOI: 10.1038/srep24541] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Ototoxic drugs, such as platinum-based chemotherapeutics, often lead to permanent hearing loss through apoptosis of neuroepithelial hair cells and afferent neurons of the cochlea. There is no approved therapy for preventing or reversing this process. Our previous studies identified a G protein-coupled receptor (GPCR), S1P2, as a potential mediator of otoprotection. We therefore sought to identify a pharmacological approach to prevent cochlear degeneration via activation of S1P2. The cochleae of S1pr2−/− knockout mice were evaluated for accumulation of reactive oxygen species (ROS) with a nitro blue tetrazolium (NBT) assay. This showed that loss of S1P2 results in accumulation of ROS that precedes progressive cochlear degeneration as previously reported. These findings were supported by in vitro cell-based assays to evaluate cell viability, induction of apoptosis, and accumulation of ROS following activation of S1P2 in the presence of cisplatin. We show for the first time, that activation of S1P2 with a selective receptor agonist increases cell viability and reduces cisplatin-mediated cell death by reducing ROS. Cumulatively, these results suggest that S1P2 may serve as a therapeutic target for attenuating cisplatin-mediated ototoxicity.
Collapse
Affiliation(s)
- Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.,Department of Biology, San Diego State University, San Diego, CA, USA
| | - Marie J Y Reolo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Yee Xin Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Chang-Wook Lee
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Rich Rivera
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
90
|
Li Q, Qiao F, Yu L. Impacts of pavement types on in-vehicle noise and human health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:87-96. [PMID: 26569334 DOI: 10.1080/10962247.2015.1119217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Noise is a major source of pollution that can affect the human physiology and living environment. According to the World Health Organization (WHO), an exposure for longer than 24 hours to noise levels above 70 dB(A) may damage human hearing sensitivity, induce adverse health effects, and cause anxiety to residents nearby roadways. Pavement type with different roughness is one of the associated sources that may contribute to in-vehicle noise. Most previous studies have focused on the impact of pavement type on the surrounding acoustic environment of roadways, and given little attention to in-vehicle noise levels. This paper explores the impacts of different pavement types on in-vehicle noise levels and the associated adverse health effects. An old concrete pavement and a pavement with a thin asphalt overlay were chosen as the test beds. The in-vehicle noise caused by the asphalt and concrete pavements were measured, as well as the drivers' corresponding heart rates and reported riding comfort. Results show that the overall in-vehicle sound levels are higher than 70 dB(A) even at midnight. The newly overlaid asphalt pavement reduced in-vehicle noise at a driving speed of 96.5 km/hr by approximately 6 dB(A). Further, on the concrete pavement with higher roughness, driver heart rates were significantly higher than on the asphalt pavement. Drivers reported feeling more comfortable when driving on asphalt than on concrete pavement. Further tests on more drivers with different demographic characteristics, along highways with complicated configurations, and an examination of more factors contributing to in-vehicle noise are recommended, in addition to measuring additional physical symptoms of both drivers and passengers. IMPLICATIONS While there have been many previous noise-related studies, few have addressed in-vehicle noise. Most studies have focused on the noise that residents have complained about, such as neighborhood traffic noise. As yet, there have been no complaints by drivers that their own in-vehicle noise is too loud. Nevertheless, it is a fact that in-vehicle noise can also result in adverse health effects if it exceeds 85 dB(A). Results of this study show that in-vehicle noise was strongly associated with pavement type and roughness; also, driver heart rate patterns presented statistically significant differences on different types of pavement with different roughness.
Collapse
Affiliation(s)
- Qing Li
- a Innovative Transportation Research Institute, Texas Southern University , Houston , Texas , USA
| | - Fengxiang Qiao
- a Innovative Transportation Research Institute, Texas Southern University , Houston , Texas , USA
| | - Lei Yu
- a Innovative Transportation Research Institute, Texas Southern University , Houston , Texas , USA
| |
Collapse
|
91
|
Yang CH, Schrepfer T, Schacht J. Age-related hearing impairment and the triad of acquired hearing loss. Front Cell Neurosci 2015; 9:276. [PMID: 26283913 PMCID: PMC4515558 DOI: 10.3389/fncel.2015.00276] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 07/06/2015] [Indexed: 02/03/2023] Open
Abstract
Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species (ROS) and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI) in human and animal models and address selected aspects of the commonality (or lack thereof) of cellular responses in ARHI to drugs and noise.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA ; Division of Otology, Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine Kaohsiung, Taiwan
| | - Thomas Schrepfer
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
| | - Jochen Schacht
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
92
|
Repeated Moderate Noise Exposure in the Rat--an Early Adulthood Noise Exposure Model. J Assoc Res Otolaryngol 2015; 16:763-72. [PMID: 26162417 PMCID: PMC4636596 DOI: 10.1007/s10162-015-0537-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2015] [Indexed: 01/12/2023] Open
Abstract
In this study, we investigated the effects of varying intensity levels of repeated moderate noise exposures on hearing. The aim was to define an appropriate intensity level that could be repeated several times without giving rise to a permanent hearing loss, and thus establish a model for early adulthood moderate noise exposure in rats. Female Sprague-Dawley rats were exposed to broadband noise for 90 min, with a 50 % duty cycle at levels of 101, 104, 107, or 110 dB sound pressure level (SPL), and compared to a control group of non-exposed animals. Exposure was repeated every 6 weeks for a maximum of six repetitions or until a permanent hearing loss was observed. Hearing was assessed by the auditory brainstem response (ABR). Rats exposed to the higher intensities of 107 and 110 dB SPL showed permanent threshold shifts following the first exposure, while rats exposed to 101 and 104 dB SPL could be exposed at least six times without a sustained change in hearing thresholds. ABR amplitudes decreased over time for all groups, including the non-exposed control group, while the latencies were unaffected. A possible change in noise susceptibility following the repeated moderate noise exposures was tested by subjecting the animals to high-intensity noise exposure of 110 dB for 4 h. Rats previously exposed repeatedly to 104 dB SPL were slightly more resistant to high-intensity noise exposure than non-exposed rats or rats exposed to 101 dB SPL. Repeated moderate exposure to 104 dB SPL broadband noise is a viable model for early adulthood noise exposure in rats and may be useful for the study of noise exposure on age-related hearing loss.
Collapse
|
93
|
Reduced noise susceptibility in littermate offspring from heterozygous animals of the German waltzing guinea pig. Neuroreport 2015; 26:593-7. [PMID: 26053702 DOI: 10.1097/wnr.0000000000000394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The German waltzing guinea pig is a spontaneously mutated strain with severe auditory and vestibular impairment caused by a so far unknown genetic mutation. The animals are born deaf and show a circling behavior. The heterozygote animals of this guinea pig strain have functionally normal hearing and balance. However, these animals have, in earlier studies, shown an increased resistance to noise compared with normal wild-type guinea pigs. In the present study, we explored the functional hearing with auditory brainstem response thresholds before and at different time points after noise exposure. Symptom-free littermates from heterozygote couples of the German waltzing guinea pigs were exclusively used for the study, which, after the hearing test, were sent back for breeding to confirm their genotype (i.e. heterozygote or normal). The aim of this paper was to ascertain that the previously shown reduced susceptibility to noise trauma in the heterozygote animals of the German waltzing guinea pig was also evident when littermates were used as control animals. The findings are important for further analysis of the heterozygote animals of this strain and for future investigations of the underlying mechanisms behind the diverse susceptibility to exposures of loud sound.
Collapse
|
94
|
Duarte ASM, Ng RTY, de Carvalho GM, Guimarães AC, Pinheiro LAM, da Costa EA, Gusmão RJ. High levels of sound pressure: acoustic reflex thresholds and auditory complaints of workers with noise exposure. Braz J Otorhinolaryngol 2015; 81:374-83. [PMID: 26120097 PMCID: PMC9442675 DOI: 10.1016/j.bjorl.2014.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/22/2014] [Indexed: 11/02/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
|
95
|
Yuan H, Wang X, Hill K, Chen J, Lemasters J, Yang SM, Sha SH. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress. Antioxid Redox Signal 2015; 22:1308-24. [PMID: 25694169 PMCID: PMC4410759 DOI: 10.1089/ars.2014.6004] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Reactive oxygen species play a dual role in mediating both cell stress and defense pathways. Here, we used pharmacological manipulations and siRNA silencing to investigate the relationship between autophagy and oxidative stress under conditions of noise-induced temporary, permanent, and severe permanent auditory threshold shifts (temporary threshold shift [TTS], permanent threshold shift [PTS], and severe PTS [sPTS], respectively) in adult CBA/J mice. RESULTS Levels of oxidative stress markers (4-hydroxynonenal [4-HNE] and 3-nitrotyrosine [3-NT]) increased in outer hair cells (OHCs) in a noise-dose-dependent manner, whereas levels of the autophagy marker microtubule-associated protein light chain 3 B (LC3B) were sharply elevated after TTS but rose only slightly in response to PTS and were unaltered by sPTS noise. Furthermore, green fluorescent protein (GFP) intensity increased in GFP-LC3 mice after TTS-noise exposure. Treatment with rapamycin, an autophagy activator, significantly increased LC3B expression, while diminishing 4-HNE and 3-NT levels, reducing noise-induced hair cell loss, and, subsequently, noise-induced hearing loss (NIHL). In contrast, treatment with either the autophagy inhibitor 3-methyladenine (3MA) or LC3B siRNA reduced LC3B expression, increased 3-NT and 4-HNE levels, and exacerbated TTS to PTS. INNOVATION This study demonstrates a relationship between oxidative stress and autophagy in OHCs and reveals that autophagy is an intrinsic cellular process that protects against NIHL by attenuating oxidative stress. CONCLUSIONS The results suggest that the lower levels of oxidative stress incurred by TTS-noise exposure induce autophagy, which promotes OHC survival. However, excessive oxidative stress under sPTS-noise conditions overwhelms the beneficial potential of autophagy in OHCs and leads to OHC death and NIHL.
Collapse
Affiliation(s)
- Hu Yuan
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina , Charleston, South Carolina
| | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Hearing loss is the most common form of sensory impairment in humans and affects more than 40 million people in the United States alone. No drug-based therapy has been approved by the Food and Drug Administration, and treatment mostly relies on devices such as hearing aids and cochlear implants. Over recent years, more than 100 genetic loci have been linked to hearing loss and many of the affected genes have been identified. This understanding of the genetic pathways that regulate auditory function has revealed new targets for pharmacological treatment of the disease. Moreover, approaches that are based on stem cells and gene therapy, which may have the potential to restore or maintain auditory function, are beginning to emerge.
Collapse
Affiliation(s)
- Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, San Diego, California 92037, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center, Vollum Institute, Oregon Health &Science University, 3181 South West Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
97
|
Bagger-Sjöbäck D, Strömbäck K, Hakizimana P, Plue J, Larsson C, Hultcrantz M, Papatziamos G, Smeds H, Danckwardt-Lillieström N, Hellström S, Johansson A, Tideholm B, Fridberger A. A randomised, double blind trial of N-Acetylcysteine for hearing protection during stapes surgery. PLoS One 2015; 10:e0115657. [PMID: 25763866 PMCID: PMC4357436 DOI: 10.1371/journal.pone.0115657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/24/2014] [Indexed: 12/01/2022] Open
Abstract
Background Otosclerosis is a disorder that impairs middle ear function, leading to conductive hearing loss. Surgical treatment results in large improvement of hearing at low sound frequencies, but high-frequency hearing often suffers. A likely reason for this is that inner ear sensory cells are damaged by surgical trauma and loud sounds generated during the operation. Animal studies have shown that antioxidants such as N-Acetylcysteine can protect the inner ear from noise, surgical trauma, and some ototoxic substances, but it is not known if this works in humans. This trial was performed to determine whether antioxidants improve surgical results at high frequencies. Methods We performed a randomized, double-blind and placebo-controlled parallel group clinical trial at three Swedish university clinics. Using block-stratified randomization, 156 adult patients undergoing stapedotomy were assigned to intravenous N-Acetylcysteine (150 mg/kg body weight) or matching placebo (1:1 ratio), starting one hour before surgery. The primary outcome was the hearing threshold at 6 and 8 kHz; secondary outcomes included the severity of tinnitus and vertigo. Findings One year after surgery, high-frequency hearing had improved 2.7 ± 3.8 dB in the placebo group (67 patients analysed) and 2.4 ± 3.7 dB in the treated group (72 patients; means ± 95% confidence interval, p = 0.54; linear mixed model). Surgery improved tinnitus, but there was no significant intergroup difference. Post-operative balance disturbance was common but improved during the first year, without significant difference between groups. Four patients receiving N-Acetylcysteine experienced mild side effects such as nausea and vomiting. Conclusions N-Acetylcysteine has no effect on hearing thresholds, tinnitus, or balance disturbance after stapedotomy. Trial Registration ClinicalTrials.gov NCT00525551
Collapse
Affiliation(s)
- Dan Bagger-Sjöbäck
- Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Otolaryngology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Karin Strömbäck
- Department of Otolaryngology, Academic Hospital, SE-751 85 Uppsala, Sweden
| | - Pierre Hakizimana
- Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Jan Plue
- Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Christina Larsson
- Department of Otolaryngology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Malou Hultcrantz
- Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Otolaryngology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Georgios Papatziamos
- Department of Otolaryngology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Henrik Smeds
- Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Otolaryngology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | - Sten Hellström
- Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Audiology and Neurotology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ann Johansson
- Department of Audiology and Neurotology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Bo Tideholm
- Department of Otolaryngology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anders Fridberger
- Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
- * E-mail:
| |
Collapse
|
98
|
Mathias Duarte AS, Guimarães AC, de Carvalho GM, Pinheiro LAM, Yen Ng RT, Sampaio MH, da Costa EA, Gusmão RJ. Audiogram comparison of workers from five professional categories. BIOMED RESEARCH INTERNATIONAL 2015; 2015:201494. [PMID: 25705651 PMCID: PMC4332458 DOI: 10.1155/2015/201494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Noise is a major cause of health disorders in workers and has unique importance in the auditory analysis of people exposed to it. The purpose of this study is to evaluate the arithmetic mean of the auditory thresholds at frequencies of 3, 4, and 6 kHz of workers from five professional categories exposed to occupational noise. METHODS We propose a retrospective cross-sectional cohort study to analyze 2.140 audiograms from seven companies having five sectors of activity: one footwear company, one beverage company, two ceramics companies, two metallurgical companies, and two transport companies. RESULTS When we compared two categories, we noticed a significant difference only for cargo carriers in comparison to the remaining categories. In all activity sectors, the left ear presented the worst values, except for the footwear professionals (P > 0.05). We observed an association between the noise exposure time and the reduction of audiometric values for both ears. Significant differences existed for cargo carriers in relation to other groups. This evidence may be attributed to different forms of exposure. A slow and progressive deterioration appeared as the exposure time increased.
Collapse
Affiliation(s)
- Alexandre Scalli Mathias Duarte
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| | - Alexandre Caixeta Guimarães
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| | - Guilherme Machado de Carvalho
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| | - Laíza Araújo Mohana Pinheiro
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| | - Ronny Tah Yen Ng
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| | - Marcelo Hamilton Sampaio
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| | - Everardo Andrade da Costa
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| | - Reinaldo Jordão Gusmão
- Occupational-Otolaryngological Medical Service, Department of Otolaryngology, Head and Neck Surgery, Rua Vital Brasil 251, School of Medical Sciences (FCM), University of Campinas (Unicamp), 13083-888 Campinas, SP, Brazil
| |
Collapse
|
99
|
Adenosine amine congener as a cochlear rescue agent. BIOMED RESEARCH INTERNATIONAL 2014; 2014:841489. [PMID: 25243188 PMCID: PMC4160640 DOI: 10.1155/2014/841489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/29/2014] [Indexed: 12/20/2022]
Abstract
We have previously shown that adenosine amine congener (ADAC), a selective A1 adenosine receptor agonist, can ameliorate noise- and cisplatin-induced cochlear injury. Here we demonstrate the dose-dependent rescue effects of ADAC on noise-induced cochlear injury in a rat model and establish the time window for treatment. Methods. ADAC (25–300 μg/kg) was administered intraperitoneally to Wistar rats (8–10 weeks old) at intervals (6–72 hours) after exposure to traumatic noise (8–16 kHz, 110 dB sound pressure level, 2 hours). Hearing sensitivity was assessed using auditory brainstem responses (ABR) before and 12 days after noise exposure. Pharmacokinetic studies investigated ADAC concentrations in plasma after systemic (intravenous) administration. Results. ADAC was most effective in the first 24 hours after noise exposure at doses >50 μg/kg, providing up to 21 dB protection (averaged across 8–28 kHz). Pharmacokinetic studies demonstrated a short (5 min) half-life of ADAC in plasma after intravenous administration without detection of degradation products. Conclusion. Our data show that ADAC mitigates noise-induced hearing loss in a dose- and time-dependent manner, but further studies are required to establish its translation as a clinical otological treatment.
Collapse
|
100
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|