51
|
Li C, Zhao X, Deng C, Wang C, Wei N, Cui J. Pegylated liposomal mitoxantrone is more therapeutically active than mitoxantrone in L1210 ascitic tumor and exhibits dose-dependent activity saturation effect. Int J Pharm 2014; 460:165-72. [DOI: 10.1016/j.ijpharm.2013.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
|
52
|
Wartlick F, Bopp A, Henninger C, Fritz G. DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3093-3103. [DOI: 10.1016/j.bbamcr.2013.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023]
|
53
|
Wu CC, Li YC, Wang YR, Li TK, Chan NL. On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res 2013; 41:10630-40. [PMID: 24038465 PMCID: PMC3905874 DOI: 10.1093/nar/gkt828] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II topoisomerases (Top2s) alter DNA topology via the formation of an enzyme-DNA adduct termed cleavage complex, which harbors a transient double-strand break in one DNA to allow the passage of another. Agents targeting human Top2s are clinically active anticancer drugs whose trapping of Top2-mediated DNA breakage effectively induces genome fragmentation and cell death. To understand the structural basis of this drug action, we previously determined the structure of human Top2 β-isoform forming a cleavage complex with the drug etoposide and DNA, and described the insertion of drug into DNA cleavage site and drug-induced decoupling of catalytic groups. By developing a post-crystallization drug replacement procedure that simplifies structural characterization of drug-stabilized cleavage complexes, we have extended the analysis toward other structurally distinct drugs, m-AMSA and mitoxantrone. Besides the expected drug intercalation, a switch in ribose puckering in the 3'-nucleotide of the cleavage site was robustly observed in the new structures, representing a new mechanism for trapping the Top2 cleavage complex. Analysis of drug-binding modes and the conformational landscapes of the drug-binding pockets provide rationalization of the drugs' structural-activity relationships and explain why Top2 mutants exhibit differential effects toward each drug. Drug design guidelines were proposed to facilitate the development of isoform-specific Top2-targeting anticancer agents.
Collapse
Affiliation(s)
- Chyuan-Chuan Wu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan and Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Ching Li
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan and Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Ying-Ren Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan and Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Tsai-Kun Li
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan and Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan,Correspondence may also be addressed to Tsai-Kun Li. Tel: +886 2 22123456 (ext 88287/88294); Fax: +886 2 23915293;
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan and Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan,*To whom correspondence should be addressed. Tel: +886 2 23562214; Fax: +886 2 23915295;
| |
Collapse
|
54
|
Johnson TS, Terrell CE, Millen SH, Katz JD, Hildeman DA, Jordan MB. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. THE JOURNAL OF IMMUNOLOGY 2013; 192:84-91. [PMID: 24259502 DOI: 10.4049/jimmunol.1302282] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is an inborn disorder of immune regulation caused by mutations affecting perforin-dependent cytotoxicity. Defects in this pathway impair negative feedback between cytotoxic lymphocytes and APCs, leading to prolonged and pathologic activation of T cells. Etoposide, a widely used chemotherapeutic drug that inhibits topoisomerase II, is the mainstay of treatment for HLH, although its therapeutic mechanism remains unknown. We used a murine model of HLH, involving lymphocytic choriomeningitis virus infection of perforin-deficient mice, to study the activity and mechanism of etoposide for treating HLH and found that it substantially alleviated all symptoms of murine HLH and allowed prolonged survival. This therapeutic effect was relatively unique among chemotherapeutic agents tested, suggesting distinctive effects on the immune response. We found that the therapeutic mechanism of etoposide in this model system involved potent deletion of activated T cells and efficient suppression of inflammatory cytokine production. This effect was remarkably selective; etoposide did not exert a direct anti-inflammatory effect on macrophages or dendritic cells, and it did not cause deletion of quiescent naive or memory T cells. Finally, etoposide's immunomodulatory effects were similar in wild-type and perforin-deficient animals. Thus, etoposide treats HLH by selectively eliminating pathologic, activated T cells and may have usefulness as a novel immune modulator in a broad array of immunopathologic disorders.
Collapse
Affiliation(s)
- Theodore S Johnson
- Cancer Immunology, Inflammation and Tolerance Program, Division of Pediatric Hematology/Oncology, Department of Pediatrics, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | | | | | | | | | | |
Collapse
|
55
|
Rossato LG, Costa VM, Dallegrave E, Arbo M, Dinis-Oliveira RJ, Santos-Silva A, Duarte JA, de Lourdes Bastos M, Palmeira C, Remião F. Cumulative mitoxantrone-induced haematological and hepatic adverse effects in a subchronic in vivo study. Basic Clin Pharmacol Toxicol 2013; 114:254-62. [PMID: 24119282 DOI: 10.1111/bcpt.12143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/10/2013] [Indexed: 01/16/2023]
Abstract
Mitoxantrone (MTX) is an antineoplastic agent that can induce hepato- and haematotoxicity. This work aimed to investigate the occurrence of cumulative early and late MTX-induced hepatic and haematological disturbances in an vivo model. A control group and two groups treated with three cycles of 2.5 mg/kg MTX at days 0, 10 and 20 were formed. One of the treated groups suffered euthanasia on day 22 (MTX22) to evaluate early MTX toxic effects, while the other suffered euthanasia on day 48 (MTX48), to allow the evaluation of MTX late effects. An early immunosuppression with a drop in the IgG levels was observed, causing a slight decrease in the plasma total protein content. The early bone marrow depression was followed by signs of recovery in MTX48. The genotoxic potential of MTX was demonstrated by the presence of several micronuclei in MTX22 leucocytes. Increases in plasma iron and cholesterol levels in the MTX22 rats were observed, while in both groups increases in the unconjugated bilirubin, C4 complement, and decreases in the triglycerides, alanine aminotransferase, alkaline phosphatase and transferrin were found in plasma samples. On MTX 48, the liver histology showed more hepatotoxic signs, the hepatic levels of reduced and oxidized glutathione were increased, and ATP hepatic levels were decreased. However, the hepatic total protein levels were decreased only in the livers of MTX22 group. Results demonstrated the MTX genotoxic effects, haemato- and direct hepatotoxicity. While the haematological toxicity is ameliorated with time, the same was not observed in the hepatic injury.
Collapse
Affiliation(s)
- Luciana G Rossato
- REQUIMTE, Toxicology Laboratory, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Costa VM, Carvalho F, Duarte JA, Bastos MDL, Remião F. The Heart As a Target for Xenobiotic Toxicity: The Cardiac Susceptibility to Oxidative Stress. Chem Res Toxicol 2013; 26:1285-311. [PMID: 23902227 DOI: 10.1021/tx400130v] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vera Marisa Costa
- REQUIMTE (Rede de Química e Tecnologia),
Laboratório de Toxicologia, Departamento de Ciências
Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia),
Laboratório de Toxicologia, Departamento de Ciências
Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia),
Laboratório de Toxicologia, Departamento de Ciências
Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- REQUIMTE (Rede de Química e Tecnologia),
Laboratório de Toxicologia, Departamento de Ciências
Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
57
|
Attia SM, Ahmad SF, Harisa GI, Mansour AM, El Sayed ESM, Bakheet SA. Wogonin attenuates etoposide-induced oxidative DNA damage and apoptosis via suppression of oxidative DNA stress and modulation of OGG1 expression. Food Chem Toxicol 2013; 59:724-30. [PMID: 23872129 DOI: 10.1016/j.fct.2013.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
Abstract
Damage to DNA can lead to many different acute and chronic pathophysiological conditions, ranging from cancer to endothelial damage. The current study has been initiated to determine whether the flavonoid wogonin can attenuate etoposide-induced oxidative DNA damage and apoptosis in mouse bone marrow cells. We found that oral administration of wogonin before etoposide injection significantly attenuates etoposide-induced oxidative DNA damage and apoptosis in a dose dependent manner. Etoposide induced a significant down-regulation of mRNA expression of the OGG1 repair gene and marked biochemical alterations characteristic of oxidative DNA stress, including increased 8-OHdG, enhanced lipid peroxidation and reduction in reduced glutathione. Prior administration of wogonin ahead of etoposide challenge restored these altered parameters. Importantly, wogonin had no antagonizing effect on etoposide-induce topoisomerase-II inhibition. Conclusively, our study indicates that wogonin has a protective role in the abatement of etoposide-induced oxidative DNA damage and apoptosis in the bone marrow cells of mice via suppression of oxidative DNA stress and enhancing DNA repair through modulation of OGG1 repair gene expression. Therefore, wogonin can be a promising chemoprotective agent and might be useful to avert secondary leukemia and other drug-related cancers in cured cancer patients and medical personnel exposing to the potent carcinogen etoposide.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
58
|
Zhang W, Zheng Y, Hou L. Pharmacogenomic Discovery Delineating the Genetic Basis of Drug Response. CURRENT GENETIC MEDICINE REPORTS 2013; 1:143-149. [PMID: 24015375 DOI: 10.1007/s40142-013-0019-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Personalized medicine has the promise to tailor medical care based on the patient's genetic make-up and clinical variables such as gender, race and exposure to environmental stimuli. Recent progress in pharmacogenetic and pharmacogenomic studies has suggested that drug response to therapeutic treatments is likely a complex trait influenced by a variety of genetic and non-genetic factors. Identifying molecular targets (e.g., genetic variants) delineating the genetic basis of drug response could help understand the complex nature of drug response. The last decade has witnessed significant advances in genome-wide profiling technologies for genetic/epigenetic variations and gene expression. As an unbiased, cell-based model for pharmacogenomic discovery, a tremendous resource of whole-genome molecular targets has been accumulated for the HapMap lymphoblastoid cell lines (LCLs) during the past decade. The current progress, particularly in cancer pharmacogenomics, using the LCL model was reviewed to illustrate the potential impact of systems biology approaches on pharmacogenomic discovery.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA ; Institute of Human Genetics, University of Illinois, Chicago, Illinois, USA ; University of Illinois Cancer Center, Chicago, Illinois, USA
| | | | | |
Collapse
|
59
|
Khadka DB, Cho WJ. Topoisomerase inhibitors as anticancer agents: a patent update. Expert Opin Ther Pat 2013; 23:1033-56. [DOI: 10.1517/13543776.2013.790958] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
60
|
Rossato LG, Costa VM, de Pinho PG, Arbo MD, de Freitas V, Vilain L, de Lourdes Bastos M, Palmeira C, Remião F. The metabolic profile of mitoxantrone and its relation with mitoxantrone-induced cardiotoxicity. Arch Toxicol 2013; 87:1809-20. [DOI: 10.1007/s00204-013-1040-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/08/2013] [Indexed: 01/26/2023]
|
61
|
Reagan WJ, York M, Berridge B, Schultze E, Walker D, Pettit S. Comparison of Cardiac Troponin I and T, Including the Evaluation of an Ultrasensitive Assay, as Indicators of Doxorubicin-induced Cardiotoxicity. Toxicol Pathol 2013; 41:1146-58. [DOI: 10.1177/0192623313482056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac troponin (cTn) has been utilized to assess acute myocardial injury, but the cTn response in active/ongoing chronic injury is not well documented. The purpose of this study was to characterize the cardiac troponin I (cTnI), cardiac troponin T (cTnT), high-sensitivity cTnI, hematology, and clinical chemistry responses in rats treated with doxorubicin. Rats treated with 1, 2, or 3 mg/kg/week (wk) of doxorubicin for 2, 4, or 6 wks were sacrificed after 0, 2, or 4 wks of recovery and compared to untreated controls and animals treated with doxorubicin/dexrazoxane (50 mg/kg/wk) or etoposide (1 and 3 mg/kg/wk). The incidence and mean magnitude of cTn response increased with increasing dose and/or duration of doxorubicin treatment. Conversely, dexrazoxane/doxorubicin was partially protective for cardiotoxicity, and minimal cardiotoxicity occurred with etoposide treatment. Both cTnI and cTnT effectively identified doxorubicin-induced injury as indicated by vacuolation of cardiomyocytes of the atria/ventricles. The association between the cTn responses and histological changes was greater at the higher total exposures, but the magnitude of cTn response did not match closely with histologic grade. The high-sensitivity cTnI assay was also effective in identifying cardiac injury. Alterations occurred in the hematology and clinical chemistry parameters and reflected both dose and duration of doxorubicin treatment.
Collapse
Affiliation(s)
| | | | - Brian Berridge
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | - Eric Schultze
- Department of Pathology, Lilly Research Laboratories, Indianapolis , Indiana, USA
| | - Dana Walker
- Global Pharmacovigilance and Epidemiology, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, D.C., USA
| |
Collapse
|
62
|
Oral treatment with etoposide in small cell lung cancer - dilemmas and solutions. Radiol Oncol 2013; 47:1-13. [PMID: 23450046 PMCID: PMC3573828 DOI: 10.2478/raon-2013-0008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
Background Etoposide is a chemotherapeutic agent, widely used for the treatment of various malignancies, including small cell lung cancer (SCLC), an aggressive disease with poor prognosis. Oral etoposide administration exhibits advantages for the quality of life of the patient as well as economic benefits. However, widespread use of oral etoposide is limited by incomplete and variable bioavailability. Variability in bioavailability was observed both within and between patients. This suggests that some patients may experience suboptimal tumor cytotoxicity, whereas other patients may be at risk for excess toxicity. Conclusions The article highlights dilemmas as well as solutions regarding oral treatment with etoposide by presenting and analyzing relevant literature data. Numerous studies have shown that bioavailability of etoposide is influenced by genetic, physiological and environmental factors. Several strategies were explored to improve bioavailability and to reduce pharmacokinetic variability of oral etoposide, including desired and undesired drug interactions (e.g. with ketoconazole), development of suitable drug delivery systems, use of more water-soluble prodrug of etoposide, and influence on gastric emptying. In addition to genotype-based dose administration, etoposide is suitable for pharmacokinetically guided dosing, which enables dose adjustments in individual patient. Further, it is established that oral and intravenous schedules of etoposide in SCLC patients do not result in significant differences in treatment outcome, while results of toxicity are inconclusive. To conclude, the main message of the article is that better prediction of the pharmacokinetics of oral etoposide may encourage its wider use in routine clinical practice.
Collapse
|
63
|
Bruserud O, Reikvam H, Kittang AO, Ahmed AB, Tvedt THA, Sjo M, Hatfield KJ. High-dose etoposide in allogeneic stem cell transplantation. Cancer Chemother Pharmacol 2012; 70:765-82. [PMID: 23053272 DOI: 10.1007/s00280-012-1990-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/19/2012] [Indexed: 12/19/2022]
Abstract
The anti-leukemic effect of etoposide is well documented. High-dose etoposide 60 mg/kg in combination with fractionated total body irradiation (TBI), usually single fractions of 1.2 Gy up to a total of 13.2 Gy, is used as conditioning therapy for allogeneic stem cell transplantation. Most studies of this conditioning regimen have included patients with acute leukemia receiving bone marrow or mobilized stem cell grafts derived from family or matched unrelated donors, and the treatment is then effective even in patients with high-risk disease. The most common adverse effects are fever with hypotension and rash, nausea and vomiting, sialoadenitis, neuropathy and metabolic acidosis. A small minority of patients develop severe allergic reactions. Etoposide has also been tested in a wide range of combination regimens, but for many of these combinations, relatively few patients are included, and some combinations have only been tested in patients who have undergone autologous transplants. However, the general conclusion is that many of these combinations are effective in patients with high-risk malignancies and the toxicity often seems acceptable. Thus, etoposide-based conditioning therapy should be further evaluated in patients having allogeneic transplants, but randomized trials are needed and the design of future trials should be based on the well-characterized TBI + high-dose etoposide regimen.
Collapse
Affiliation(s)
- Oystein Bruserud
- Department of Medicine, Section of Hematology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
64
|
Huelsenbeck SC, Schorr A, Roos WP, Huelsenbeck J, Henninger C, Kaina B, Fritz G. Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons. J Biol Chem 2012; 287:38590-9. [PMID: 23012366 DOI: 10.1074/jbc.m112.377903] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.
Collapse
Affiliation(s)
- Stefanie C Huelsenbeck
- Institute of Toxicology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
65
|
Lee CH, Hsieh MY, Hsin LW, Chen HC, Lo SC, Fan JR, Chen WR, Chen HW, Chan NL, Li TK. Anthracenedione–methionine conjugates are novel topoisomerase II-targeting anticancer agents with favorable drug resistance profiles. Biochem Pharmacol 2012; 83:1208-16. [DOI: 10.1016/j.bcp.2012.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
|
66
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|
67
|
Evison BJ, Pastuovic M, Bilardi RA, Forrest RA, Pumuye PP, Sleebs BE, Watson KG, Phillips DR, Cutts SM. M2, a novel anthracenedione, elicits a potent DNA damage response that can be subverted through checkpoint kinase inhibition to generate mitotic catastrophe. Biochem Pharmacol 2011; 82:1604-18. [DOI: 10.1016/j.bcp.2011.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 12/01/2022]
|
68
|
Lewinshtein D, Gulati R, Nelson PS, Porter CR. Incidence of second malignancies after external beam radiotherapy for clinical stage I testicular seminoma. BJU Int 2011; 109:706-12. [PMID: 21883828 DOI: 10.1111/j.1464-410x.2011.10424.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES • To determine the use of adjuvant external beam radiotherapy (EBRT) for patients with clinical stage I testicular seminoma in the USA. • To quantify the risk of specific second primary malignancies (SPMs) associated with radiation exposure in these patients. PATIENTS AND METHODS • We used the Surveillance, Epidemiology and End Results database to identify patients diagnosed with clinical stage I testicular seminoma between 1973 and 2000. • We evaluated the use of EBRT in these patients. • We calculated standardized incidence ratios of specific SPMs in these patients. • We stratified the incidence of SPMs based on age at seminoma diagnosis and time to SPM from initial seminoma diagnosis. RESULTS • Adjuvant EBRT use declined from the first decade of the study period to the last decade of the study period (80.6% vs 70.2%). • Overall, there was a 19% increase in SPMs in patients exposed to EBRT (observed/expected, O/E, 1.51; 95% CI, 1.08-1.31) compared to the general population. • Specifically, significantly increased risks were observed for thyroid cancer (O/E, 2.32; 95% CI, 1.16-4.16), pancreatic cancer (O/E, 2.38; 95% CI, 1.43-3.72), non-bladder urothelial malignancies (O/E, 4.27; 95% CI, 1.57-9.29), bladder cancer (O/E, 1.47; 95% CI, 1.01-2.28), all haematological malignancies (O/E, 1.44; 95% CI, 1.08-1.89) and non-Hodgkin's lymphoma (O/E, 1.77; 95% CI, 1.22-2.48). • Patients had a persistently elevated risk of SPMs 15 years from the time of initial clinical stage I testicular seminoma diagnosis (O/E, 1.29; 95% CI, 1.10-1.49). CONCLUSIONS • We confirmed the increased risk of SPMs after EBRT for seminoma, and we identified the specific types of SPMs that develop. • The risk of EBRT-associated SPM persists for years after the initial seminoma diagnosis, and patients should be informed about these long-term risks.
Collapse
Affiliation(s)
- Dan Lewinshtein
- Virginia Mason Medical Center - Urology and Renal Transplantation, Fred Hutchinson Cancer Research Center - Human Biology, Seattle, WA, USA.
| | | | | | | |
Collapse
|
69
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
70
|
Narayanan A, Bailey C, Kashanchi F, Kehn-Hall K. Developments in antivirals against influenza, smallpox and hemorrhagic fever viruses. Expert Opin Investig Drugs 2011; 20:239-54. [PMID: 21235430 PMCID: PMC9476113 DOI: 10.1517/13543784.2011.547852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION the search for effective inhibitors to multiple infectious agents including influenza, smallpox and hemorrhagic fever viruses is an area of active research as many of these agents pose dramatic health and economic challenges to the human population. Many of these infectious agents are not only endemic threats in different parts of the globe, but are also considered to have the potential of being used as bioterrorism agents. AREAS COVERED this review focuses on inhibitors that are currently in use in the research community against specific emerging infectious agents and those that have bioterrorism potential. The paper provides information about the availability of FDA approved drugs, whenever applicable, and insights into the specific aspect of the agent life cycle that is affected by drug treatment, when known. EXPERT OPINION the key message that is conveyed in this review is that a combination of pathogen and host-based inhibitors may have to be used for successful control of viral replication to limit the development of drug resistance.
Collapse
Affiliation(s)
- Aarthi Narayanan
- George Mason University, National Center for Biodefense and Infectious Diseases, Discovery Hall, Room 306, 10900 University Blvd. MS 1H8, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
71
|
Gentry AC, Pitts SL, Jablonsky MJ, Bailly C, Graves DE, Osheroff N. Interactions between the etoposide derivative F14512 and human type II topoisomerases: implications for the C4 spermine moiety in promoting enzyme-mediated DNA cleavage. Biochemistry 2011; 50:3240-9. [PMID: 21413765 DOI: 10.1021/bi200094z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
F14512 is a novel etoposide derivative that contains a spermine in place of the C4 glycosidic moiety. The drug was designed to exploit the polyamine transport system that is upregulated in some cancers. However, a preliminary study suggests that it is also a more efficacious topoisomerase II poison than etoposide [Barret et al. (2008) Cancer Res. 68, 9845-9853]. Therefore, we undertook a more complete study of the actions of F14512 against human type II topoisomerases. As determined by saturation transfer difference (1)H NMR spectroscopy, contacts between F14512 and human topoisomerase IIα in the binary enzyme-drug complex are similar to those of etoposide. Although the spermine of F14512 does not interact with the enzyme, it converts the drug to a DNA binder [Barret et al. (2008)]. Consequently, the influence of the C4 spermine on drug activity was assessed. F14512 is a highly active topoisomerase II poison and stimulates DNA cleavage mediated by human topoisomerase IIα or topoisomerase IIβ. The drug is more potent and efficacious than etoposide or TOP-53, an etoposide derivative that contains a C4 aminoalkyl group that strengthens drug-enzyme binding. Unlike the other drugs, F14512 maintains robust activity in the absence of ATP. The enhanced activity of F14512 correlates with a tighter binding and an increased stability of the ternary topoisomerase II-drug-DNA complex. The spermine-drug core linkage is critical for these attributes. These findings demonstrate the utility of a C4 DNA binding group and provide a rational basis for the development of novel and more active etoposide-based topoisomerase II poisons.
Collapse
Affiliation(s)
- Amanda C Gentry
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | |
Collapse
|
72
|
Bakheet SA, Attia SM, AL-Rasheed NM, Al-harbi MM, Ashour AE, Korashy HM, Abd-Allah AR, Saquib Q, Al-Khedhairy AA, Musarrat J. Salubrious effects of dexrazoxane against teniposide-induced DNA damage and programmed cell death in murine marrow cells. Mutagenesis 2011; 26:533-43. [DOI: 10.1093/mutage/ger013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
73
|
Meyer C, Ansorge N, Siglienti I, Salmen S, Stroet A, Nückel H, Dührsen U, Ritter PR, Schmidt WE, Gold R, Chan A. [Mitoxantrone-related acute leukemia by multiple sclerosis. Case report and practical approach by unclear cytopenia]. DER NERVENARZT 2010; 81:1483-9. [PMID: 21079910 DOI: 10.1007/s00115-010-3041-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitoxantrone is highly efficacious in the treatment of severe multiple sclerosis (MS). Mitoxantrone therapy-related acute leukemia (TRAL) has recently become the focus of interest. METHODS A case report of fatal TRAL following mitoxantrone therapy is presented with a discussion on the differential diagnosis and risk factors. The interdisciplinary development of diagnostic and therapeutic algorithms is presented from a haematological and neurological point of view. RESULTS We describe the case of a 34-year-old MS patient who developed TRAL following mitoxantrone therapy (cumulative dose 45 mg/m(2) body surface). The patient died from endocarditis. TRAL is a rare but potentially fatal complication of mitoxantrone therapy with a wide variation of reported incidence. Thus far, no specific risk factors relating for example to preceding therapy and treatment regimens have been identified. Frequent laboratory controls and early bone marrow aspiration are mandatory for suspected TRAL as the condition is potentially curable. CONCLUSIONS TRAL needs to be considered in the risk-benefit assessment of mitoxantrone therapy, however, the exact incidence and risk factors (e.g. dosage, treatment regimen) are still unclear. The risks are controllable under close surveillance and early diagnosis is important for prognosis. Future investigations need to concentrate on identification of potential risk factors.
Collapse
Affiliation(s)
- C Meyer
- Neurologische Klinik, St.-Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupé P, Robert T, Ripoche H, Lazar V, Harel-Bellan A, Dessen P, Barillot E, Kroemer G. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 2010; 70:1793-803. [PMID: 20145152 DOI: 10.1158/0008-5472.can-09-3112] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Institut National de la Sante et de la Recherche Medicale, U848, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
In vitro to in vivo concordance of a high throughput assay of bone marrow toxicity across a diverse set of drug candidates. Toxicol Lett 2009; 188:98-103. [PMID: 19446241 DOI: 10.1016/j.toxlet.2009.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 02/27/2009] [Accepted: 03/13/2009] [Indexed: 12/31/2022]
Abstract
The development of predictive toxicology assays is necessary to optimize the drug candidate selection process. The colony forming assay (CFA) is used routinely to assess bone marrow toxicity and represents a viable tool for the discovery toxicologist, but the assay is not widely accepted as a standard screening tool due to technical challenges. A higher throughput and standardized version of the assay recently was developed such that the proliferative capacity of a cell lineage is measured indirectly via ATP levels, replacing the cumbersome identification and enumeration of specific colonies. In this study, a high-throughput assay of bone marrow toxicity prediction using the granulocyte, erythrocyte, monocyte, and macrophage (GEMM) progenitor cell lineage was evaluated using a training set of 56 structurally diverse compounds with known in vivo bone marrow effects. In general, compounds identified as toxic in vivo had lower IC(50) values, whereas those identified as non-toxic had higher IC(50) values. Concordance (i.e., predictive accuracy) to in vivo bone marrow toxicity results was 82% when an in vitro toxicity threshold of 20 microM was used. Additional experiments in other hematopoietic lineages were conducted to determine if predictivity of several false positive and negative compounds in the GEMM lineage could be improved; however an increase in sensitivity or specificity was not observed. The high-throughput GEMM assay has good concordance to in vivo bone marrow toxicity results and, with the high-throughput and standardized format, can be incorporated readily into the pharmaceutical toxicological screening paradigm, aiding in the early identification of compounds that eventually may fail due to bone marrow toxicity.
Collapse
|
76
|
de Oliveira FM, Falcão RP, de Figueiredo Pontes LL, Simões BP, Tone LG. Insertion (15;14)(q22;q13q32) in a case of Ph+ ALL. ACTA ACUST UNITED AC 2008; 185:65-7. [PMID: 18656700 DOI: 10.1016/j.cancergencyto.2008.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/07/2008] [Accepted: 05/07/2008] [Indexed: 10/21/2022]
|
77
|
Chromosomal translocations in cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:139-52. [PMID: 18718509 DOI: 10.1016/j.bbcan.2008.07.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 07/15/2008] [Accepted: 07/19/2008] [Indexed: 11/22/2022]
Abstract
Genetic alterations in DNA can lead to cancer when it is present in proto-oncogenes, tumor suppressor genes, DNA repair genes etc. Examples of such alterations include deletions, inversions and chromosomal translocations. Among these rearrangements chromosomal translocations are considered as the primary cause for many cancers including lymphoma, leukemia and some solid tumors. Chromosomal translocations in certain cases can result either in the fusion of genes or in bringing genes close to enhancer or promoter elements, hence leading to their altered expression. Moreover, chromosomal translocations are used as diagnostic markers for cancer and its therapeutics. In the first part of this review, we summarize the well-studied chromosomal translocations in cancer. Although the mechanism of formation of most of these translocations is still unclear, in the second part we discuss the recent advances in this area of research.
Collapse
|
78
|
Huang RS, Duan S, Kistner EO, Bleibel WK, Delaney SM, Fackenthal DL, Das S, Dolan ME. Genetic variants contributing to daunorubicin-induced cytotoxicity. Cancer Res 2008; 68:3161-8. [PMID: 18451141 DOI: 10.1158/0008-5472.can-07-6381] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying heritable genetic variants responsible for chemotherapeutic toxicities has been challenging due in part to its multigenic nature. To date, there is a paucity of data on genetic variants associated with patients experiencing severe myelosuppression or cardiac toxicity following treatment with daunorubicin. We present a genome-wide model using International HapMap cell lines that integrate genotype and gene expression to identify genetic variants that contribute to daunorubicin-induced cytotoxicity. A cell growth inhibition assay was used to measure variations in the cytotoxicity of daunorubicin. Gene expression was determined using the Affymetrix GeneChip Human Exon 1.0ST Array. Using sequential analysis, we evaluated the associations between genotype and cytotoxicity, those significant genotypes with gene expression and correlated gene expression of the identified candidates with cytotoxicity. A total of 26, 9, and 18 genetic variants were identified to contribute to daunorubicin-induced cytotoxicity through their effect on 16, 9, and 36 gene expressions in the combined, Centre d' Etude du Polymorphisme Humain (CEPH), and Yoruban populations, respectively. Using 50 non-HapMap CEPH cell lines, single nucleotide polymorphisms generated through our model predicted 29% of the overall variation in daunorubicin sensitivity and the expression of CYP1B1 was significantly correlated with sensitivity to daunorubicin. In the CEPH validation set, rs120525235 and rs3750518 were significant predictors of transformed daunorubicin IC(50) (P = 0.005 and P = 0.0008, respectively), and rs1551315 trends toward significance (P = 0.089). This unbiased method can be used to elucidate genetic variants contributing to a wide range of cellular phenotypes.
Collapse
Affiliation(s)
- R Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Hsiao CJ, Li TK, Chan YL, Hsin LW, Liao CH, Lee CH, Lyu PC, Guh JH. WRC-213, an l-methionine-conjugated mitoxantrone derivative, displays anticancer activity with reduced cardiotoxicity and drug resistance: Identification of topoisomerase II inhibition and apoptotic machinery in prostate cancers. Biochem Pharmacol 2008; 75:847-56. [DOI: 10.1016/j.bcp.2007.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 12/27/2022]
|
80
|
White SJ, Kasman LM, Kelly MM, Lu P, Spruill L, McDermott PJ, Voelkel-Johnson C. Doxorubicin generates a proapoptotic phenotype by phosphorylation of elongation factor 2. Free Radic Biol Med 2007; 43:1313-21. [PMID: 17893044 PMCID: PMC2084083 DOI: 10.1016/j.freeradbiomed.2007.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/21/2007] [Accepted: 06/23/2007] [Indexed: 11/24/2022]
Abstract
We have previously shown that doxorubicin sensitizes prostate cancer cells to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Sensitization correlated with decreased expression of the antiapoptotic cellular FLICE-like inhibitor protein (cFLIP(S)). The decrease in cFLIP(S) could not be explained by transcriptional regulation or increased degradation, leading us to focus on translational mechanisms. In this study, we found that doxorubicin caused strong and sustained phosphorylation of elongation factor 2 (EF-2), which interferes with protein elongation. Phosphorylation of EF-2 appeared to occur in a kinase-independent manner. Treatment with hydrogen peroxide recapitulated the events observed after doxorubicin treatment. In addition, cells treated with hydrogen peroxide expressed less X-linked inhibitor of apoptosis protein (XIAP) and survivin which, like cFLIP(S), are short-half-life proteins with an antiapoptotic function while expression levels of DR5, caspases-8, -9, -3, and Bax are maintained. The doxorubicin-mediated decrease in cFLIP(S) and XIAP and the TRAIL-induced apoptosis were prevented by pretreatment with an iron chelator, indicating that expression of these proteins was affected by free radical generation upon interaction of iron with doxorubicin. In conclusion, our data suggest that free radicals can affect the phosphorylation of EF-2 resulting in a net loss of short-half-life proteins such as cFLIP(S) and XIAP, leaving a cell more vulnerable to apoptotic stimuli.
Collapse
Affiliation(s)
- Shai J. White
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Laura M. Kasman
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Margaret M. Kelly
- Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Ping Lu
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Laura Spruill
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Paul J. McDermott
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, 173 Ashley Ave Charleston SC 29425, USA
| |
Collapse
|
81
|
Etoposide attenuates zymosan-induced shock in mice. Inflammation 2007; 31:57-64. [PMID: 17924177 DOI: 10.1007/s10753-007-9049-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Zymosan-induced generalized inflammation is a convenient model to study the process of acute and chronic inflammatory processes resulting in multiple organ dysfunction syndrome. Macrophages as a source of many pro-inflammatory mediators are the major players in shock and further organ failure. Etoposide is a cytostatic drug known to reduce macrophages and monocytes in blood circulation. In the present study we have investigated whether the ability of etoposide to diminish macrophage number would have an impact on the course of zymosan-induced shock. The drug injected at a dose of 10 mg/kg 1 day before zymosan, significantly reduced the mortality and decreased the organ toxicity in Balb/c mice. Simultaneously, an inhibition of TNF-alpha production by alveolar and peritoneal macrophages was observed. Etoposide administered into mice with severe combined immunodeficiency (SCID) did not change the survival rate and had a little influence on organ toxicity. Our findings suggest that the beneficial action of etoposide might be attributed to the reduction of macrophages and alteration of their functions. Its effect depends on the presence of functional T and B lymphocytes. The results deserve further investigation of etoposide as a perspective therapeutic tool for inhibiting the excessive inflammatory response and to be helpful for revealing mechanisms of shock development.
Collapse
|
82
|
Duan S, Bleibel WK, Huang RS, Shukla SJ, Wu X, Badner JA, Dolan ME. Mapping genes that contribute to daunorubicin-induced cytotoxicity. Cancer Res 2007; 67:5425-33. [PMID: 17545624 PMCID: PMC2735868 DOI: 10.1158/0008-5472.can-06-4431] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Daunorubicin is an anthracycline antibiotic agent used in the treatment of hematopoietic malignancies. Toxicities associated with this agent include myelosuppression and cardiotoxicity; however, the genes or genetic determinants that contribute to these toxicities are unknown. We present an unbiased genome-wide approach that incorporates heritability, whole-genome linkage analysis, and linkage-directed association to uncover genetic variants contributing to the sensitivity to daunorubicin-induced cytotoxicity. Cell growth inhibition in 324 Centre d' Etude du Polymorphisme Humain lymphoblastoid cell lines (24 pedigrees) was evaluated following treatment with daunorubicin for 72 h. Heritability analysis showed a significant genetic component contributing to the cytotoxic phenotypes (h2 = 0.18-0.63 at 0.0125, 0.025, 0.05, 0.1, 0.2, and 1.0 mumol/L daunorubicin and at the IC50, the dose required to inhibit 50% cell growth). Whole-genome linkage scans at all drug concentrations and IC50 uncovered 11 regions with moderate peak LOD scores (> 1.5), including 4q28.2 to 4q32.3 with a maximum LOD score of 3.18. The quantitative transmission disequilibrium tests were done using 31,312 high-frequency single-nucleotide polymorphisms (SNP) located in the 1 LOD confidence interval of these 11 regions. Thirty genes were identified as significantly associated with daunorubicin-induced cytotoxicity (P < or = 2.0 x 10(-4), false discovery rate < or = 0.1). Pathway and functional gene ontology analysis showed that these genes were overrepresented in the phosphatidylinositol signaling system, axon guidance pathway, and GPI-anchored proteins family. Our findings suggest that a proportion of susceptibility to daunorubicin-induced cytotoxicity may be controlled by genetic determinants and that analysis using linkage-directed association studies with dense SNP markers can be used to identify the genetic variants contributing to cytotoxicity.
Collapse
Affiliation(s)
- Shiwei Duan
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Wasim K. Bleibel
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | | | - Sunita J. Shukla
- Department of Human Genetics, The University of Chicago, Chicago, Illinois
| | - Xiaolin Wu
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Judith A. Badner
- Department of Psychiatry, The University of Chicago, Chicago, Illinois
| | - M. Eileen Dolan
- Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
83
|
Kurmasheva RT, Houghton PJ. Pediatric oncology. Curr Opin Chem Biol 2007; 11:424-32. [PMID: 17652007 PMCID: PMC2265418 DOI: 10.1016/j.cbpa.2007.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 11/24/2022]
Abstract
Intensive use of cytotoxic agents in multimodality therapeutic regimens has resulted in almost 80% five-year disease-free survival and cure in the majority of childhood cancer patients. However, such success has come at the expense of severe acute or delayed toxicities and an increased occurrence of secondary cancers. With an increasing understanding of the genetic changes that underlie transformation in childhood cancer, rational approaches using agents that target these transforming events are being developed. Current and future strategies in developing tumor-selective therapy using inhibitors of signaling pathways dysregulated in leukemias (FLT3, NOTCH1) and solid/brain tumors (ErbB1-4, IGF-IR, PTCH1), and the challenges in developing less toxic, but equally effective treatments in pediatric oncology are presented.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, United States
| | | |
Collapse
|
84
|
Sorg UR, Kleff V, Fanaei S, Schumann A, Moellmann M, Opalka B, Thomale J, Moritz T. O6-methylguanine-DNA-methyltransferase (MGMT) gene therapy targeting haematopoietic stem cells: studies addressing safety issues. DNA Repair (Amst) 2007; 6:1197-209. [PMID: 17499560 DOI: 10.1016/j.dnarep.2007.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As haematopoietic stem cell gene therapy utilizing O(6)-methylguanine-DNA-methyltransferase has reached the clinical stage, safety-related questions become increasingly important. These issues concern insertional mutagenesis of viral vectors, the acute toxicity of pre-transplant conditioning protocols and in vivo selection regimens as well as potential genotoxic side effects of the alkylating drugs administered in this context. To address these questions, we have investigated toxicity-reduced conditioning regimens combining low-dose alkylator application with sublethal irradiation and have analysed their influence on engraftment and subsequent selectability of transduced haematopoietic stem cells. In addition, a strategy to monitor the acute and long-term genotoxic effects of drugs with high guanine-O(6) alkylating potential, such as chloroethylnitrosoureas or temozolomide is introduced. For this purpose, assays were implemented which allow an assessment of the generation and fate of primary drug-induced adducts as well as their long-term effect on chromosomal integrity at the single cell level.
Collapse
Affiliation(s)
- Ursula R Sorg
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Acute myeloid leukemia (AML) is a frequent hematological malignancy. Despite enormous therapeutic efforts that range from various cytotoxic agents to allogeneic stem cell transplantation, overall survival of patients with AML remains unsatisfying. The poor survival rates are mainly due to therapy-related mortality, failure of induction chemotherapy and early relapses. Therefore, novel therapeutic agents that are more efficient and better tolerated are eagerly sought after. For existing therapeutic strategies, there is a lack of markers that are capable of reliably predicting prognosis or the therapeutic response prior to treatment. There is hope that elucidation of the AML-specific proteome will prompt the discovery of novel therapeutic targets and biomarkers in AML. Modern mass-spectrometry instrumentation has achieved excellent performance in terms of sensitivity, resolution and mass accuracy; however, so far, the contribution of proteomics to the care of patients with AML is virtually zero. This might be partly because mass spectrometry instrumentation and protein fractionation still lack true high-throughput capabilities with highest levels of reproducibility, thus hampering large-scale translational studies with clinical samples. Since mass-spectrometry instruments are very intricate devices, their successful operation will hinge on the willingness and ability of mass-spectrometry experts and clinical researchers to adopt new views, learn from each other and cooperate in order to ultimately benefit the patient suffering from AML. This review highlights some clinical problems circumventing the treatment of patients with AML. Furthermore, it provides a brief overview of the technical background of standard proteomics approaches and describes opportunities, challenges and pitfalls of proteomic studies with regards to AML.
Collapse
Affiliation(s)
- Akos Czibere
- Heinrich Heine University, Department of Hematology, Oncology and Clinical Immunlogy, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
86
|
Abstract
It has been unclear why certain defined DNA regions are consistently sites of chromosomal translocations. Some of these are simply sequences of recognition by endogenous recombination enzymes, but most are not. Recent progress indicates that some of the most common fragile sites in human neoplasm assume non-B DNA structures, namely deviations from the Watson-Crick helix. Because of the single strandedness within these non-B structures, they are vulnerable to structure-specific nucleases. Here we summarize these findings and integrate them with other recent data for non-B structures at sites of consistent constitutional chromosomal translocations.
Collapse
Affiliation(s)
- Sathees C Raghavan
- Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|