51
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
52
|
Xu M, Asghar S, Dai S, Wang Y, Feng S, Jin L, Shao F, Xiao Y. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int J Biol Macromol 2019; 134:1002-1012. [DOI: 10.1016/j.ijbiomac.2019.04.201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 01/04/2023]
|
53
|
Mollarasouli F, Kurbanoglu S, Ozkan SA. The Role of Electrochemical Immunosensors in Clinical Analysis. BIOSENSORS 2019; 9:E86. [PMID: 31324020 PMCID: PMC6784381 DOI: 10.3390/bios9030086] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
An immunosensor is a kind of affinity biosensor based on interactions between an antigen and specific antigen immobilized on a transducer surface. Immunosensors possess high selectivity and sensitivity due to the specific binding between antibody and corresponding antigen, making them a suitable platform for several applications especially in the medical and bioanalysis fields. Electrochemical immunosensors rely on the measurements of an electrical signal recorded by an electrochemical transducer and can be classed as amperometric, potentiometric, conductometric, or impedimetric depending on the signal type. Among the immunosensors, electrochemical immunosensors have been more perfected due to their simplicity and, especially their ability to be portable, and for in situ or automated detection. This review addresses the potential of immunosensors destined for application in clinical analysis, especially cancer biomarker diagnosis. The emphasis is on the approaches used to fabricate electrochemical immunosensors. A general overview of recent applications of the developed electrochemical immunosensors in the clinical approach is described.
Collapse
Affiliation(s)
- Fariba Mollarasouli
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
| |
Collapse
|
54
|
de Freitas CF, Montanha MC, Pellosi DS, Kimura E, Caetano W, Hioka N. "Biotin-targeted mixed liposomes: A smart strategy for selective release of a photosensitizer agent in cancer cells". MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109923. [PMID: 31499973 DOI: 10.1016/j.msec.2019.109923] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
The high incidence of cancer, necessity of treatment, and prognosis times are urgent issues that need to be addressed. In this work, we present DPPC liposomes coated with F127 triblock copolymers as a promising alternative in drug delivery systems for cancer therapy. The proposed mixed liposomes exhibit adequate size, high stability, and passive targeting that result from the EPR effect. An interesting strategy to obtain both passive and active targeting is the vectorization with a covalent bond between F127 and Biotin (a vitamin). Cancer cells can overexpress Biotin receptors, such as Avidin. Here, we evaluate the cytotoxic effects of the erythrosine-decyl ester (ERYDEC). This is a photosensitizer that can be utilized in photodynamic therapy (PDT) and incorporated in DPPC liposomes coated with F127 (F127/DPPC) and the biotinylated-F127 (F127-B/DPPC). The results showed that DPPC liposomes were efficiently mixed with common F127 or F127B, exhibiting adequate physical properties with simple and low-cost preparation. An HABA/Avidin assay showed the amount of Biotin available at the liposome surface. In addition, ERYDEC interaction with lipid vesicles showed high encapsulating efficiency and slow release kinetics. The ERYDEC monomeric species are represented by high light absorption and high singlet oxygen generation (1O2), which confirm the presence of the drug in its monomeric state, as required for PDT. The ERYDEC/liposome system showed high stability and absence of significant cytotoxic effects (absence of light) in fibroblasts of the Mus musculus cell line. In addition, phototoxicity studies showed that ERYDEC/liposomes were able to inhibit cancer cells. However, in the biotinylated system, the effect was much greater than the common F127 coating. This dramatically decreased the inhibitory concentration of CC50 and CC90. In addition, cellular uptake studies based on fluorescence properties of ERYDEC showed that a two-hour incubation period was enough for the uptake by the cell. Therefore, the new vectorized-coated liposome is a potential system for use in cancer treatments, considering that it is a theranostic platform.
Collapse
Affiliation(s)
- Camila Fabiano de Freitas
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Maiara Camotti Montanha
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Diogo Silva Pellosi
- Department of Chemistry, Universidade Federal de São Paulo, Campus Diadema, Unidade José de Filippi, R. Prof. Artur Riedel, 275 - Jd. Eldorado, 09972-270 Diadema, São Paulo, Brazil
| | - Elza Kimura
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, 87.020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
55
|
Gautron J, Guyot N, Brionne A, Réhault-Godbert S. Bioactive Minor Egg Components. EGGS AS FUNCTIONAL FOODS AND NUTRACEUTICALS FOR HUMAN HEALTH 2019. [DOI: 10.1039/9781788013833-00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the last 15 years, the development of functional genomics has increased the number of egg proteins identified from 50 to about 1300. These proteins are initially present in eggs to support a harmonious embryonic development. Consequently, this closed embryonic chamber contains molecules exhibiting diverse functions, including defense, nutrition and many predicted biological activities, which have been investigated using both bioinformatics and experimental investigations. In this chapter, we focus on some very interesting activities of high potential reported for minor egg proteins (excluding ovalbumin, ovotransferrin and lysozyme). The shell matrix proteins are involved in the calcification process to define and control the final texture of the shell and thereby its mechanical properties. Antimicrobial proteins are part of innate immunity and are mainly present in the white and vitelline membranes. They encompass several protein families, including protease inhibitors, vitamin-binding proteins, defensins, LBP-PLUNC family proteins and heparin-binding proteins. The egg also possesses additional bioactive proteins with direct anti-cancerous and antioxidant activities or whose biochemical properties are currently used to develop diagnostic tools and strategies for targeted therapy. Finally, this chapter also reports some emerging functions in tissue remodeling/wound healing and proposes some relevant bioactive candidates and research fields that would be interesting to investigate further.
Collapse
Affiliation(s)
- J. Gautron
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | - N. Guyot
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | - A. Brionne
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | | |
Collapse
|
56
|
Zhang Y, Yong L, Luo Y, Ding X, Xu D, Gao X, Yan S, Wang Q, Luo J, Pu D, Zou J. Enhancement of HIFU ablation by sonosensitizer-loading liquid fluorocarbon nanoparticles with pre-targeting in a mouse model. Sci Rep 2019; 9:6982. [PMID: 31061456 PMCID: PMC6502828 DOI: 10.1038/s41598-019-43416-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/23/2019] [Indexed: 01/09/2023] Open
Abstract
High intensity focused ultrasound (HIFU) is a noninvasive thermal ablation technique for the treatment of benign and malignant solid masses. To improve the efficacy of HIFU ablation, we developed poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating perfluoropentane (PFP) and hematoporphyrin monomethyl ether (HMME) as synergistic agents (HMME+PFP/PLGA). Two-step biotin-avidin pre-targeting technique was applied for the HIFU ablation. We further modified the nanoparticles with streptavidin (HMME+PFP/PLGA-SA). HMME+PFP/PLGA-SA were highly dispersed with spherical morphology (477.8 ± 81.8 nm in diameter). The encapsulation efficiency of HMME and PFP were 46.6 ± 3.3% and 40.1 ± 2.6%, respectively. The binding efficiency of nanoparticles to streptavidin was 95.5 ± 2.5%. The targeting ability of the HMME+PFP/PLGA-SA nanoparticles was tested by parallel plate flow chamber in vitro. In the pre-targeting group (HMME+PFP/PLGA-SA), a large number of nanoparticles bound to the peripheral and surface of the cell. In the HIFU ablation experiment in vivo, compared with the other groups, the largest gray-scale changes and coagulation necrosis areas were observed in the pre-targeting (HMME+PFP/PLGA-SA) group, with the lowest energy efficiency factor value. Moreover, the microvessel density and proliferation index declined, while the apoptotic index increased, in the tumor tissue surrounding the coagulation necrosis area in the pre-targeting group. Meanwhile, the survival time of the tumor-bearing nude mice in the pre-targeting group was significantly longer than that in the HIFU treatment group. These results suggest that HMME+PFP/PLGA-SA have high potential to act as synergistic agents in HIFU ablation.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Lijun Yong
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Yong Luo
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Xiaoya Ding
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Die Xu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Xuan Gao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Sijing Yan
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Qi Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Jie Luo
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Darong Pu
- Department of Ultrasound, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China.
| |
Collapse
|
57
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
58
|
Multilayer nanoscale functionalization to treat disorders and enhance regeneration of bone tissue. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:22-38. [PMID: 31002932 DOI: 10.1016/j.nano.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
The coatings application onto medical devices has experienced a continuous growth in the last few years. Medical device coating market is expected to grow at a CAGR of 5.16% to reach USD 10 million by 2023 due to the increasing geriatric population and the growing demand for continuous innovation. Layer-by-Layer (LbL) assembly represents a versatile method to modify the surface properties, in order to control cell interaction and thus enhance biological functions. Furthermore, LbL is environmentally friendly, able to coat all types of surfaces with the creation of homogenous film and to include and control the release of biomolecules/drugs. This feature review provides a critical overview on recent progresses in functionalizing materials by LbL assembly for bone regeneration and disorder treatment. An overview of emerging and visionary opportunities on LbL technologies and further combination with other existing methods used in biomedical field, is also discussed to evidence the new challenges and potential developments in bone regenerative medicine.
Collapse
|
59
|
A theranostic approach to breast cancer by a quantum dots- and magnetic nanoparticles-conjugated peptide. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Jin Q, Deng Y, Chen X, Ji J. Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS NANO 2019; 13:954-977. [PMID: 30681834 DOI: 10.1021/acsnano.8b07746] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to the complex and still not fully understood physiological environment, the development of traditional nanosized drug delivery systems is very challenging for precision cancer therapy. It is very difficult to control the in vivo distribution of nanoparticles after intravenous injection. The ideal drug nanocarriers should not only have stealth surface for prolonged circulation time but also possess enhanced cellular internalization in tumor sites. Unfortunately, the stealth surface and enhanced cellular uptake seem contradictory to each other. How to integrate the two opposite aspects into one system is a very herculean but meaningful task. As an alternative drug delivery strategy, chameleon-like drug delivery systems were developed to achieve long circulation time while maintaining enhanced cancer cell uptake. Such drug nanocarriers can "turn off" their internalization ability during circulation. However, the enhanced cellular uptake can be readily activated upon arriving at tumor tissues. In this way, stealth surface and enhanced uptake are of dialectical unity in drug delivery. In this review, we focus on the surface engineering of drug nanocarriers to obtain simultaneous stealth surfaces in circulation and enhanced uptake in tumors. The current strategies and ongoing developments, including programmed tumor-targeting strategies and some specific zwitterionic surfaces, will be discussed in detail.
Collapse
Affiliation(s)
- Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , Zhejiang Province , P.R. China
| |
Collapse
|
61
|
Yao M, Ma X, Zhang X, Shi L, Liu T, Liang X, Zhao H, Li X, Li L, Gao H, Jia B, Wang F. Lectin-Mediated pH-Sensitive Doxorubicin Prodrug for Pre-Targeted Chemotherapy of Colorectal Cancer with Enhanced Efficacy and Reduced Side Effects. Am J Cancer Res 2019; 9:747-760. [PMID: 30809306 PMCID: PMC6376480 DOI: 10.7150/thno.29989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) has been clinically used as a broad-spectrum chemotherapeutic agent for decades, but its clinical application is hindered by the lack of tumour specificity, severe cardiotoxicity and haematotoxicity. Pre-targeted strategies are highly tumour-specific, therapeutic approaches. Herein, a novel pre-targeted system was constructed, aiming to enhance anticancer efficacy of DOX and maximally reduce its side effects. Methods: The DOX prodrug (bDOX) was first synthesized by conjugating DOX with mini-PEGylated (mPEGylated) biotin through a pH-sensitive bond. During the pre-targeted treatment, avidin was first administrated. After an optimized interval, bDOX was second administrated. The nontoxic prodrug bDOX was eventually transformed into the toxic anticancer form (DOX) by a pH-triggered cleavage specifically in tumour cells. The drug efficacy and side effect of the two-step, pre-targeted treatment were fully compared with free DOX in vitro and in vivo. Results: The prodrug bDOX was quite stable under neutral conditions and nearly nontoxic, but was immediately transformed into the toxic anticancer form (DOX) under acidic conditions. Compared to free DOX, the pre-targeted bDOX exhibited a higher cellular uptake by human colorectal tumour cells (LS180 and HT-29 cells). In vivo evaluation performed on LS180 xenograft animal model demonstrated that the pre-targeted bDOX achieved a much more significant tumour inhibition than free DOX. The largely decreased, unwanted bystander toxicity was demonstrated by changes in body weight, cardiomyocyte apoptosis, blood routine examination and splenic pathological changes. Conclusion: The high therapeutic efficacy, together with the minimal side effects, of this easily synthesized, pre-targeted system exhibited immense potentiality for the clinical application of DOX delivery.
Collapse
|
62
|
Biodegradable Micelles for NIR/GSH-Triggered Chemophototherapy of Cancer. NANOMATERIALS 2019; 9:nano9010091. [PMID: 30641981 PMCID: PMC6359036 DOI: 10.3390/nano9010091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
The chemotherapy of stimuli-responsive drug delivery systems (SDDSs) is a promising method to enhance cancer treatment effects. However, the low efficiency of chemotherapy drugs and poor degradation partly limit the application of SDDSs. Herein, we report doxorubicin (DOX)-loading mixed micelles for biotin-targeting drug delivery and enhanced photothermal/photodynamic therapy (PTT/PDT). Glutathione (GSH)-responsive mixed micelles were prepared by a dialysis method, proportionally mixing polycaprolactone-disulfide bond-biodegradable photoluminescent polymer (PCL-SS-BPLP) and biotin-polyethylene glycol-cypate (biotin-PEG-cypate). Chemically linking cypate into the mixed micelles greatly improved cypate solubility and PTT/PDT effect. The micelles also exhibited good monodispersity and stability in cell medium (~119.7 nm), low critical micelles concentration, good biodegradation, and photodecomposition. The high concentration of GSH in cancer cells and near-infrared light (NIR)-mediated cypate decomposition were able to achieve DOX centralized release. Meanwhile, the DOX-based chemotherapy combined with cypate-based NIR-triggered hyperthermia and reactive oxygen species could synergistically induce HepG2 cell death and apoptosis. The in vivo experiments confirmed that the micelles generated hyperthermia and achieved a desirable therapeutic effect. Therefore, the designed biodegradable micelles are promising safe nanovehicles for antitumor drug delivery and chemo/PTT/PDT combination therapy.
Collapse
|
63
|
Avraham O, Bayer EA, Livnah O. Crystal structure of afifavidin reveals common features of molecular assemblage in the bacterial dimeric avidins. FEBS J 2018; 285:4617-4630. [DOI: 10.1111/febs.14685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Orly Avraham
- Department of Biological Chemistry The Alexander Silverman Institute of Life Sciences The Wolfson Centre for Applied Structural Biology The Hebrew University of Jerusalem Israel
| | - Edward A. Bayer
- Department of Biological Chemistry The Weizmann Institute of Science Rehovot Israel
| | - Oded Livnah
- Department of Biological Chemistry The Alexander Silverman Institute of Life Sciences The Wolfson Centre for Applied Structural Biology The Hebrew University of Jerusalem Israel
| |
Collapse
|
64
|
Siewert B, Langerman M, Pannwitz A, Bonnet S. Synthesis and Avidin Binding of Ruthenium Complexes Functionalized with a Light-Cleavable Free Biotin Moiety. Eur J Inorg Chem 2018; 2018:4117-4124. [PMID: 31031567 PMCID: PMC6473509 DOI: 10.1002/ejic.201800644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 01/01/2023]
Abstract
In this work the synthesis, photochemistry, and streptavidin interaction of new [Ru(tpy)(bpy)(SRR')](PF6)2 complexes where the R' group contains a free biotin ligand, are described. Two different ligands SRR' were investigated: An asymmetric ligand 1 where the Ru-bound thioether is a N-acetylmethionine moiety linked to the free biotin fragment via a triethylene glycol spacer and a symmetrical ligand 2 containing two identical biotin moieties. The coordination of these two ligands to the precursor [Ru(tpy)(bpy)Cl]Cl was studied in water at 80 °C. In such conditions the coordination of the asymmetric ligand 1 occurred under thermodynamic control. After the reaction, a mononuclear and a binuclear complex were isolated. In the mononuclear complex, the ratio of methionine- {[6](PF6)2} vs. biotin-bound {[7](PF6)2} regioisomer was 5.3 and the free biotin fragment of [6](PF6)2 allowed to purify it from its isomer [7](PF6)2 at small scales using avidin affinity chromatography. Coordination of the symmetrical ligand 2 afforded [Ru(tpy)(bpy)(2)](PF6)2 {[8](PF6)2} in synthetically useful scales (100 mg), good yield (82 %), and without traces of the binuclear impurity. In this complex, one of the biotin remains free whereas the second one is coordinated to ruthenium. Photochemical release of ligand 2 from [8](PF6)2 occurred upon blue light irradiation (465 nm) with a photosubstitution quantum yield of 0.011 that was independent of the binding of streptavidin to the free biotin ligand.
Collapse
Affiliation(s)
- Bianka Siewert
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Michiel Langerman
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Andrea Pannwitz
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55233CCLeidenThe Netherlands
| |
Collapse
|
65
|
Abbott A, Oxburgh L, Kaplan DL, Coburn JM. Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules 2018; 19:3705-3713. [PMID: 30041518 DOI: 10.1021/acs.biomac.8b00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silk fibroin biomaterials are highly versatile in terms of materials formation and functionalization, with applications in tissue engineering and drug delivery, but necessitate modifications for optimized biological activity. Herein, a facile, avidin-based technique is developed to noncovalently functionalize silk materials with bioactive molecules. The ability to adsorb avidin to silk surfaces and subsequently couple biotinylated macromolecules via avidin-biotin interaction is described. This method better preserved functionality than standard covalent coupling techniques using carbodiimide cross-linking chemistry. The controlled release of avidin from the silk surface was demonstrated by altering the adsorption parameters. Application of this technique to culturing human foreskin fibroblasts (hFFs) and human mesenchymal stem cells (hMSCs) on arginine-glycine-aspartic-acid-modified (RGD-modified) silk showed increased cell growth over a seven-day period. This technique provides a facile method for the versatile functionalization of silk materials for biomedical applications including tissue engineering, drug delivery, and biological sensing.
Collapse
Affiliation(s)
- Alycia Abbott
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States
| | - Leif Oxburgh
- Maine Medical Center Research Institute , Scarborough , Maine 04074 , United States
| | - David L Kaplan
- Tufts University , Medford , Massachusetts 02155 , United States
| | - Jeannine M Coburn
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States.,Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
66
|
Cheng K, Sun S, Gong X. Preparation, characterization, and antiproliferative activities of biotin-decorated docetaxel-loaded bovine serum albumin nanoparticles. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
67
|
Talreja D, Cashman SM, Dasari B, Kumar B, Kumar-Singh R. G-quartet oligonucleotide mediated delivery of functional X-linked inhibitor of apoptosis protein into retinal cells following intravitreal injection. Exp Eye Res 2018; 175:20-31. [PMID: 29864441 DOI: 10.1016/j.exer.2018.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
There is currently no efficient method available for the delivery of full length functional proteins into the cytoplasm of retinal cells in vivo. Historically, the most successful approach for the treatment of retinal diseases has been intravitreal injection of antibodies or recombinant proteins, but this approach is not yet utilized for the delivery of proteins that require intracellular access for a therapeutic effect. Here we describe a platform for the delivery of functional proteins into ganglion cells, photoreceptors and retinal pigment epithelium via intravitreal injection. A nucleolin binding aptamer, AS1411, was biotinylated and complexed with traptavidin and utilized as a platform for the delivery of GFP or X-linked inhibitor of apoptosis (XIAP) proteins by intravitreal injection in BALB/c mice. Retinal sections were analyzed for uptake of proteins in the retina. Apoptosis was induced by intravitreal injection of N-methyl-D-aspartate (NMDA). Retinas were harvested for analysis of TUNEL and caspase 3/7 activity. Intravitreal injection of AS1411-directed GFP or XIAP complexes enabled delivery of these proteins into ganglion cells, photoreceptors and retinal pigment epithelium in vivo. AS1411-XIAP complexes conferred significant protection to cells in the outer and inner nuclear layers following NMDA induced apoptosis. A concomitant decrease in activity of Caspase 3/7 was observed in eyes injected with the AS1411-XIAP complex. In conclusion, AS1411 can be used as a platform for the delivery of therapeutic proteins into retinal cells. This approach can potentially be utilized to introduce a large variety of therapeutically relevant proteins that are previously well characterized to maintain the structural integrity and function of retina, thus, preventing vision loss due to ocular trauma or inherited retinal degeneration.
Collapse
Affiliation(s)
- Deepa Talreja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Bhanu Dasari
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
68
|
O'Leary VB, O'Connell M, Antyborzec I, Ntziachristos V, Oliver Dolly J, Ovsepian SV. Alleviation of Trigeminal Nociception Using p75 Neurotrophin Receptor Targeted Lentiviral Interference Therapy. Neurotherapeutics 2018; 15:489-499. [PMID: 29427180 PMCID: PMC5935639 DOI: 10.1007/s13311-018-0608-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute and chronic trigeminal (TG) neuropathies are the cause of considerable distress, with limited treatments available at present. Nociceptive neurons enriched with the vanilloid type 1 receptor (VR1) partake in pain sensation and sensitization in the TG system. While VR1 blockers with anti-nociceptive potential are of substantial medical interest, their use remains limited due to poor selectivity and lack of cell-targeting capabilities. This study describes a methodology for the alleviation of nociception via targeted depletion of VR1 in TG sensory neurons in rats. In cultured TG ganglion neurons, VR1 expression was virtually abolished by lentiviral short hairpin RNA (LV-VR1). By decorating GFP encoding LV (LV-GFP) and LV-VR1 with IgG192 for targeting TG sensory neurons enriched with the p75 neurotrophin receptor (p75NTR), transduction of a reporter GFP and VR1 depletion was achieved after injection of targeted vectors into the whisker pad. In IgG192/LV-VR1-injected rats, the behavioral response to capsaicin exposure as well as Erk 1/2 phosphorylation and VR1 current activation by capsaicin were significantly reduced. This pioneering investigation, thus, provides a proof of principle for a means of attenuating TG nociception, revealing therapeutic potential.
Collapse
Affiliation(s)
- Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Marie O'Connell
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany.
| |
Collapse
|
69
|
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J Nucl Med 2018; 59:878-884. [PMID: 29545378 DOI: 10.2967/jnumed.116.186338] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.g., half-life) can limit their widespread dissemination. The first part of this review will explore the diversity, basic radiochemistry, restrictions, and hurdles of α-emitters.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College, New York, New York.,Graduate Center of City University of New York, New York, New York
| | - Michael R McDevitt
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
70
|
Liu W, Johnson A, Smith BD. Guest Back-Folding: A Molecular Design Strategy That Produces a Deep-Red Fluorescent Host/Guest Pair with Picomolar Affinity in Water. J Am Chem Soc 2018; 140:3361-3370. [PMID: 29439578 DOI: 10.1021/jacs.7b12991] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the major goals of modern supramolecular chemistry, with important practical relevance in many technical fields, is the development of synthetic host/guest partners with ultrahigh affinity and selectivity in water. Currently, most association pairs exhibit micromolar affinity or weaker, and there are very few host/guest systems with Ka > 109 M-1, apparently due to a barrier imposed by enthalpy/entropy compensation. This present study investigated the threading of a water-soluble tetralactam cyclophane by a deep-red fluorescent squaraine guest with flanking polyethylene glycol chains, an association process that is dominated by a highly favorable enthalpic driving force. A squaraine structure was rationally designed to permit guest back-folding as a strategy to greatly expand the hydrophobic surface area that could be buried upon complexation. Guided by computational modeling, an increasing number of N-benzyl groups were appended to the squaraine core, so that, after threading, the aromatic rings could fold back and stack against the cyclophane periphery. The final design iteration exhibited an impressive combination of fluorescence and supramolecular properties, including ratiometric change in deep-red emission, picomolar affinity ( Ka = 5.1 × 1010 M-1), and very rapid threading ( kon = 7.9 × 107 M-1 s-1) in water at 25 °C. Similar excellent behavior was observed in serum solution. A tangible outcome of this study is a new cyclophane/squaraine association pair that will be a versatile platform for many different types of fluorescence-based imaging and diagnostics applications. From a broader perspective, guest back-folding of aromatic groups is a promising new supramolecular stabilization strategy to overcome enthalpy/entropy compensation and produce ultrahigh affinity [2]pseudorotaxane complexes in water and biological media.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry , University of Notre Dame , 236 Nieuwland Science Hall , Notre Dame , Indiana 46556 , United States
| | - Andrew Johnson
- Division of Science , Lindsey Wilson College , 317 Fugitte Science Center , Columbia , Kentucky 42728 , United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry , University of Notre Dame , 236 Nieuwland Science Hall , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
71
|
Liao TYA, Lau A, Sunil J, Hytönen V, Hmama Z. Expression of Exogenous Antigens in the Mycobacterium bovis BCG Vaccine via Non-genetic Surface Decoration with the Avidin-biotin System. J Vis Exp 2018. [PMID: 29443102 DOI: 10.3791/56421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tuberculosis (TB) is a serious infectious disease and the only available vaccine M. bovis bacillus Calmette-Guérin (BCG) is safe and effective for protection against children's severe TB meningitis and some forms of disseminated TB, but fails to protect against pulmonary TB, which is the most prevalent form of the disease. Promising strategies to improve BCG currently rely either on its transformation with genes encoding immunodominant M. tuberculosis (Mtb)-specific antigens and/or complementation with genes encoding co-factors that would stimulate antigen presenting cells. Major limitations to these approaches include low efficiency, low stability, and the uncertain level of safety of expression vectors. In this study, we present an alternative approach to vaccine improvement, which consists of BCG complementation with exogenous proteins of interest on the surface of bacteria, rather than transformation with plasmids encoding corresponding genes. First, proteins of interest are expressed in fusion with monomeric avidin in standard E. coli expression systems and then used to decorate the surface of biotinylated BCG. Animal experiments using BCG surface decorated with surrogate ovalbumin antigen demonstrate that the modified bacterium is fully immunogenic and capable of inducing specific T cell responses. Altogether, the data presented here strongly support a novel and efficient method for reshaping the current BCG vaccine that replaces the laborious conventional approach of complementation with exogenous nucleic acids.
Collapse
Affiliation(s)
- Ting-Yu Angela Liao
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Joseph Sunil
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia
| | - Vesa Hytönen
- Institute of Biomedical Technology, University of Tampere
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia;
| |
Collapse
|
72
|
Patra M, Zarschler K, Pietzsch HJ, Stephan H, Gasser G. New insights into the pretargeting approach to image and treat tumours. Chem Soc Rev 2018; 45:6415-6431. [PMID: 27722526 DOI: 10.1039/c5cs00784d] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumour pretargeting is a promising strategy for cancer diagnosis and therapy allowing for the rational use of long circulating, highly specific monoclonal antibodies (mAbs) for both non-invasive cancer radioimmunodetection (RID) and radioimmunotherapy (RIT). In contrast to conventional RID/RIT where the radionuclides and oncotropic vector molecules are delivered as presynthesised radioimmunoconjugates, the pretargeting approach is a multistep procedure that temporarily separates targeting of certain tumour-associated antigens from delivery of diagnostic or therapeutic radionuclides. In principle, unlabelled, highly tumour antigen specific mAb conjugates are, in a first step, administered into a patient. After injection, sufficient time is allowed for blood circulation, accumulation at the tumour site and subsequent elimination of excess mAb conjugates from the body. The small fast-clearing radiolabelled effector molecules with a complementary functionality directed to the prelocalised mAb conjugates are then administered in a second step. Due to its fast pharmacokinetics, the small effector molecules reach the malignant tissue quickly and bind the local mAb conjugates. Thereby, corresponding radioimmunoconjugates are formed in vivo and, consequently, radiation doses are deposited mainly locally. This procedure results in a much higher tumour/non-tumour (T/NT) ratio and is favourable for cancer diagnosis and therapy as it substantially minimises the radiation damage to non-tumour cells of healthy tissues. The pretargeting approach utilises specific non-covalent interactions (e.g. strept(avidin)/biotin) or covalent bond formations (e.g. inverse electron demand Diels-Alder reaction) between the tumour bound antibody and radiolabelled small molecules. This tutorial review descriptively presents this complex strategy, addresses the historical as well as recent preclinical and clinical advances and discusses the advantages and disadvantages of different available variations.
Collapse
Affiliation(s)
- Malay Patra
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
73
|
Yao S, Li X, Liu J, Sun Y, Wang Z, Jiang Y. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv 2017; 24:1372-1383. [PMID: 28920712 PMCID: PMC8241180 DOI: 10.1080/10717544.2017.1375580] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cells (MSCs), exhibiting tumor-tropic and migratory potential, can serve as cellular carriers to improve the effectiveness of anticancer agents. However, several challenges, such as the safety issue, the limited drug loading, the conservation of stemness and migration of MSCs, still remain in the MSC-based delivery system. In the present study, a novel nano-engineered MSC delivery system was established by loading doxorubicin (DOX)-polymer conjugates for the systemic treatment of pulmonary metastasis of breast cancer. For the first time, a dual drug-loaded mode, endocytosis and membrane-bound, was adopted to achieve the maximum amount of DOX conjugates in MSCs. The in vitro studies revealed the loaded MSCs possessed multifunctional properties, including preservation of the stemness and migration of MSCs, excellent stability of drug loading, acid sensitive drug release and obvious cytotoxicity against 4T1 cells. The in vivo studies confirmed that the loaded MSCs mainly located and long stayed in the lung where the foci of metastatic tumor situated. Importantly, loaded MSCs can significantly inhibit the tumor growth and prolong the life span of tumor-bearing mice in contrast with DOX and DOX-conjugate. The present loaded MSCs system suggested a promising strategy to solve several issues existed in cell-based delivery systems. Especially for the problem of low drug loading, the strategy, simultaneously loading nanodrug in cells' internal and membrane, might be the most desirable method so far and could be developed as a generalizable manner for cell-mediated tumor-targeted therapy.
Collapse
Affiliation(s)
- Sen Yao
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai , China
| | - Xuqian Li
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai , China
| | - Jingxuan Liu
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai , China
| | - Yuqing Sun
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai , China
| | - Zhuanhe Wang
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai , China
| | - Yanyan Jiang
- a Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai , China
| |
Collapse
|
74
|
Characterization of therapeutic protein AvidinOX by an integrated analytical approach. Anal Bioanal Chem 2017; 410:553-564. [PMID: 29167933 DOI: 10.1007/s00216-017-0754-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
AvidinOX, the oxidized derivative of Avidin, is a chemically modified glycoprotein, being currently under clinical investigation for targeted delivery of radioactive biotin to inoperable tumors. AvidinOX is produced by 4-hydroxyazobenzene-2-carboxylic acid (HABA)-assisted sodium periodate oxidation of Avidin. The peculiar property of the periodate-generated glycol-split carbohydrate moieties to form Schiff's bases with amino groups of the tissue proteins allows to achieve a tissue half-life of 2 weeks compared to 2 h of native Avidin. Carbohydrate oxidation, along with possible minor amino acid modifications, introduces additional microheterogeneity in the glycoprotein structure, making its characterization even more demanding than for native glycoproteins. Aiming at the elucidation of the effects of oxidation conditions on the AvidinOX protein backbone and sugars, this microheterogeneous glycoprotein derivative was characterized for the first time using a combination of different analytical methods, including colorimetric methods, mass spectrometry, hollow-fiber flow field-flow fractionation with UV and multi-angle laser scattering detection (HF5-UV-MALS), and NMR. The proposed integrated approach reveals structural features of AvidinOX relevant for its biological activity, e.g., oxidized sites within both carbohydrate moieties and protein backbone and conformational stability, and will be considered as an analytical tool for AvidinOX industrial preparations. It is worth noting that this study enriches also the structural data of native Avidin published up-to-date (e.g., glycan structure and distribution, peptide fingerprint, etc.). Graphical abstract Scheme of phenylacetic hydrazide/MALDI-TOF approach for quantification of aldehydes in AvidinOX based on the determination of the number of hydrazone adducts between hydrazide reagent and aldehyde groups of protein.
Collapse
|
75
|
Ferrauto G, Di Gregorio E, Ruzza M, Catanzaro V, Padovan S, Aime S. Enzyme-Responsive LipoCEST Agents: Assessment of MMP-2 Activity by Measuring the Intra-liposomal Water 1
H NMR Shift. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Marta Ruzza
- Bioindustry Park “Silvano Fumero”; Colleretto Giacosa Torino Italy
| | - Valeria Catanzaro
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Sergio Padovan
- Institutes for Biostructures and Bioimages (CNR) c/o; Molecular Biotechnology Center; Via Nizza 52 10126 Torino Italy
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences; University of Torino; Via Nizza 52 10126 Torino Italy
- Institutes for Biostructures and Bioimages (CNR) c/o; Molecular Biotechnology Center; Via Nizza 52 10126 Torino Italy
| |
Collapse
|
76
|
Ferrauto G, Di Gregorio E, Ruzza M, Catanzaro V, Padovan S, Aime S. Enzyme-Responsive LipoCEST Agents: Assessment of MMP-2 Activity by Measuring the Intra-liposomal Water 1 H NMR Shift. Angew Chem Int Ed Engl 2017; 56:12170-12173. [PMID: 28746744 DOI: 10.1002/anie.201706271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/22/2017] [Indexed: 12/25/2022]
Abstract
Mobile proton-containing solutes can be detected by MRI by the chemical exchange saturation transfer (CEST) method. CEST sensitivity is dramatically enhanced by using, as exchanging protons, the water molecules confined inside liposomes, shifted by a paramagnetic shift reagent. The chemical shift of the intraliposomal water resonance (δIL ) is affected by the overall shape of the supramolecular system. δIL of a spherical LipoCEST acts as a sensitive reporter of the distribution of streptavidin proteins anchored at the liposome surface by biotinylated phospholipids. This finding prompted the design of a MMP-2 responsive LipoCEST agent as the streptavidin moieties can be released from the liposome surfaces when a properly tailored enzyme-cleavable peptide is inserted on the phospholipids before the terminal biotin residues. δIL reports on the overall changes in the supramolecular architecture associated to the cleavage carried out by MMP-2.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Marta Ruzza
- Bioindustry Park "Silvano Fumero", Colleretto Giacosa, Torino, Italy
| | - Valeria Catanzaro
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sergio Padovan
- Institutes for Biostructures and Bioimages (CNR) c/o, Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Institutes for Biostructures and Bioimages (CNR) c/o, Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy
| |
Collapse
|
77
|
Park SC, Kim YM, Kim NH, Kim EJ, Park YH, Lee JR, Jang MK. Targeted doxorubicin delivery based on avidin-biotin technology in cervical tumor cells. Macromol Res 2017. [DOI: 10.1007/s13233-017-5100-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
78
|
Lakowitz A, Godard T, Biedendieck R, Krull R. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. Eur J Pharm Biopharm 2017; 126:27-39. [PMID: 28606596 DOI: 10.1016/j.ejpb.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023]
Abstract
Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Antonia Lakowitz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
| |
Collapse
|
79
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
80
|
Wu JL, He XY, Liu BY, Gong MQ, Zhuo RX, Cheng SX. Fusion peptide functionalized hybrid nanoparticles for synergistic drug delivery to reverse cancer drug resistance. J Mater Chem B 2017; 5:4697-4704. [PMID: 32264312 DOI: 10.1039/c7tb00655a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A facile self-assembly strategy was developed to decorate polymer/inorganic hybrid nano-sized drug delivery systems with functional peptides. To enhance drug delivery efficacy and overcome tumor drug resistance, a functional fusion peptide containing an RGD sequence for tumor targeting and an R8 sequence for cell penetration was introduced onto the surface of biotinylated carboxymethyl chitosan/CaCO3 (BCMC/CaCO3) hybrid nanoparticles through biotin-avidin interaction to obtain peptide functionalized nanoparticles (PNP). The peptide functionalization results in improved delivery efficiency and effective inhibition for drug resistant tumor cells. Co-delivery of an anti-cancerous drug (doxorubicin hydrochloride, DOX) and a cyclooxygenase-2 inhibitor (celecoxib, CXB) by PNP can further improve the therapeutic efficiency by effectively down-regulating P-gp expression to reduce P-gp mediated drug efflux and increase intracellular drug accumulation.
Collapse
Affiliation(s)
- Jin-Long Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Biotin/(strept)avidin self-assembly is a powerful platform for nanoscale fabrication and capture with many different applications in science, medicine, and nanotechnology. However, biotin/(strept)avidin self-assembly has several well-recognized drawbacks that limit performance in certain technical areas and there is a need for synthetic mimics that can either become superior replacements or operational partners with bio-orthogonal recognition properties. The goal of this tutorial review is to describe the recent progress in making high affinity synthetic association partners that operate in water or biological media. The review starts with a background summary of biotin/(strept)avidin self-assembly and the current design rules for creating synthetic mimics. A series of case studies are presented that describe recent success using synthetic derivatives of cyclodextrins, cucurbiturils, and various organic cyclophanes such as calixarenes, deep cavitands, pillararenes, and tetralactams. In some cases, two complementary partners associate to produce a nanoscale complex and in other cases a ditopic host molecule is used to link two partners. The article concludes with a short discussion of future directions and likely challenges.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Soumen K. Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
82
|
Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Mol Pharm 2017; 14:1517-1527. [PMID: 28026957 PMCID: PMC6628714 DOI: 10.1021/acs.molpharmaceut.6b00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-based drug delivery carrier has been one of the most employed modalities in biopharmaceuticals. In this study, we have compared avidin and its two analogues, neutravidin and streptavidin, as nanocarriers for the delivery of biotin-labeled siRNA with the help of biotinylated cholesterol (targeting ligand) and protamine (condensing agent). These proteins have similar binding affinity to biotin but substantial difference in their physical and chemical characteristics. Here, we have shown how these characteristics affect the size, cellular uptake, and activity of the avidin-based siRNA nanocomplex. In contrast to avidin and streptavidin nanocomplexes, neutravidin-based nanocomplex shows very low endosome entrapment and high cytoplasmic localization at extended times. High amount of the siRNA released in the cytoplasm by neutravidin-based nanocomplex at extended times (24 h) results in extensive and sustained PCBP2 gene silencing activity in HSC-T6 rat hepatic stellate cells. Neutravidin-based nanocomplex shows significantly low exocytosis in comparison to the streptavidin-based nanocomplex. Avidin-, neutravidin-, and streptavidin-based nanocomplexes are similar in size and had no significant cytotoxicity in transfected HSC-T6 cells or inflammatory cytokine induction in a whole blood assay. Compared to free siRNA, the neutravidin-based siRNA nanocomplex exhibits higher accumulation at 2 h in the liver of the rats with CCl4-induced liver fibrosis. Neutravidin has therefore been shown to be the most promising avidin analogue for the delivery of siRNA.
Collapse
Affiliation(s)
- Akshay Jain
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Zhen Zhao
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
83
|
Neves AR, Queiroz JF, Lima SAC, Reis S. Apo E-Functionalization of Solid Lipid Nanoparticles Enhances Brain Drug Delivery: Uptake Mechanism and Transport Pathways. Bioconjug Chem 2017; 28:995-1004. [PMID: 28355061 DOI: 10.1021/acs.bioconjchem.6b00705] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several strategies have been implemented to enhance brain drug delivery, and herein solid lipid nanoparticles functionalized with apolipoprotein E were tested in hCMEC/D3 cell monolayers. The mean diameter of 160 nm, negative charge of -12 mV, and their lipophilic characteristics make these nanosystems suitable for brain delivery. Confocal images and flow cytometry data showed a cellular uptake increase of 1.8-fold for SLN-Palmitate-ApoE and 1.9-fold for SLN-DSPE-ApoE when compared with the non-functionalized SLNs. Clathrin-mediated endocytosis was distinguished as the preferential internalization pathway involved in cellular uptake and nanoparticles could cross the blood-brain barrier predominantly by a transcellular pathway. The understanding of the mechanisms involved in the transport of these nanosystems through the blood-brain barrier may potentiate their application on brain drug delivery.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana Fontes Queiroz
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
84
|
Zhao L, Dunne CE, Clausen DJ, Roberts JM, Paulk J, Liu H, Wiest OG, Bradner JE, Williams RM. Synthesis and Biochemical Evaluation of Biotinylated Conjugates of Largazole Analogues: Selective Class I Histone Deacetylase Inhibitors. Isr J Chem 2017; 57:319-330. [PMID: 30760938 PMCID: PMC6370329 DOI: 10.1002/ijch.201600130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of biotinylated conjugates of synthetic analogues of the potent and selective histone deacetylase (HDAC) inhibitor largazole is reported. The thiazole moiety of the parent compound's cap group was derivatized to allow the chemical conjugation to biotin. The derivatized largazole analogues were assayed across a panel of HDACs 1-9 and retained potent and selective inhibitory activity towards the class I HDAC isoforms. The biotinylated conjugate was further shown to pull down HDACs 1, 2, and 3.
Collapse
Affiliation(s)
- Le Zhao
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
| | - Christine E. Dunne
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
| | - Dane J. Clausen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
| | - Justin M. Roberts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 (USA)
| | - Joshiawa Paulk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 (USA)
| | - Haining Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670 (USA)
| | - Olaf G. Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670 (USA)
| | - James E. Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 (USA)
| | - Robert M. Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 (USA)
- University of Colorado Cancer Center, Aurora, Colorado 80045 (USA)
| |
Collapse
|
85
|
Boufflet P, Casey A, Xia Y, Stavrinou PN, Heeney M. Pentafluorobenzene end-group as a versatile handle for para fluoro "click" functionalization of polythiophenes. Chem Sci 2017; 8:2215-2225. [PMID: 28507677 PMCID: PMC5408564 DOI: 10.1039/c6sc04427a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/06/2016] [Indexed: 11/21/2022] Open
Abstract
A convenient method of introducing pentafluorobenzene (PFB) as a single end-group in polythiophene derivatives is reported via in situ quenching of the polymerization. We demonstrate that the PFB-group is a particularly useful end-group due to its ability to undergo fast nucleophilic aromatic substitutions. Using this molecular handle, we are able to quantitatively tether a variety of common nucleophiles to the polythiophene backbone. The mild conditions required for the reaction allows sensitive functional moieties, such as biotin or a cross-linkable trimethoxysilane, to be introduced as end-groups. The high yield enabled the formation of a diblock rod-coil polymer from equimolar reactants under transition metal-free conditions at room temperature. We further demonstrate that water soluble polythiophenes end-capped with PFB can be prepared via the hydrolysis of an ester precursor, and that such polymers are amenable to functionalization under aqueous conditions.
Collapse
Affiliation(s)
- Pierre Boufflet
- Dept. Chemistry and Centre for Plastic Electronics , Imperial College London , Exhibition Rd , London , SW7 2AZ , UK .
| | - Abby Casey
- Dept. Chemistry and Centre for Plastic Electronics , Imperial College London , Exhibition Rd , London , SW7 2AZ , UK .
| | - Yiren Xia
- Dept. Physics and Centre for Plastic Electronics , Imperial College London , Exhibition Rd , London , SW7 2AZ , UK
- Dept. of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , UK
| | - Paul N Stavrinou
- Dept. of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , UK
| | - Martin Heeney
- Dept. Chemistry and Centre for Plastic Electronics , Imperial College London , Exhibition Rd , London , SW7 2AZ , UK .
| |
Collapse
|
86
|
Antyborzec I, O'Leary VB, Dolly JO, Ovsepian SV. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics 2016; 13:859-870. [PMID: 27220617 PMCID: PMC5081123 DOI: 10.1007/s13311-016-0445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) are one of the most affected neuronal types in Alzheimer's disease (AD), with their extensive loss documented at late stages of the pathology. While discriminatory provision of neuroprotective agents and trophic factors to these cells is thought to be of substantial therapeutic potential, the intricate topography and structure of the forebrain cholinergic system imposes a major challenge. To overcome this, we took advantage of the physiological enrichment of BFCNs with a low-affinity p75 neurotrophin receptor (p75NTR) for their targeting by lentiviral vectors within the intact brain of adult rat. Herein, a method is described that affords selective and effective transduction of BFCNs with a green fluorescence protein (GFP) reporter, which combines streptavidin-biotin technology with anti-p75NTR antibody-coated lentiviral vectors. Specific GFP expression in cholinergic neurons was attained in the medial septum and nuclei of the diagonal band Broca after a single intraventricular administration of such targeted vectors. Bioelectrical activity of GFP-labeled neurons was proven to be unchanged. Thus, proof of principle is obtained for the utility of the low-affinity p75NTR for targeted transduction of vectors to BFCNs in vivo.
Collapse
Affiliation(s)
- Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - James O Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Munich School of Bioengineering, Technical University Munich, Munich, Germany.
| |
Collapse
|
87
|
Léonforte F, Müller M. Functional Poly(N-isopropylacrylamide)/Poly(acrylic acid) Mixed Brushes for Controlled Manipulation of Nanoparticles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fabien Léonforte
- Institut
für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcus Müller
- Institut
für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
88
|
Turnaturi R, Oliveri V, Vecchio G. Biotin-8-hydroxyquinoline conjugates and their metal complexes: Exploring the chemical properties and the antioxidant activity. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
89
|
Park S, Kim E, Kim WY, Kang C, Kim JS. Biotin-guided anticancer drug delivery with acidity-triggered drug release. Chem Commun (Camb) 2016; 51:9343-5. [PMID: 25959901 DOI: 10.1039/c5cc03003j] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel biotin-guided anticancer drug delivery system, prodrug , consisting of biotin, nitrobenzene, and doxorubicin, with acid-triggered drug releasing capability was synthesized. Its cellular uptake and anticancer activity are selective to the HepG2 cell line over the WI-38 cell line, as revealed by fluorescence confocal microscopic experiments and MTT assay.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Chemistry, Korea University, Seoul 136-701, Korea.
| | | | | | | | | |
Collapse
|
90
|
Liu W, Peck EM, Smith BD. High Affinity Macrocycle Threading by a Near-Infrared Croconaine Dye with Flanking Polymer Chains. J Phys Chem B 2016; 120:995-1001. [PMID: 26807599 DOI: 10.1021/acs.jpcb.5b11961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Croconaine dyes have narrow and intense absorption bands at ∼800 nm, very weak fluorescence, and high photostabilities, which combine to make them very attractive chromophores for absorption-based imaging or laser heating technologies. The physical supramolecular properties of croconaine dyes have rarely been investigated, especially in water. This study focuses on a molecular threading process that encapsulates a croconaine dye inside a tetralactam macrocycle in organic or aqueous solvent. Macrocycle association and rate constant data are reported for a series of croconaine structures with different substituents attached to the ends of the dye. The association constants were highest in water (Ka ∼ 10(9) M(-1)), and the threading rate constants (kon) increased in the solvent order H2O > MeOH > CHCl3. Systematic variation of croconaine substituents located just outside the croconaine/macrocycle complexation interface hardly changed Ka but had a strong influence on kon. A croconaine dye with N-propyl groups at each end of the structure exhibited a desirable mixture of macrocycle threading properties; that is, there was rapid and quantitative croconaine/macrocycle complexation at relatively high concentrations in water, and no dissociation of the preassembled complex when it was diluted into a solution of fetal bovine serum, even after laser-induced photothermal heating of the solution. The combination of favorable near-infrared absorption properties and tunable mechanical stability makes threaded croconaine/macrocycle complexes very attractive as molecular probes or as supramolecular composites for various applications in absorption-based imaging or photothermal therapy.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Evan M Peck
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
91
|
Liao TYA, Lau A, Joseph S, Hytönen V, Hmama Z. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System. PLoS One 2015; 10:e0145833. [PMID: 26716832 PMCID: PMC4696857 DOI: 10.1371/journal.pone.0145833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.
Collapse
Affiliation(s)
- Ting-Yu Angela Liao
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alice Lau
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sunil Joseph
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vesa Hytönen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine and Vancouver Costal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
92
|
Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. NANOTECHNOLOGY 2015; 26:495103. [PMID: 26574295 DOI: 10.1088/0957-4484/26/49/495103] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml(-1) over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.
Collapse
Affiliation(s)
- Ana Rute Neves
- REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
93
|
Yang Q, Parker CL, McCallen JD, Lai SK. Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery. J Control Release 2015; 220:715-26. [PMID: 26407672 DOI: 10.1016/j.jconrel.2015.09.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023]
Abstract
Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors.
Collapse
Affiliation(s)
- Qi Yang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Christina L Parker
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Justin D McCallen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Samuel K Lai
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
94
|
Etemadzadeh MH, Arashkia A, Roohvand F, Norouzian D, Azadmanesh K. Isolation, cloning, and expression of E. coli BirA gene for biotinylation applications. Adv Biomed Res 2015; 4:149. [PMID: 26380234 PMCID: PMC4551058 DOI: 10.4103/2277-9175.161576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022] Open
Abstract
Background: The key enzyme in biotin-(strept) avidin systems, Escherichia coli BirA biotin ligase, is currently obtained by overexpression of the long protein-tagged versions of the gene to prevent its toxic effect in E. coli. Herein we describe a rather simple and efficient system for expression of E. coli BirA without the application of long-tag proteins. Materials and Methods: The coding sequence of BirA gene was isolated by polymerase chain reaction using DNA extract of E. coli-DH5α as template. BirA amplicon harboring a GS-linker at its C-terminal was cloned into NdeI-XhoI sites of pET24a(+) vector under control of T7 promoter and upstream of the vector-derived 6xHis-tag. pET24-BirA transformed BL21-cells were induced for protein expression by IPTG and analyzed by SDS-PAGE and Western blotting. Protein expression yields were assessed by image analysis of the SDS-PAGE scans using ImageJ software. Result: Agarose gel electrophoresis indicated proper size of the BirA gene amplicon (963 bp) and accuracy of the recombinant pET24-BirA construct. Sequence alignment analysis indicated identical sequence (100%) of our isolate with that of the standard E. coli-K12 BirA gene sequence (accession number: NC_000913.3). SDS-PAGE and Western blot results indicated specific expression of the 36.6 kDa protein corresponding to the BirA protein. Image analysis estimated a yield of 12% of total protein for the BirA expression. Conclusions: By application of pET24a(+) we achieved relatively high expression of BirA in E. coli without application of any long protein-tags. Introduction of the present expression system may provide more readily available source of BirA enzyme for (strept) avidin–biotin applications and studies.
Collapse
Affiliation(s)
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Pilot Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
95
|
Zhang M, Shao J, Xiao J, Deng W, Yu H. A novel approach to make homogeneous protease-stable monovalent streptavidin. Biochem Biophys Res Commun 2015; 463:1059-63. [PMID: 26074145 DOI: 10.1016/j.bbrc.2015.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 11/17/2022]
Abstract
The interaction between the tetramer streptavidin and biotin is recognized as one of the strongest non-covalent associations. Owing to the tight and specific binding, the streptavidin-biotin system has been used widely for bimolecular labeling, purification, immobilization, and even for targeted delivery of therapeutics drugs. Here, we report a novel approach to make homogeneous monovalent tetramer streptavidin. The purified monovalent protein showed both thermal stability and protease stability. Unexpectedly, we found that two proteases, Proteinase K (PK) and Subtilisin (SU), can efficiently remove the His8-tag from the wild-type subunit without affecting the tetramer architecture of monovalent streptavidin, thus making it more homogeneous. In addition, crystallization was performed to assure the homogeneity of the monovalent protein prepared. Overall, monovalent streptavidin shows increased homogeneity and will likely be valuable for many future applications in a wide range of research areas.
Collapse
Affiliation(s)
- Min Zhang
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Jinhui Shao
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbing Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA.
| | - Hongjun Yu
- Department of Biology, Brookhaven National Lab, NY, USA.
| |
Collapse
|
96
|
Jing H, Cheng W, Zhang JW, Han X, Shao H, Sun YX. Galactosylated poly-L-lysine targeted microbubbles for ultrasound mediated antisense c-myc gene transfection in hepatocellular carcinoma cells. Arch Med Sci 2015; 11:292-300. [PMID: 25995743 PMCID: PMC4424248 DOI: 10.5114/aoms.2015.50963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/06/2013] [Accepted: 09/24/2013] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The aim of the study was to investigate the efficiency of delivery and targeted binding of c-myc antisense oligodeoxynucleotide (ASODN) and find a novel therapy for hepatic carcinoma. MATERIAL AND METHODS A targeted ultrasound microbubble compound was synthesized to deliver the c-myc ASODN by ultrasound-targeted microbubble destruction (UTMD) and applied in hepatocellular carcinoma cells (HCC) and cancer bearing mice. Lipid microbubbles were conjugated with biotinylated galactosylated poly-L-lysine (G-PLL) and SonoVue to target the hepatocellular carcinoma SMMC7721 cells with asialoglycoprotein receptors. There were four groups in both in vitro and in vivo studies: control group (group A); c-myc ASODN + G-PLL (CG group, group B); c-myc ASODN + SonoVue (CUS group, group C); c-myc ASODN + G-PLL + SonoVue (CGUS group, group D). The expression of c-myc mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR), and proliferation investigations of the SMMC7721 cells were also performed. In addition, the tumor volume was calculated and compared among different groups. RESULTS The level of c-myc mRNA in the three experimental groups was significantly lower than that in the control group in vitro (p < 0.05). Furthermore, c-myc gene expression was suppressed more strongly in the CGUS group compared with other groups in both in vitro and in vivo studies (p < 0.05). In addition, ultrasound mediation of targeted microbubbles yielded the highest inhibition of tumor growth and cell proliferation among the four groups. CONCLUSIONS The use of a G-PLL targeted microbubble contrast agent combined with ultrasound exposure could be a potential method for increasing gene delivery efficiency. This technique is a promising nonviral approach that can be used in liver cancer.
Collapse
Affiliation(s)
- Hui Jing
- Department of Ultrasound, Harbin Medical Univeristy Cancer Hospital, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical Univeristy Cancer Hospital, Harbin, China
| | - Jiu-Wei Zhang
- Department of Ultrasound, Harbin Medical Univeristy Cancer Hospital, Harbin, China
| | - Xue Han
- Department of Ultrasound, Harbin Medical Univeristy Cancer Hospital, Harbin, China
| | - Hua Shao
- Department of Ultrasound, Harbin Medical Univeristy Cancer Hospital, Harbin, China
| | - Yi-Xin Sun
- Department of Ultrasound, Harbin Medical Univeristy Cancer Hospital, Harbin, China
| |
Collapse
|
97
|
Pratesi A, Ginanneschi M, Melani F, Chinol M, Carollo A, Paganelli G, Lumini M, Bartoli M, Frediani M, Rosi L, Petrucci G, Messori L, Papini AM. Design and solid phase synthesis of new DOTA conjugated (+)-biotin dimers planned to develop molecular weight-tuned avidin oligomers. Org Biomol Chem 2015; 13:3988-4001. [DOI: 10.1039/c4ob02685c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligomeric architectures of avidin generated by a new class of bis-biotins.
Collapse
|
98
|
Spindel S, Sapsford KE. Evaluation of optical detection platforms for multiplexed detection of proteins and the need for point-of-care biosensors for clinical use. SENSORS (BASEL, SWITZERLAND) 2014; 14:22313-41. [PMID: 25429414 PMCID: PMC4299016 DOI: 10.3390/s141222313] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/16/2022]
Abstract
This review investigates optical sensor platforms for protein multiplexing, the ability to analyze multiple analytes simultaneously. Multiplexing is becoming increasingly important for clinical needs because disease and therapeutic response often involve the interplay between a variety of complex biological networks encompassing multiple, rather than single, proteins. Multiplexing is generally achieved through one of two routes, either through spatial separation on a surface (different wells or spots) or with the use of unique identifiers/labels (such as spectral separation-different colored dyes, or unique beads-size or color). The strengths and weaknesses of conventional platforms such as immunoassays and new platforms involving protein arrays and lab-on-a-chip technology, including commercially-available devices, are discussed. Three major public health concerns are identified whereby detecting medically-relevant markers using Point-of-Care (POC) multiplex assays could potentially allow for a more efficient diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Samantha Spindel
- Division of Biology, Chemistry, and Materials Science Office of Science and Engineering Laboratories; U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Kim E Sapsford
- Division of Biology, Chemistry, and Materials Science Office of Science and Engineering Laboratories; U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| |
Collapse
|
99
|
Guenther CM, Kuypers BE, Lam MT, Robinson TM, Zhao J, Suh J. Synthetic virology: engineering viruses for gene delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:548-58. [PMID: 25195922 PMCID: PMC4227300 DOI: 10.1002/wnan.1287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 12/13/2022]
Abstract
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or 'bionic' viruses, feature engineered components, or 'parts', that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies--rational, combinatorial, and pseudo-rational--have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine.
Collapse
Affiliation(s)
| | - Brianna E. Kuypers
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, 77005
| | - Michael T. Lam
- Department of Bioengineering, Rice University, Houston, TX, 77005
| | | | - Julia Zhao
- Department of Chemistry, Rice University, Houston, TX, 77005
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, 77005
| |
Collapse
|
100
|
Moss SM, Jayasekara PS, Paoletta S, Gao ZG, Jacobson KA. Structure-Based Design of Reactive Nucleosides for Site-Specific Modification of the A2A Adenosine Receptor. ACS Med Chem Lett 2014; 5:1043-8. [PMID: 25221664 DOI: 10.1021/ml5002486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/11/2014] [Indexed: 11/28/2022] Open
Abstract
Adenosine receptors (ARs) are members of the G protein-coupled receptor (GPCR) superfamily and have shown much promise as therapeutic targets. We have used an agonist-bound A2AAR X-ray crystallographic structure to design a chemically reactive agonist for site-specific chemical modification of the receptor. To further explore and chemically engineer its binding cavity, a 2-nitrophenyl active ester was attached through an elongated chain at adenine C2 position. This general structure was designed for irreversible transfer of a terminal acyl group to a nucleophilic amino group on the A2AAR. Preincubation with several O-acyl derivatives prevented radioligand binding that was not regenerated upon extensive washing. In silico receptor docking suggested two lysine residues (second extracellular loop) as potential target sites for an O-acetyl derivative (MRS5854, 3a), and site-directed mutagenesis indicated that K153 but not K150 is essential. Similarly, a butyl azide for click reaction was incorporated in the active ester moiety (3b). These promising results indicate a stable, covalent modification of the receptor by several reactive adenosine derivatives, which could be chemical tools for future imaging, structural probing, and drug discovery. Thus, structure-based ligand design has guided the site-specific modification of a GPCR.
Collapse
Affiliation(s)
- Steven M. Moss
- Molecular Recognition Section,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - P. Suresh Jayasekara
- Molecular Recognition Section,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Silvia Paoletta
- Molecular Recognition Section,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Kenneth A. Jacobson
- Molecular Recognition Section,
Laboratory of Bioorganic Chemistry, National Institute of Diabetes
and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| |
Collapse
|