51
|
In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model. Pain 2016; 156:849-858. [PMID: 25734988 DOI: 10.1097/j.pain.0000000000000124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) antagonists have been shown to reduce mechanical hypersensitivity in animal models of inflammatory pain. However, their clinical use is associated with significant dose-limiting side effects. Small-conductance Ca-activated K channels (SK) have been shown to modulate NMDAR activity in the brain. We demonstrate that in vivo activation of SK channels in the spinal cord can alleviate mechanical hypersensitivity in a rat model of inflammatory pain. Intrathecal (i.t.) administration of the SK channel activator, 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), attenuates complete Freund adjuvant (CFA)-induced mechanical hypersensitivity in a dose-dependent manner. Postsynaptic expression of the SK channel subunit, SK3, and apamin-sensitive SK channel-mediated currents recorded from superficial laminae are significantly reduced in the dorsal horn (DH) after CFA. Complete Freund adjuvant-induced decrease in SK-mediated currents can be reversed in vitro by bath application of NS309. In addition, immunostaining for the SK3 subunit indicates that SK3-containing channels within DH neurons can have both somatic and dendritic localization. Double immunostaining shows coexpression of SK3 and NMDAR subunit, NR1, compatible with functional interaction. Moreover, we demonstrate that i.t. coadministration of NS309 with an NMDAR antagonist reduces the dose of NMDAR antagonist, DL-2-amino-5-phosphonopentanoic acid (DL-AP5), required to produce antinociceptive effects in the CFA model. This reduction could attenuate the unwanted side effects associated with NMDAR antagonists, giving this combination potential clinical implications.
Collapse
|
52
|
Sun MY, Izumi Y, Benz A, Zorumski CF, Mennerick S. Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol 2015; 115:1263-72. [PMID: 26745248 DOI: 10.1152/jn.00890.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candidates. Our group recently demonstrated that the major brain cholesterol metabolite, 24S-hydroxycholesterol (24S-HC), positively modulates NMDARs when exogenously administered. Here, we studied whether endogenous 24S-HC regulates NMDAR activity in hippocampal slices. In CYP46A1(-/-) (knockout; KO) slices where endogenous 24S-HC is greatly reduced, NMDAR tone, measured as NMDAR-to-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) excitatory postsynaptic current (EPSC) ratio, was reduced. This difference translated into more NMDAR-driven spiking in wild-type (WT) slices compared with KO slices. Application of SGE-301, a 24S-HC analog, had comparable potentiating effects on NMDAR EPSCs in both WT and KO slices, suggesting that endogenous 24S-HC does not saturate its NMDAR modulatory site in ex vivo slices. KO slices did not differ from WT slices in either spontaneous neurotransmission or in neuronal intrinsic excitability, and exhibited LTP indistinguishable from WT slices. However, KO slices exhibited higher resistance to persistent NMDAR-dependent depression of synaptic transmission induced by oxygen-glucose deprivation (OGD), an effect restored by SGE-301. Together, our results suggest that loss of positive NMDAR tone does not elicit compensatory changes in excitability or transmission, but it protects transmission against NMDAR-mediated dysfunction. We expect that manipulating this endogenous NMDAR modulator may offer new treatment strategies for neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ann Benz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
53
|
Xu ZZ, Kim YH, Bang S, Zhang Y, Berta T, Wang F, Oh SB, Ji RR. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med 2015; 21:1326-31. [PMID: 26479925 DOI: 10.1038/nm.3978] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 09/22/2015] [Indexed: 12/19/2022]
Abstract
Mechanical allodynia, induced by normally innocuous low-threshold mechanical stimulation, represents a cardinal feature of neuropathic pain. Blockade or ablation of high-threshold, small-diameter unmyelinated group C nerve fibers (C-fibers) has limited effects on mechanical allodynia. Although large, myelinated group A fibers, in particular Aβ-fibers, have previously been implicated in mechanical allodynia, an A-fiber-selective pharmacological blocker is still lacking. Here we report a new method for targeted silencing of A-fibers in neuropathic pain. We found that Toll-like receptor 5 (TLR5) is co-expressed with neurofilament-200 in large-diameter A-fiber neurons in the dorsal root ganglion (DRG). Activation of TLR5 with its ligand flagellin results in neuronal entry of the membrane-impermeable lidocaine derivative QX-314, leading to TLR5-dependent blockade of sodium currents, predominantly in A-fiber neurons of mouse DRGs. Intraplantar co-application of flagellin and QX-314 (flagellin/QX-314) dose-dependently suppresses mechanical allodynia after chemotherapy, nerve injury, and diabetic neuropathy, but this blockade is abrogated in Tlr5-deficient mice. In vivo electrophysiology demonstrated that co-application of flagellin/QX-314 selectively suppressed Aβ-fiber conduction in naive and chemotherapy-treated mice. TLR5-mediated Aβ-fiber blockade, but not capsaicin-mediated C-fiber blockade, also reduced chemotherapy-induced ongoing pain without impairing motor function. Finally, flagellin/QX-314 co-application suppressed sodium currents in large-diameter human DRG neurons. Thus, our findings provide a new tool for targeted silencing of Aβ-fibers and neuropathic pain treatment.
Collapse
Affiliation(s)
- Zhen-Zhong Xu
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yong Ho Kim
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sangsu Bang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yi Zhang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seog Bae Oh
- Pain Cognitive Function Research Center, Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
54
|
Zhang Y, Zhao S, Rodriguez E, Takatoh J, Han BX, Zhou X, Wang F. Identifying local and descending inputs for primary sensory neurons. J Clin Invest 2015; 125:3782-94. [PMID: 26426077 DOI: 10.1172/jci81156] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/23/2015] [Indexed: 12/25/2022] Open
Abstract
Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses-based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission.
Collapse
|
55
|
Thompson JM, Ji G, Neugebauer V. Small-conductance calcium-activated potassium (SK) channels in the amygdala mediate pain-inhibiting effects of clinically available riluzole in a rat model of arthritis pain. Mol Pain 2015; 11:51. [PMID: 26311432 PMCID: PMC4551697 DOI: 10.1186/s12990-015-0055-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Arthritis pain is an important healthcare issue with significant emotional and affective consequences. Here we focus on potentially beneficial effects of activating small-conductance calcium-activated potassium (SK) channels in the amygdala, a brain center of emotions that plays an important role in central pain modulation and processing. SK channels have been reported to regulate neuronal activity in the central amygdala (CeA, output nucleus). We tested the effects of riluzole, a clinically available drug for the treatment of amyotrophic lateral sclerosis, for the following reasons. Actions of riluzole include activation of SK channels. Evidence in the literature suggests that riluzole may have antinociceptive effects through an action in the brain but not the spinal cord. Mechanism and site of action of riluzole remain to be determined. Here we tested the hypothesis that riluzole inhibits pain behaviors by acting on SK channels in the CeA in an arthritis pain model. RESULTS Systemic (intraperitoneal) application of riluzole (8 mg/kg) inhibited audible (nocifensive response) and ultrasonic (averse affective response) vocalizations of adult rats with arthritis (5 h postinduction of a kaolin-carrageenan monoarthritis in the knee) but did not affect spinal withdrawal thresholds, which is consistent with a supraspinal action. Stereotaxic administration of riluzole into the CeA by microdialysis (1 mM, concentration in the microdialysis fiber, 15 min) also inhibited vocalizations, confirming the CeA as a site of action of riluzole. Stereotaxic administration of a selective SK channel blocker (apamin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA had no effect by itself but inhibited the effect of systemic riluzole on vocalizations. Off-site administration of apamin into the basolateral amygdala (BLA) as a placement control or stereotaxic application of a selective blocker of large-conductance calcium-activated potassium (BK) channels (charybdotoxin, 1 µM, concentration in the microdialysis fiber, 15 min) into the CeA did not affect the inhibitory effects of systemically applied riluzole. CONCLUSIONS The results suggest that riluzole can inhibit supraspinally organized pain behaviors in an arthritis model by activating SK, but not BK, channels in the amygdala (CeA but not BLA).
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6592, USA.
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
56
|
Schlösser L, Barthel F, Brandenburger T, Neumann E, Bauer I, Eulenburg V, Werdehausen R, Hermanns H. Glycine transporter GlyT1, but not GlyT2, is expressed in rat dorsal root ganglion--Possible implications for neuropathic pain. Neurosci Lett 2015; 600:213-9. [PMID: 26101830 DOI: 10.1016/j.neulet.2015.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022]
Abstract
Glycinergic inhibitory neurotransmission plays a pivotal role in the development of neuropathic pain. The glycine concentration in the synaptic cleft is controlled by the glycine transporters GlyT1 and GlyT2. GlyT1 is expressed throughout the central nervous system, while GlyT2 is exclusively located in glycinergic neurons. Aim of the present study was to investigate whether GlyTs are also expressed in the peripheral sensory nervous system and whether their expression is modulated in experimental neuropathic pain. Neuropathic pain was induced in male Wistar rats by Chronic Constriction Injury (CCI) and verified by assessment of mechanical allodynia (von Frey method). Expression patterns of GlyTs and the glycine binding subunit NR1 of the N-methyl-d-aspartate (NMDA) receptor in the spinal cord and dorsal root ganglia (DRG) were analyzed by Western blot analysis, PCR and immunohistochemistry. While both GlyT1 and GlyT2 were detected in the spinal cord, only GlyT1, but not GlyT2, was detected in DRG. Immunofluorescence revealed a strictly neuronal localization of GlyT1 and a co-localization of GlyT1 and NR1 in DRG. Compared to sham procedure, spinal cord and DRG expression of GlyT1 was not altered and NR1 was unchanged in DRG 12 days after CCI. GlyT1, but not GlyT2, is expressed in the peripheral sensory nervous system. The co-expression of GlyT1 and NMDA receptors in DRG suggests that GlyT1 regulates glycine concentration at the glycine binding site of the NMDA receptor. Differential regulation of GlyT1 expression in the spinal cord or DRG, however, does not seem to be associated with the development of neuropathic pain.
Collapse
Affiliation(s)
- Lukas Schlösser
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Franziska Barthel
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Elena Neumann
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Robert Werdehausen
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Henning Hermanns
- Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|
57
|
Patil MJ, Henry MA, Akopian AN. Prolactin receptor in regulation of neuronal excitability and channels. Channels (Austin) 2015; 8:193-202. [PMID: 24758841 DOI: 10.4161/chan.28946] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca(2+) influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca(2+) -dependent K(+) channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.
Collapse
|
58
|
Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 2015; 22:486-504. [PMID: 24735331 PMCID: PMC4323017 DOI: 10.1089/ars.2014.5884] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. RECENT ADVANCES Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. CRITICAL ISSUES The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. FUTURE DIRECTIONS Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics.
Collapse
Affiliation(s)
- Nikita Gamper
- 1 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
59
|
Prüss H, Hoffmann C, Stenzel W, Saschenbrecker S, Ebinger M. A case of inflammatory peripheral nerve destruction antedating anti-NMDA receptor encephalitis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2014; 1:e14. [PMID: 25340067 PMCID: PMC4202681 DOI: 10.1212/nxi.0000000000000014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
Affiliation(s)
- Harald Prüss
- Department of Neurology and Experimental Neurology (H.P., C.H., M.E.) and Department of Pathology (W.S.), Charité-Universitätsmedizin Berlin; German Center for Neurodegenerative Diseases (DZNE) Berlin (H.P.); and Institute for Experimental Immunology (S.S.), affiliated with Euroimmun, Lübeck, Germany
| | - Christian Hoffmann
- Department of Neurology and Experimental Neurology (H.P., C.H., M.E.) and Department of Pathology (W.S.), Charité-Universitätsmedizin Berlin; German Center for Neurodegenerative Diseases (DZNE) Berlin (H.P.); and Institute for Experimental Immunology (S.S.), affiliated with Euroimmun, Lübeck, Germany
| | - Werner Stenzel
- Department of Neurology and Experimental Neurology (H.P., C.H., M.E.) and Department of Pathology (W.S.), Charité-Universitätsmedizin Berlin; German Center for Neurodegenerative Diseases (DZNE) Berlin (H.P.); and Institute for Experimental Immunology (S.S.), affiliated with Euroimmun, Lübeck, Germany
| | - Sandra Saschenbrecker
- Department of Neurology and Experimental Neurology (H.P., C.H., M.E.) and Department of Pathology (W.S.), Charité-Universitätsmedizin Berlin; German Center for Neurodegenerative Diseases (DZNE) Berlin (H.P.); and Institute for Experimental Immunology (S.S.), affiliated with Euroimmun, Lübeck, Germany
| | - Martin Ebinger
- Department of Neurology and Experimental Neurology (H.P., C.H., M.E.) and Department of Pathology (W.S.), Charité-Universitätsmedizin Berlin; German Center for Neurodegenerative Diseases (DZNE) Berlin (H.P.); and Institute for Experimental Immunology (S.S.), affiliated with Euroimmun, Lübeck, Germany
| |
Collapse
|
60
|
Cao X, Xu P, Oyola MG, Xia Y, Yan X, Saito K, Zou F, Wang C, Yang Y, Hinton A, Yan C, Ding H, Zhu L, Yu L, Yang B, Feng Y, Clegg DJ, Khan S, DiMarchi R, Mani SK, Tong Q, Xu Y. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice. J Clin Invest 2014; 124:4351-62. [PMID: 25157819 DOI: 10.1172/jci74726] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022] Open
Abstract
Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1-estrogen (GLP-1-estrogen) conjugate designed to deliver estrogen to GLP1 receptor-enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1-estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies.
Collapse
|
61
|
Chen W, Walwyn W, Ennes HS, Kim H, McRoberts JA, Marvizón JCG. BDNF released during neuropathic pain potentiates NMDA receptors in primary afferent terminals. Eur J Neurosci 2014; 39:1439-54. [PMID: 24611998 DOI: 10.1111/ejn.12516] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 11/28/2022]
Abstract
NMDA receptors in primary afferent terminals can contribute to hyperalgesia by increasing neurotransmitter release. In rats and mice, we found that the ability of intrathecal NMDA to induce neurokinin 1 receptor (NK1R) internalization (a measure of substance P release) required a previous injection of BDNF. Selective knock-down of NMDA receptors in primary afferents decreased NMDA-induced NK1R internalization, confirming the presynaptic location of these receptors. The effect of BDNF was mediated by tropomyosin-related kinase B (trkB) receptors and not p75 neurotrophin receptors (p75(NTR) ), because it was not produced by proBDNF and was inhibited by the trkB antagonist ANA-12 but not by the p75(NTR) inhibitor TAT-Pep5. These effects are probably mediated through the truncated form of the trkB receptor as there is little expression of full-length trkB in dorsal root ganglion (DRG) neurons. Src family kinase inhibitors blocked the effect of BDNF, suggesting that trkB receptors promote the activation of these NMDA receptors by Src family kinase phosphorylation. Western blots of cultured DRG neurons revealed that BDNF increased Tyr(1472) phosphorylation of the NR2B subunit of the NMDA receptor, known to have a potentiating effect. Patch-clamp recordings showed that BDNF, but not proBDNF, increased NMDA receptor currents in cultured DRG neurons. NMDA-induced NK1R internalization was also enabled in a neuropathic pain model or by activating dorsal horn microglia with lipopolysaccharide. These effects were decreased by a BDNF scavenger, a trkB receptor antagonist and a Src family kinase inhibitor, indicating that BDNF released by microglia potentiates NMDA receptors in primary afferents during neuropathic pain.
Collapse
Affiliation(s)
- Wenling Chen
- Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA; Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
62
|
Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosci 2014; 37:146-58. [PMID: 24461875 PMCID: PMC3945816 DOI: 10.1016/j.tins.2013.12.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Potassium (K+) channels are crucial determinants of neuronal excitability. Nerve injury or inflammation alters K+ channel activity in neurons of the pain pathway. These changes can render neurons hyperexcitable and cause chronic pain. Therapies targeting K+ channels may provide improved pain relief in these states.
Chronic pain is associated with abnormal excitability of the somatosensory system and remains poorly treated in the clinic. Potassium (K+) channels are crucial determinants of neuronal activity throughout the nervous system. Opening of these channels facilitates a hyperpolarizing K+ efflux across the plasma membrane that counteracts inward ion conductance and therefore limits neuronal excitability. Accumulating research has highlighted a prominent involvement of K+ channels in nociceptive processing, particularly in determining peripheral hyperexcitability. We review salient findings from expression, pharmacological, and genetic studies that have untangled a hitherto undervalued contribution of K+ channels in maladaptive pain signaling. These emerging data provide a framework to explain enigmatic pain syndromes and to design novel pharmacological treatments for these debilitating states.
Collapse
|
63
|
Hur SW, Park JM. Long-term potentiation of excitatory synaptic strength in spinothalamic tract neurons of the rat spinal cord. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:553-558. [PMID: 24381506 PMCID: PMC3874444 DOI: 10.4196/kjpp.2013.17.6.553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Spinal dorsal horn nociceptive neurons have been shown to undergo long-term synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Here, we focused on the spinothalamic tract (STT) neurons that are the main nociceptive neurons projecting from the spinal cord to the thalamus. Optical technique using fluorescent dye has made it possible to identify the STT neurons in the spinal cord. Evoked fast mono-synaptic, excitatory postsynaptic currents (eEPSCs) were measured in the STT neurons. Time-based tetanic stimulation (TBS) was employed to induce long-term potentiation (LTP) in the STT neurons. Coincident stimulation of both pre- and postsynaptic neurons using TBS showed immediate and persistent increase in AMPA receptor-mediated EPSCs. LTP can also be induced by postsynaptic spiking together with pharmacological stimulation using chemical NMDA. TBS-induced LTP observed in STT neurons was blocked by internal BAPTA, or Ni(2+), a T-type VOCC blocker. However, LTP was intact in the presence of L-type VOCC blocker. These results suggest that long-term plastic change of STT neurons requires NMDA receptor activation and postsynaptic calcium but is differentially sensitive to T-type VOCCs.
Collapse
Affiliation(s)
- Sung Won Hur
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Joo Min Park
- Department of Physiology, Jeju National University College of Medicine, Jeju 690-756, Korea
| |
Collapse
|