51
|
Rapid Ocular Responses Are Modulated by Bottom-up-Driven Auditory Salience. J Neurosci 2019; 39:7703-7714. [PMID: 31391262 PMCID: PMC6764203 DOI: 10.1523/jneurosci.0776-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 02/03/2023] Open
Abstract
Despite the prevalent use of alerting sounds in alarms and human-machine interface systems and the long-hypothesized role of the auditory system as the brain's "early warning system," we have only a rudimentary understanding of what determines auditory salience-the automatic attraction of attention by sound-and which brain mechanisms underlie this process. A major roadblock has been the lack of a robust, objective means of quantifying sound-driven attentional capture. Here we demonstrate that: (1) a reliable salience scale can be obtained from crowd-sourcing (N = 911), (2) acoustic roughness appears to be a driving feature behind this scaling, consistent with previous reports implicating roughness in the perceptual distinctiveness of sounds, and (3) crowd-sourced auditory salience correlates with objective autonomic measures. Specifically, we show that a salience ranking obtained from online raters correlated robustly with the superior colliculus-mediated ocular freezing response, microsaccadic inhibition (MSI), measured in naive, passively listening human participants (of either sex). More salient sounds evoked earlier and larger MSI, consistent with a faster orienting response. These results are consistent with the hypothesis that MSI reflects a general reorienting response that is evoked by potentially behaviorally important events regardless of their modality.SIGNIFICANCE STATEMENT Microsaccades are small, rapid, fixational eye movements that are measurable with sensitive eye-tracking equipment. We reveal a novel, robust link between microsaccade dynamics and the subjective salience of brief sounds (salience rankings obtained from a large number of participants in an online experiment): Within 300 ms of sound onset, the eyes of naive, passively listening participants demonstrate different microsaccade patterns as a function of the sound's crowd-sourced salience. These results position the superior colliculus (hypothesized to underlie microsaccade generation) as an important brain area to investigate in the context of a putative multimodal salience hub. They also demonstrate an objective means for quantifying auditory salience.
Collapse
|
52
|
Ryan AE, Keane B, Wallis G. Microsaccades and covert attention: Evidence from a continuous, divided attention task. J Eye Mov Res 2019; 12:10.16910/jemr.12.6.6. [PMID: 33828755 PMCID: PMC7962682 DOI: 10.16910/jemr.12.6.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A substantial question in understanding expert behavior is isolating where experts look, and which aspects of their environment they process. While tracking the position of gaze provides some insight into this process, our ability to attend covertly to regions of space other than the current point of fixation, severely limits the diagnostic power of such data. Over the past decade, evidence has emerged suggesting that microscopic eye movements present during periods of fixation may be linked to the spatial distribution of covert attention, potentially offering a powerful tool for studying expert behavior. To date, the majority of studies in this field have tested the link under the constraints of a trial by trial, forced-response task. In the current study we sought to examine the effect when participants performed a continuous, divided-attention task, with the hope of bridging the gap to a range of more ecological, real-world tasks. We report various aspects of the eye movement and response data including (i) the relationship between microsaccades and drift correction, (ii) response behavior in brief time periods immediately following a microsaccade, (iii) response behavior briefly preceding a microsaccade. Analysis failed to reveal a link between task accuracy and the direction of a microsaccade. Most striking however, we found evidence for a timelocked relationship between the side of space responded to and the direction of the most recent microsaccade. The paper hence provides preliminary evidence that microsaccades may indeed be used to track the ongoing allocation of spatial attention.
Collapse
Affiliation(s)
- Aimee E Ryan
- Centre for Sensorimotor Performance, University of Queensland, Australia
| | - Brendan Keane
- Centre for Sensorimotor Performance, University of Queensland, Australia
| | - Guy Wallis
- Centre for Sensorimotor Performance, University of Queensland, Australia
| |
Collapse
|
53
|
Barnhart AS, Costela FM, Martinez-Conde S, Macknik SL, Goldinger SD. Microsaccades reflect the dynamics of misdirected attention in magic. J Eye Mov Res 2019; 12:10.16910/jemr.12.6.7. [PMID: 33828753 PMCID: PMC7962680 DOI: 10.16910/jemr.12.6.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The methods of magicians provide powerful tools for enhancing the ecological validity of laboratory studies of attention. The current research borrows a technique from magic to explore the relationship between microsaccades and covert attention under near-natural viewing conditions. We monitored participants' eye movements as they viewed a magic trick where a coin placed beneath a napkin vanishes and reappears beneath another napkin. Many participants fail to see the coin move from one location to the other the first time around, thanks to the magician's misdirection. However, previous research was unable to distinguish whether or not participants were fooled based on their eye movements. Here, we set out to determine if microsaccades may provide a window into the efficacy of the magician's misdirection. In a multi-trial setting, participants monitored the location of the coin (which changed positions in half of the trials), while engaging in a delayed match-to-sample task at a different spatial location. Microsaccades onset times varied with task difficulty, and microsaccade directions indexed the locus of covert attention. Our combined results indicate that microsaccades may be a useful metric of covert attentional processes in applied and ecologically valid settings.
Collapse
Affiliation(s)
| | - Francisco M Costela
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
54
|
Jonikaitis D, Dhawan S, Deubel H. Saccade selection and inhibition: motor and attentional components. J Neurophysiol 2019; 121:1368-1380. [PMID: 30649975 DOI: 10.1152/jn.00726.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor responses are fundamentally spatial in their function and neural organization. However, studies of inhibitory motor control, focused on global stopping of all actions, have ignored whether inhibitory control can be exercised selectively for specific actions. We used a new approach to elicit and measure motor inhibition by asking human participants to either look at (select) or avoid looking at (inhibit) a location in space. We found that instructing a location to be avoided resulted in an inhibitory bias specific to that location. When compared with the facilitatory bias observed in the Look task, it differed significantly in both its spatiotemporal dynamics and its modulation of attentional processing. While action selection was evident in oculomotor system and interacted with attentional processing, action inhibition was evident mainly in the oculomotor system. Our findings suggest that action inhibition is implemented by spatially specific mechanisms that are separate from action selection. NEW & NOTEWORTHY We show that cognitive control of saccadic responses evokes separable action selection and inhibition processes. Both action selection and inhibition are represented in the saccadic system, but only action selection interacts with the attentional system.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München Munich, Germany.,Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine , Stanford, California
| | - Saurabh Dhawan
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|
55
|
Abstract
Humans use saccades to inspect objects of interest with the foveola, the small region of the retina with highest acuity. This process of visual exploration is normally studied over large scenes. However, in everyday tasks, the stimulus within the foveola is complex, and the need for visual exploration may extend to this smaller scale. We have previously shown that fixational eye movements, in particular microsaccades, play an important role in fine spatial vision. Here, we investigate whether task-driven visual exploration occurs during the fixation pauses in between large saccades. Observers judged the expression of faces covering approximately 1°, as if viewed from a distance of many meters. We use a custom system for accurately localizing the line of sight and continually track gaze position at high resolution. Our findings reveal that active spatial exploration, a process driven by the goals of the task, takes place at the foveal scale. The scanning strategies used at this scale resemble those used when examining larger scenes, with idiosyncrasies maintained across spatial scales. These findings suggest that the visual system possesses not only a coarser priority map of the extrafoveal space to guide saccades, but also a finer-grained priority map that is used to guide microsaccades once the region of interest is foveated.
Collapse
|
56
|
Rosenzweig G, Bonneh YS. Familiarity revealed by involuntary eye movements on the fringe of awareness. Sci Rep 2019; 9:3029. [PMID: 30816258 PMCID: PMC6395845 DOI: 10.1038/s41598-019-39889-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/28/2019] [Indexed: 11/09/2022] Open
Abstract
Involuntary eye movements during fixation of gaze are typically transiently inhibited following stimulus onset. This oculomotor inhibition (OMI), which includes microsaccades and spontaneous eye blinks, is modulated by stimulus saliency and anticipation, but it is currently unknown whether it is sensitive to familiarity. To investigate this, we measured the OMI while observers passively viewed a slideshow of one familiar and 7 unfamiliar facial images presented briefly at 1 Hz in random order. Since the initial experiments indicated that OMI was occasionally insensitive to familiarity when the facial images were highly visible, and to prevent top-down strategies and potential biases, we limited visibility by backward masking making the faces barely visible or at the fringe of awareness. Under these conditions, we found prolonged inhibition of both microsaccades and eye-blinks, as well as earlier onset of microsaccade inhibition with familiarity. These findings demonstrate, for the first time, the sensitivity of OMI to familiarity. Because this is based on involuntary eye movements and can be measured on the fringe of awareness and in passive viewing, our results provide direct evidence that OMI can be used as a novel physiological measure for studying hidden memories with potential implications for health, legal, and security purposes.
Collapse
Affiliation(s)
- Gal Rosenzweig
- Interdisciplinary graduate authority, University of Haifa, Haifa, Israel
| | - Yoram S Bonneh
- School of Optometry and Vision Science, Faculty of life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
57
|
Brunyé TT, Drew T, Weaver DL, Elmore JG. A review of eye tracking for understanding and improving diagnostic interpretation. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2019; 4:7. [PMID: 30796618 PMCID: PMC6515770 DOI: 10.1186/s41235-019-0159-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022]
Abstract
Inspecting digital imaging for primary diagnosis introduces perceptual and cognitive demands for physicians tasked with interpreting visual medical information and arriving at appropriate diagnoses and treatment decisions. The process of medical interpretation and diagnosis involves a complex interplay between visual perception and multiple cognitive processes, including memory retrieval, problem-solving, and decision-making. Eye-tracking technologies are becoming increasingly available in the consumer and research markets and provide novel opportunities to learn more about the interpretive process, including differences between novices and experts, how heuristics and biases shape visual perception and decision-making, and the mechanisms underlying misinterpretation and misdiagnosis. The present review provides an overview of eye-tracking technology, the perceptual and cognitive processes involved in medical interpretation, how eye tracking has been employed to understand medical interpretation and promote medical education and training, and some of the promises and challenges for future applications of this technology.
Collapse
Affiliation(s)
- Tad T Brunyé
- Center for Applied Brain and Cognitive Sciences, Tufts University, 200 Boston Ave., Suite 3000, Medford, MA, 02155, USA.
| | - Trafton Drew
- Department of Psychology, University of Utah, 380 1530 E, Salt Lake City, UT, 84112, USA
| | - Donald L Weaver
- Department of Pathology and University of Vermont Cancer Center, University of Vermont, 111 Colchester Ave., Burlington, VT, 05401, USA
| | - Joann G Elmore
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California at Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| |
Collapse
|
58
|
Denison RN, Yuval-Greenberg S, Carrasco M. Directing Voluntary Temporal Attention Increases Fixational Stability. J Neurosci 2019; 39:353-363. [PMID: 30459223 PMCID: PMC6325259 DOI: 10.1523/jneurosci.1926-18.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 11/21/2022] Open
Abstract
Our visual input is constantly changing, but not all moments are equally relevant. Visual temporal attention, the prioritization of visual information at specific points in time, increases perceptual sensitivity at behaviorally relevant times. The dynamic processes underlying this increase are unclear. During fixation, humans make small eye movements called microsaccades, and inhibiting microsaccades improves perception of brief stimuli. Here, we investigated whether temporal attention changes the pattern of microsaccades in anticipation of brief stimuli. Human observers (female and male) judged stimuli presented within a short sequence. Observers were given either an informative precue to attend to one of the stimuli, which was likely to be probed, or an uninformative (neutral) precue. We found strong microsaccadic inhibition before the stimulus sequence, likely due to its predictable onset. Critically, this anticipatory inhibition was stronger when the first target in the sequence (T1) was precued (task-relevant) than when the precue was uninformative. Moreover, the timing of the last microsaccade before T1 and the first microsaccade after T1 shifted such that both occurred earlier when T1 was precued than when the precue was uninformative. Finally, the timing of the nearest pre- and post-T1 microsaccades affected task performance. Directing voluntary temporal attention therefore affects microsaccades, helping to stabilize fixation at the most relevant moments over and above the effect of predictability. Just as saccading to a relevant stimulus can be an overt correlate of the allocation of spatial attention, precisely timed gaze stabilization can be an overt correlate of the allocation of temporal attention.SIGNIFICANCE STATEMENT We pay attention at moments in time when a relevant event is likely to occur. Such temporal attention improves our visual perception, but how it does so is not well understood. Here, we discovered a new behavioral correlate of voluntary, or goal-directed, temporal attention. We found that the pattern of small fixational eye movements called microsaccades changes around behaviorally relevant moments in a way that stabilizes the position of the eyes. Microsaccades during a brief visual stimulus can impair perception of that stimulus. Therefore, such fixation stabilization may contribute to the improvement of visual perception at attended times. This link suggests that, in addition to cortical areas, subcortical areas mediating eye movements may be recruited with temporal attention.
Collapse
Affiliation(s)
- Rachel N Denison
- Department of Psychology and Center for Neural Science, New York University, New York, New York 10003 and
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, New York 10003 and
| |
Collapse
|
59
|
Amit R, Abeles D, Yuval-Greenberg S. Transient and sustained effects of stimulus properties on the generation of microsaccades. J Vis 2019; 19:6. [PMID: 30640374 DOI: 10.1167/19.1.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccades shift the gaze rapidly every few hundred milliseconds from one fixated location to the next, producing a flow of visual input into the visual system even in the absence of changes in the environment. During fixation, small saccades called microsaccades are produced 1-3 times per second, generating a flow of visual input. The characteristics of this visual flow are determined by the timings of the saccades and by the characteristics of the visual stimuli on which they are performed. Previous models of microsaccade generation have accounted for the effects of external stimulation on the production of microsaccades, but they have not considered the effects of the prolonged background stimulus on which microsaccades are performed. The effects of this stimulus on the process of microsaccade generation could be sustained, following its prolonged presentation, or transient, through the visual transients produced by the microsaccades themselves. In four experiments, we varied the properties of the constant displays and examined the resulting modulation of microsaccade properties: their sizes, their timings, and the correlations between properties of consecutive microsaccades. Findings show that displays of higher spatial frequency and contrast produce smaller microsaccades and longer minimal intervals between consecutive microsaccades; and smaller microsaccades are followed by smaller and delayed microsaccades. We explain these findings in light of previous models and suggest a conceptual model by which both sustained and transient effects of the stimulus have central roles in determining the generation of microsaccades.
Collapse
Affiliation(s)
- Roy Amit
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dekel Abeles
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Yuval-Greenberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
60
|
Abstract
Rapid shifts of involuntary attention have been shown to induce mislocalizations of nearby objects. One pattern of mislocalization, termed the Attentional Repulsion Effect (ARE), occurs when the onset of peripheral pre-cues lead to perceived shifts of subsequently presented stimuli away from the cued location. While the standard ARE configuration utilizes vernier lines, to date, all previous ARE studies have only assessed distortions along one direction and tested one spatial dimension (i.e., position or shape). The present study assessed the magnitude of the ARE using a novel stimulus configuration. Across three experiments participants judged which of two rectangles on the left or right side of the display appeared wider or taller. Pre-cues were used in Experiments 1 and 2. Results show equivalent perceived expansions in the width and height of the pre-cued rectangle in addition to baseline asymmetries in left/right relative size under no-cue conditions. Altering cue locations led to shifts in the perceived location of the same rectangles, demonstrating distortions in perceived shape and location using the same stimuli and cues. Experiment 3 demonstrates that rectangles are perceived as larger in the periphery compared to fixation, suggesting that eye movements cannot account for results from Experiments 1 and 2. The results support the hypothesis that the ARE reflects a localized, symmetrical warping of visual space that impacts multiple aspects of spatial and object perception.
Collapse
|
61
|
Tal N, Yuval‐Greenberg S. Reducing saccadic artifacts and confounds in brain imaging studies through experimental design. Psychophysiology 2018; 55:e13215. [DOI: 10.1111/psyp.13215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Noam Tal
- School of Psychological SciencesTel‐Aviv University Tel‐Aviv Israel
| | - Shlomit Yuval‐Greenberg
- School of Psychological SciencesTel‐Aviv University Tel‐Aviv Israel
- Sagol School of NeuroscienceTel‐Aviv University Tel‐Aviv Israel
| |
Collapse
|
62
|
Lowet E, Gomes B, Srinivasan K, Zhou H, Schafer RJ, Desimone R. Enhanced Neural Processing by Covert Attention only during Microsaccades Directed toward the Attended Stimulus. Neuron 2018; 99:207-214.e3. [PMID: 29937279 DOI: 10.1016/j.neuron.2018.05.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022]
Abstract
Attention can be "covertly" directed without eye movements; yet, even during fixation, there are continuous microsaccades (MSs). In areas V4 and IT of macaques, we found that firing rates and stimulus representations were enhanced by attention but only following a MS toward the attended stimulus. The onset of neural attentional modulations was tightly coupled to the MS onset. The results reveal a major link between the effects of covert attention on cortical visual processing and the overt movement of the eyes.
Collapse
Affiliation(s)
- Eric Lowet
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Bruno Gomes
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pa, Brazil; Instituto Tecnológico Vale Desenvolvimento Sustentável, Belém-Pa, Brazil
| | - Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huihui Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Robert John Schafer
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
63
|
Sheynikhovich D, Bécu M, Wu C, Arleo A. Unsupervised detection of microsaccades in a high-noise regime. J Vis 2018; 18:19. [PMID: 30029229 DOI: 10.1167/18.6.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Micromovements of the eye during visual fixations provide clues about how our visual system acquires information. The analysis of fixational eye movements can thus serve as a noninvasive means to detect age-related or pathological changes in visual processing, which can in turn reflect associated cognitive or neurological disorders. However, the utility of such diagnostic approaches relies on the quality and usability of detection methods applied for the eye movement analysis. Here, we propose a novel method for (micro)saccade detection that is resistant to high-frequency recording noise, a frequent problem in video-based eye tracking in either aged subjects or subjects suffering from a vision-related pathology. The method is fast, it does not require manual noise removal, and it can work with position, velocity, or acceleration features, or a combination thereof. The detection accuracy of the proposed method is assessed on a new dataset of manually labeled recordings acquired from 14 subjects of advanced age (69-81 years old), performing an ocular fixation task. It is demonstrated that the detection accuracy of the new method compares favorably to that of two frequently used reference methods and that it is comparable to the best of the two algorithms when tested on an existing low-noise eye-tracking dataset.
Collapse
Affiliation(s)
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Changmin Wu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
64
|
Lowet E, Gips B, Roberts MJ, De Weerd P, Jensen O, van der Eerden J. Microsaccade-rhythmic modulation of neural synchronization and coding within and across cortical areas V1 and V2. PLoS Biol 2018; 16:e2004132. [PMID: 29851960 PMCID: PMC5997357 DOI: 10.1371/journal.pbio.2004132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 06/12/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Primates sample their visual environment actively through saccades and microsaccades (MSs). Saccadic eye movements not only modulate neural spike rates but might also affect temporal correlations (synchrony) among neurons. Neural synchrony plays a role in neural coding and modulates information transfer between cortical areas. The question arises of how eye movements shape neural synchrony within and across cortical areas and how it affects visual processing. Through local field recordings in macaque early visual cortex while monitoring eye position and through neural network simulations, we find 2 distinct synchrony regimes in early visual cortex that are embedded in a 3- to 4-Hz MS-related rhythm during visual fixation. In the period shortly after an MS (“transient period”), synchrony was high within and between cortical areas. In the subsequent period (“sustained period”), overall synchrony dropped and became selective to stimulus properties. Only mutually connected neurons with similar stimulus responses exhibited sustained narrow-band gamma synchrony (25–80 Hz), both within and across cortical areas. Recordings in macaque V1 and V2 matched the model predictions. Furthermore, our modeling provides predictions on how (micro)saccade-modulated gamma synchrony in V1 shapes V2 receptive fields (RFs). We suggest that the rhythmic alternation between synchronization regimes represents a basic repeating sampling strategy of the visual system. During visual exploration, we continuously move our eyes in a quick, coordinated manner several times a second to scan our environment. These movements are called saccades. Even while we fixate on a visual object, we unconsciously execute small saccades that are termed microsaccades (MSs). Despite MSs being relatively small, they are suggested to be critical to maintain and support accurate perception during visual fixation. Here, we studied in macaques the influence of MSs on the synchronization of neural rhythms—which are important to regulate information flow in the brain—in areas of the cerebral cortex that are important for early processing of visual information, and we complemented the analysis with computational modeling. We found that synchronization properties shortly after an MS were distinct from synchronization in the later phase. Specifically, we found an early and spectrally broadband synchronization within and between visual cortices that was broadly tuned over the cortical space and stimulus properties. This was followed by narrow-band synchronization in the gamma range (25–80 Hz) that was spatially and stimulus specific. This suggests that the manner in which information is transmitted and integrated between early visual cortices depends on the timing relative to MSs. We illustrate this in a computational model showing that the receptive field (RF) of neurons in the secondary visual cortex are expected to be different depending on MS timing. Our results highlight the significance of MS timing for understanding cortical dynamics and suggest that the regulation of synchronization might be one mechanism by which MSs support visual perception.
Collapse
Affiliation(s)
- Eric Lowet
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- * E-mail:
| | - Bart Gips
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Mark J. Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter De Weerd
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jan van der Eerden
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
65
|
Heinen SJ, Badler JB, Watamaniuk SNJ. Choosing a foveal goal recruits the saccadic system during smooth pursuit. J Neurophysiol 2018; 120:489-496. [PMID: 29668381 DOI: 10.1152/jn.00418.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Models of smooth pursuit eye movements stabilize an object's retinal image, yet pursuit is peppered with small, destabilizing "catch-up" saccades. Catch-up saccades might help follow a small, spot stimulus used in most pursuit experiments, since fewer of them occur with large stimuli. However, they can return when a large stimulus has a small central feature. It may be that a central feature on a large object automatically recruits the saccadic system. Alternatively, a cognitive choice is made that the feature is the pursuit goal, and the saccadic system is then recruited to pursue it. Observers pursued a 5-dot stimulus composed of a central dot surrounded by four peripheral dots arranged as a diamond. An attention task specified the pursuit goal as either the central element, or the diamond gestalt. Fewer catch-up saccades occurred with the Gestalt goal than with the central goal, although the additional saccades with the central goal neither enhanced nor impeded pursuit. Furthermore, removing the central element from the diamond goal further reduced catch-up saccade frequency, indicating that the central element automatically triggered some saccades. Higher saccade frequency was not simply due to narrowly focused attention, since attending a small peripheral diamond during pursuit elicited fewer saccades than attending the diamond positioned foveally. The results suggest some saccades are automatically elicited by a small central element, but when it is chosen as the pursuit goal the saccadic system is further recruited to pursue it. NEW & NOTEWORTHY Smooth-pursuit eye movements stabilize retinal image motion to prevent blur. Curiously, smooth pursuit is frequently supplemented by small catchup saccades that could reduce image clarity. Catchup saccades might only be needed to pursue small laboratory stimuli, as they are infrequent during large object pursuit. Yet large objects with central features revive them. Here, we show that voluntarily selecting a feature as the pursuit goal elicits saccades that do not help pursuit.
Collapse
Affiliation(s)
- Stephen J Heinen
- Smith-Kettlewell Eye Research Institute , San Francisco, California
| | - Jeremy B Badler
- Smith-Kettlewell Eye Research Institute , San Francisco, California
| | | |
Collapse
|
66
|
Gambacorta C, Ding J, McKee SP, Levi DM. Both saccadic and manual responses in the amblyopic eye of strabismics are irreducibly delayed. J Vis 2018; 18:20. [PMID: 29677336 PMCID: PMC6097642 DOI: 10.1167/18.3.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 11/24/2022] Open
Abstract
Abnormal early visual development can result in a constellation of neural and visual deficits collectively known as amblyopia. Among the many deficits, a common finding is that both saccadic and manual reaction times to targets presented to the amblyopic eye are substantially delayed when compared to the fellow eye or to normal eyes. Given the well-known deficits in contrast sensitivity in the amblyopic eye, a natural question is whether the prolonged reaction times are simply a consequence of reduced stimulus visibility. To address this question, in Experiment 1 we measure saccadic reaction times (RT) to perifoveal stimuli as a function of effective stimulus contrast (i.e., contrast scaled by the amblyopic eye's contrast threshold). We find that when sensory differences between the eyes are minimized, the asymptotic RTs of our anisometropic amblyopes were similar in the two eyes. However, our results suggest that some strabismic amblyopes have an irreducible delay at the asymptote. That is, even when the sensory differences of the stimulus were accounted for, these observers still had large interocular differences (on average, 77 ms) in saccadic reaction time. In Experiment 2, to assess the role of fixation on saccadic reaction time we compared reaction time with and without a foveal target (the "gap effect"). Our results suggest that, while removing the fixation target does indeed speed up reaction time in the amblyopic eye, the gap effect is similar in the two eyes. Therefore, the gap effect does not eliminate the irreducible delay in the amblyopic eye. Finally, in Experiment 3 we compared the interocular differences in saccadic and manual reaction times in the same observers. This allowed us to determine the relationship between the latencies in the two modalities. We found a strong correlation between the differences in saccadic and manual reaction times; however, the manual RT difference is about half that of saccadic RT, suggesting that there may be two separable effects on saccadic reaction time: (a) a central problem with directing actions to a target, related to disengagement of attention at the fovea, which results in delays in both saccadic and manual reaction times, and (b) a further delay in saccadic reaction times because of the motor refractory period from a previous saccade or microsaccade, made in an attempt to stabilize the amblyopic eye of strabismics.
Collapse
Affiliation(s)
| | - Jian Ding
- School of Optometry, University of California-Berkeley, Berkeley, CA, USA
| | - Suzanne P McKee
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | - Dennis M Levi
- School of Optometry, University of California-Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
67
|
Chances and challenges for an active visual search perspective. Behav Brain Sci 2018; 40:e150. [PMID: 29342597 DOI: 10.1017/s0140525x16000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using fixations as the fundamental unit of visual search is an appealing gear change in a paradigm that has long dominated attention research. To truly inform theories of search, however, additional challenges must be faced, including (1) an empirically motivated definition of fixation in the presence of fixational saccades and (2) the biases and limitations of transsaccadic perception and memory.
Collapse
|
68
|
Hannula DE. Attention and long-term memory: Bidirectional interactions and their effects on behavior. PSYCHOLOGY OF LEARNING AND MOTIVATION 2018. [DOI: 10.1016/bs.plm.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
69
|
Xue L, Huang D, Wang T, Hu Q, Chai X, Li L, Chen Y. Dynamic modulation of the perceptual load on microsaccades during a selective spatial attention task. Sci Rep 2017; 7:16496. [PMID: 29184104 PMCID: PMC5705654 DOI: 10.1038/s41598-017-16629-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
Selective spatial attention enhances task performance at restricted regions within the visual field. The magnitude of this effect depends on the level of attentional load, which determines the efficiency of distractor rejection. Mechanisms of attentional load include perceptual selection and/or cognitive control involving working memory. Recent studies have provided evidence that microsaccades are influenced by spatial attention. Therefore, microsaccade activities may be exploited to help understand the dynamic control of selective attention under different load levels. However, previous reports in humans on the effect of attentional load on microsaccades are inconsistent, and it is not clear to what extent these results and the dynamic changes of microsaccade activities are similar in monkeys. We trained monkeys to perform a color detection task in which the perceptual load was manipulated by task difficulty with limited involvement of working memory. Our results indicate that during the task with high perceptual load, the rate and amplitude of microsaccades immediately before the target color change were significantly suppressed. We also found that the occurrence of microsaccades before the monkeys' detection response deteriorated their performance, especially in the hard task. We propose that the activity of microsaccades might be an efficacious indicator of the perceptual load.
Collapse
Affiliation(s)
- Linyan Xue
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Quality and Technical Supervision, Hebei University, Baoding, 071002, China
| | - Dan Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiyi Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
70
|
Abstract
Recent research has shown that microsaccades contribute to high acuity vision. However, little is known about whether microsaccades also play a role in daily activities, such as reading, that do not involve stimuli at the limit of spatial resolution. While the functions of larger saccades in reading have been extensively examined, microsaccades are commonly regarded as oculomotor noise in this context. We used high-resolution eyetracking and precise gaze localization to investigate fine oculomotor behavior during reading. Our findings show that microsaccade characteristics differ from those measured during sustained fixation: microsaccades are larger in size and primarily leftwards during reading, i.e. they move the line of sight backward on the text. Analysis of how microsaccades shift gaze relative to the text suggests that these movements serve two important functions: (1) a corrective function, by moving the gaze regressively within longer words when the preceding saccade lands too far toward the end of these words, and (2) an exploratory function, by shifting the gaze on adjacent words to gain additional information before the execution of the next saccade. Thus, microsaccades may benefit reading by enhancing the visibility of nearby words. This study highlights the importance of examining fine oculomotor behavior in reading, and calls for further research to investigate the possible roles of microsaccades in reading difficulties.
Collapse
|
71
|
Huang D, Liang H, Xue L, Wang M, Hu Q, Chen Y. The time course of attention modulation elicited by spatial uncertainty. Vision Res 2017; 138:50-58. [DOI: 10.1016/j.visres.2017.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
|
72
|
Poletti M, Rucci M, Carrasco M. Selective attention within the foveola. Nat Neurosci 2017; 20:1413-1417. [PMID: 28805816 PMCID: PMC5929472 DOI: 10.1038/nn.4622] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/09/2017] [Indexed: 11/29/2022]
Abstract
Efficient control of attentional resources and high-acuity vision are both fundamental for survival. Shifts in visual attention are known to covertly enhance processing at locations away from the center of gaze, where visual resolution is low. It is unknown, however, whether selective spatial attention operates where the observer already looks, i.e., within the high-acuity foveola, the small, yet disproportionally important rod-free region of the retina. Using new methods for precisely controlling retinal stimulation, here we show that covert attention flexibly improves and speeds-up both detection and discrimination at loci only a fraction of a degree apart within the foveola. These findings reveal a surprisingly precise control of attention and its involvement in fine spatial vision. They show that the commonly studied covert shifts of attention away from the fovea are the expression of a global mechanism that exerts its action across the entire visual field.
Collapse
Affiliation(s)
- Martina Poletti
- Department of Psychological &Brain Sciences, Boston, University, Boston Massachusetts, USA
| | - Michele Rucci
- Department of Psychological &Brain Sciences, Boston, University, Boston Massachusetts, USA.,Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, New York, USA.,Center for Neural Science, New York University, New York, New York, USA
| |
Collapse
|
73
|
Olmos-Solis K, van Loon AM, Los SA, Olivers CNL. Oculomotor measures reveal the temporal dynamics of preparing for search. PROGRESS IN BRAIN RESEARCH 2017; 236:1-23. [PMID: 29157407 DOI: 10.1016/bs.pbr.2017.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Theories of visual search assume that selection is driven by an active template representation of the target object. Earlier studies suggest that template activation occurs prior to search, but the temporal dynamics of such preactivation remain unclear. Two experiments employed microsaccades to track both general preparation (i.e., anticipation of the search task as such) and template-specific preparation (i.e., anticipation of target selection) of visual search. Participants memorized a target color (i.e., the template) for an upcoming search task. During the delay period, we presented an irrelevant rapid serial visual presentation (RSVP) of lateralized colored disks. Crucially, at different time points into the RSVP, the template color was inserted, allowing us to measure attentional biases toward the template match as a function of time. Results showed a general suppression of saccades: the closer in time to the search display, the less saccades were produced. This suppression was stronger when a template-matching color was present compared to when absent. However, when microsaccades occurred, they were biased toward the template-matching color and more so just prior to the search display. We conclude that observers adapt search template activation to the anticipated moment of search, and that microsaccades reflect general as well as target-specific preparation effects.
Collapse
Affiliation(s)
| | - Anouk M van Loon
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander A Los
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian N L Olivers
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
74
|
Bellet J, Chen CY, Hafed ZM. Sequential hemifield gating of α- and β-behavioral performance oscillations after microsaccades. J Neurophysiol 2017; 118:2789-2805. [PMID: 28794193 DOI: 10.1152/jn.00253.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022] Open
Abstract
Microsaccades are tiny saccades that occur during gaze fixation. Even though visual processing has been shown to be strongly modulated close to the time of microsaccades, both at central and peripheral eccentricities, it is not clear how these eye movements might influence longer term fluctuations in brain activity and behavior. Here we found that visual processing is significantly affected and, in a rhythmic manner, even several hundreds of milliseconds after a microsaccade. Human visual detection efficiency, as measured by reaction time, exhibited coherent rhythmic oscillations in the α- and β-frequency bands for up to ~650-700 ms after a microsaccade. Surprisingly, the oscillations were sequentially pulsed across visual hemifields relative to microsaccade direction, first occurring in the same hemifield as the movement vector for ~400 ms and then the opposite. Such pulsing also affected perceptual detection performance. Our results suggest that visual processing is subject to long-lasting oscillations that are phase locked to microsaccade generation, and that these oscillations are dependent on microsaccade direction.NEW & NOTEWORTHY We investigated long-term microsaccadic influences on visual processing and found rhythmic oscillations in behavioral performance at α- and β-frequencies (~8-20 Hz). These oscillations were pulsed at a much lower frequency across visual hemifields, first occurring in the same hemifield as the microsaccade direction vector for ~400 ms before switching to the opposite hemifield for a similar interval. Our results suggest that saccades temporally organize visual processing and that such organization can sequentially switch hemifields.
Collapse
Affiliation(s)
- Joachim Bellet
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| | - Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany; .,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| |
Collapse
|
75
|
Benedetto A, Spinelli D, Morrone MC. Rhythmic modulation of visual contrast discrimination triggered by action. Proc Biol Sci 2017; 283:rspb.2016.0692. [PMID: 27226468 DOI: 10.1098/rspb.2016.0692] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022] Open
Abstract
Recent evidence suggests that ongoing brain oscillations may be instrumental in binding and integrating multisensory signals. In this experiment, we investigated the temporal dynamics of visual-motor integration processes. We show that action modulates sensitivity to visual contrast discrimination in a rhythmic fashion at frequencies of about 5 Hz (in the theta range), for up to 1 s after execution of action. To understand the origin of the oscillations, we measured oscillations in contrast sensitivity at different levels of luminance, which is known to affect the endogenous brain rhythms, boosting the power of alpha-frequencies. We found that the frequency of oscillation in sensitivity increased at low luminance, probably reflecting the shift in mean endogenous brain rhythm towards higher frequencies. Importantly, both at high and at low luminance, contrast discrimination showed a rhythmic motor-induced suppression effect, with the suppression occurring earlier at low luminance. We suggest that oscillations play a key role in sensory-motor integration, and that the motor-induced suppression may reflect the first manifestation of a rhythmic oscillation.
Collapse
Affiliation(s)
- Alessandro Benedetto
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, 50135 Florence, Italy Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Via San Zeno 31, 56123 Pisa, Italy Institute of Neuroscience, National Research Council (CNR), 56124 Pisa, Italy
| | - Donatella Spinelli
- Department of Human Movement, Social and Health Sciences, University of Rome, 'Foro Italico', Pizza Lauro De Bosis 15, 00135, Rome, Italy IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Concetta Morrone
- Department of Translational Research on New Technologies in Medicines and Surgery, University of Pisa, Via San Zeno 31, 56123 Pisa, Italy Scientific Institute Stella Maris, Viale del Tirreno 331, 56018 Calambrone, Pisa, Italy
| |
Collapse
|
76
|
Attention is allocated closely ahead of the target during smooth pursuit eye movements: Evidence from EEG frequency tagging. Neuropsychologia 2017. [DOI: 10.1016/j.neuropsychologia.2017.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
77
|
Abstract
Microsaccades are high-velocity fixational eye movements, with special roles in perception and cognition. The default microsaccade detection method is to determine when the smoothed eye velocity exceeds a threshold. We have developed a new method, Bayesian microsaccade detection (BMD), which performs inference based on a simple statistical model of eye positions. In this model, a hidden state variable changes between drift and microsaccade states at random times. The eye position is a biased random walk with different velocity distributions for each state. BMD generates samples from the posterior probability distribution over the eye state time series given the eye position time series. Applied to simulated data, BMD recovers the “true” microsaccades with fewer errors than alternative algorithms, especially at high noise. Applied to EyeLink eye tracker data, BMD detects almost all the microsaccades detected by the default method, but also apparent microsaccades embedded in high noise—although these can also be interpreted as false positives. Next we apply the algorithms to data collected with a Dual Purkinje Image eye tracker, whose higher precision justifies defining the inferred microsaccades as ground truth. When we add artificial measurement noise, the inferences of all algorithms degrade; however, at noise levels comparable to EyeLink data, BMD recovers the “true” microsaccades with 54% fewer errors than the default algorithm. Though unsuitable for online detection, BMD has other advantages: It returns probabilities rather than binary judgments, and it can be straightforwardly adapted as the generative model is refined. We make our algorithm available as a software package.
Collapse
Affiliation(s)
- Andra Mihali
- Center for Neural Science, New York University, New York, NY,
| | | | - Wei Ji Ma
- Center for Neural Science, New York University, New York, NY, USADepartment of Psychology, New York University, New York, NY,
| |
Collapse
|
78
|
Abstract
Microsaccades are miniature eye movements that occur involuntarily during fixation. They are typically inhibited following stimulus onset and are released from inhibition about 300 ms post-stimulus. Microsaccade-inhibition is modulated by low level features of visual stimuli, but it is currently unknown whether they are sensitive to higher level, abstract linguistic properties. To address this question, we measured the timing of microsaccades while subjects were presented with written Hebrew words and pronounceable nonwords (pseudowords). We manipulated the underlying structure of pseudowords such that half of them contained real roots while the other half contained invented roots. Importantly, orthographic similarity to real words was equated between the two conditions. Microsaccade onset was significantly slower following real-root compared to invented-root stimuli. Similar results were obtained when considering post-stimulus delay of eye blinks. Moreover, microsaccade-delay was positively and significantly correlated with measures of real-word similarity. These findings demonstrate, for the first time, sensitivity of microsaccades to linguistic structure. Because microsaccades are involuntary and can be measured in the absence of overt response, our results provide initial evidence that they can be used as a novel physiological measure in the study of language processes in healthy and clinical populations.
Collapse
|
79
|
Dankner Y, Shalev L, Carrasco M, Yuval-Greenberg S. Prestimulus Inhibition of Saccades in Adults With and Without Attention-Deficit/Hyperactivity Disorder as an Index of Temporal Expectations. Psychol Sci 2017; 28:835-850. [DOI: 10.1177/0956797617694863] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Knowing when to expect important events to occur is critical for preparing context-appropriate behavior. However, anticipation is inherently complicated to assess because conventional measurements of behavior, such as accuracy and reaction time, are available only after the predicted event has occurred. Anticipatory processes, which occur prior to target onset, are typically measured only retrospectively by these methods. In this study, we utilized a novel approach for assessing temporal expectations through the dynamics of prestimulus saccades. Results showed that saccades of neurotypical participants were inhibited prior to the onset of stimuli that appeared at predictable compared with less predictable times. No such inhibition was found in most participants with attention-deficit/hyperactivity disorder (ADHD), and particularly not in those who experienced difficulties in sustaining attention over time. These findings suggest that individuals with ADHD, especially those with sustained-attention deficits, have diminished ability to benefit from temporal predictability, and this could account for some of their context-inappropriate behaviors.
Collapse
Affiliation(s)
| | - Lilach Shalev
- School of Education, Tel Aviv University
- Sagol School of Neuroscience, Tel Aviv University
| | - Marisa Carrasco
- Department of Psychology, New York University
- Center for Neural Science, New York University
| | - Shlomit Yuval-Greenberg
- Sagol School of Neuroscience, Tel Aviv University
- School of Psychological Sciences, Tel Aviv University
| |
Collapse
|
80
|
Yu G, Yang M, Yu P, Dorris MC. Time compression of visual perception around microsaccades. J Neurophysiol 2017; 118:416-424. [PMID: 28298299 DOI: 10.1152/jn.00029.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Even during fixation, our eyes are in constant motion. For example, microsaccades are small (typically <1°) eye movements that occur 1~3 times/second. Despite their tiny and transient nature, our percept of visual space is compressed before microsaccades (Hafed ZM, Lovejoy LP, Krauzlis RJ. Eur J Neurosci 37: 1169-1181, 2013). As visual space and time are interconnected at both the physical and physiological levels, we asked whether microsaccades also affect the temporal aspects of visual perception. Here we demonstrate that the perceived interval between transient visual stimuli was compressed if accompanied by microsaccades. This temporal compression extended approximately ±200 ms from microsaccade occurrence, and depending on their particular pattern, multiple microsaccades further enhanced or counteracted this temporal compression. The compression of time surrounding microsaccades resembles that associated with more voluntary macrosaccades (Morrone MC, Ross J, Burr D. Nat Neurosci 8: 950-954, 2005). Our results suggest common neural processes underlying both saccade and microsaccade misperceptions, mediated, likely, through extraretinal mechanisms.NEW & NOTEWORTHY Here we show that humans perceive the duration of visual events as compressed if they are accompanied by microsaccades. Despite the tiny and transient nature of microsaccades, time compression extended more than ±200 ms from their occurrence. Moreover, the number, pattern, and temporal coincidence of microsaccades relative to visual events all contribute to this time misperception. Our results reveal a detailed picture of how our visual time percepts are altered by microsaccades.
Collapse
Affiliation(s)
- Gongchen Yu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and.,University of Chinese Academy of Sciences, Shanghai, China
| | - Mingpo Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and
| | - Peng Yu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and.,University of Chinese Academy of Sciences, Shanghai, China
| | - Michael Christopher Dorris
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; and
| |
Collapse
|
81
|
Meyberg S, Sommer W, Dimigen O. How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study. Neuropsychologia 2017; 99:64-80. [PMID: 28254651 DOI: 10.1016/j.neuropsychologia.2017.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 01/21/2017] [Accepted: 02/26/2017] [Indexed: 11/16/2022]
Abstract
Covert shifts of attention that follow the presentation of a cue are associated with lateralized components in the event-related potential (ERP): the "early directing attention negativity" (EDAN) and the "anterior directing attention negativity" (ADAN). Traditionally, these shifts are thought to take place while gaze is fixated and, thus, in the absence of saccades. However, microsaccades of small amplitude (<1°) occur frequently and involuntarily also during fixation and are closely correlated with spatial attention. To investigate potential links between microsaccades and lateralized ERP components, we simultaneously recorded eye movements and ERPs in a spatial cueing task. As a first major result, we show that both the posterior EDAN and the orientation of microsaccades align more strongly with the location of the task-relevant part of the cue stimulus than with the direction of the attention shift indicated by that cue. A coupling between microsaccades and EDAN was also present on the single-trial level: The EDAN was largest when microsaccades were oriented toward the relevant cue, but absent when microsaccades were oriented away from it, suggesting that EDAN and microsaccades are generated by the same neural network, which selects relevant stimuli and orients behavior toward them. As a second major result, we show that small corneoretinal artifacts from microsaccades, which fall below conventional EOG rejection thresholds, contaminate the measurement of the ADAN. After correcting the EEG for microsaccade-related artifacts with an optimized variant of independent component analysis, ADAN was abolished at frontal sites, but a genuine ADAN was still present at central sites. Thus, the combined measurement of microsaccades and lateralized ERPs sheds new light onto cue-elicited shifts of covert attention.
Collapse
Affiliation(s)
| | - Werner Sommer
- Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Olaf Dimigen
- Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
82
|
Kang MS, Kim S, Lee KM. Peripheral target identification performance modulates eye movements. Vision Res 2017; 133:81-86. [PMID: 28202398 DOI: 10.1016/j.visres.2016.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 11/25/2022]
Abstract
We often shift our eyes to an interesting stimulus, but it is important to inhibit that eye movement in some environments (e.g., a no-look pass in basketball). Here, we investigated participants' ability to inhibit eye movements when they had to process a peripheral target with a requirement to maintain strict fixation. An array of eight letters composed of four characters was briefly presented and a directional cue was centrally presented to indicate the target location. The stimulus onset asynchrony (SOA) between the cue and the stimulus array was chosen from six values, consisting of pre-cue conditions (-400 and -200ms), a simultaneous cue condition (0ms), and post-cue conditions (200, 400, and 800ms). We found the following: 1) participants shifted their eyes toward the cued location even though the stimulus array was absent at the onset of eye movements, but the eye movement amplitude was smaller than the actual location of the target; 2) eye movements occurred approximately 150ms after the onset of stimulus array in the pre-cue conditions and 250ms after cue onset in the simultaneous and post-cue conditions; and 3) eye movement onsets were delayed and their amplitudes were smaller in correct trials than incorrect trials. These results indicate that the inhibitory process controlling eye movements also compete for cognitive resources like other cognitive processes.
Collapse
Affiliation(s)
- Min-Suk Kang
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Psychology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Sori Kim
- Department of Psychology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyoung-Min Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
83
|
Meyberg S, Sinn P, Engbert R, Sommer W. Revising the link between microsaccades and the spatial cueing of voluntary attention. Vision Res 2017; 133:47-60. [PMID: 28163059 DOI: 10.1016/j.visres.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 11/19/2022]
Abstract
Microsaccades - i.e., small fixational saccades generated in the superior colliculus (SC) - have been linked to spatial attention. While maintaining fixation, voluntary shifts of covert attention toward peripheral targets result in a sequence of attention-aligned and attention-opposing microsaccades. In most previous studies the direction of the voluntary shift is signaled by a spatial cue (e.g., a leftwards pointing arrow) that presents the most informative part of the cue (e.g., the arrowhead) in the to-be attended visual field. Here we directly investigated the influence of cue position and tested the hypothesis that microsaccades align with cue position rather than with the attention shift. In a spatial cueing task, we presented the task-relevant part of a symmetric cue either in the to-be attended visual field or in the opposite field. As a result, microsaccades were still weakly related to the covert attention shift; however, they were strongly related to the position of the cue even if that required a movement opposite to the cued attention shift. Moreover, if microsaccades aligned with cue position, we observed stronger cueing effects on manual response times. Our interpretation of the data is supported by numerical simulations of a computational model of microsaccade generation that is based on SC properties, where we explain our findings by separate attentional mechanisms for cue localization and the cued attention shift. We conclude that during cueing of voluntary attention, microsaccades are related to both - the overt attentional selection of the task-relevant part of the cue stimulus and the subsequent covert attention shift.
Collapse
Affiliation(s)
| | - Petra Sinn
- Universität Potsdam, 14469 Potsdam, Germany
| | | | - Werner Sommer
- Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
84
|
Changes in the distribution of sustained attention alter the perceived structure of visual space. Vision Res 2016; 131:26-36. [PMID: 28025055 DOI: 10.1016/j.visres.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/07/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022]
Abstract
Visual spatial attention is a critical process that allows for the selection and enhanced processing of relevant objects and locations. While studies have shown attentional modulations of perceived location and the representation of distance information across multiple objects, there remains disagreement regarding what influence spatial attention has on the underlying structure of visual space. The present study utilized a method of magnitude estimation in which participants must judge the location of briefly presented targets within the boundaries of their individual visual fields in the absence of any other objects or boundaries. Spatial uncertainty of target locations was used to assess perceived locations across distributed and focused attention conditions without the use of external stimuli, such as visual cues. Across two experiments we tested locations along the cardinal and 45° oblique axes. We demonstrate that focusing attention within a region of space can expand the perceived size of visual space; even in cases where doing so makes performance less accurate. Moreover, the results of the present studies show that when fixation is actively maintained, focusing attention along a visual axis leads to an asymmetrical stretching of visual space that is predominantly focused across the central half of the visual field, consistent with an expansive gradient along the focus of voluntary attention. These results demonstrate that focusing sustained attention peripherally during active fixation leads to an asymmetrical expansion of visual space within the central visual field.
Collapse
|
85
|
Devyatko D, Appelbaum LG, Mitroff SR. A Common Mechanism for Perceptual Reversals in Motion-Induced Blindness, the Troxler Effect, and Perceptual Filling-In. Perception 2016; 46:50-77. [PMID: 27697914 DOI: 10.1177/0301006616672577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several striking visual phenomena involve a physically present stimulus that alternates between being perceived and being "invisible." For example, motion-induced blindness, the Troxler effect, and perceptual filling-in all consist of subjective alternations where an item repeatedly changes from being seen to unseen. In the present study, we explored whether these three specific visual phenomena share any commonalities in their alternation rates and patterns to better understand the mechanisms of each. Data from 69 individuals revealed moderate to strong correlations across the three phenomena for the number of perceptual disappearances and the accumulated duration of the disappearances. Importantly, these effects were not correlated with eye movement patterns (saccades) assessed through eye tracking, differences in motion sensitivity as indexed by dot coherence and speed perception thresholds, or simple reaction time abilities. Principal component analyses revealed a single component that explained 67% of the variance for the number of perceptual reversals and 60% for the accumulated duration of the disappearances. The temporal dynamics of illusory disappearances was also compared for each phenomenon, and normalized durations of disappearances were well fit by a gamma distribution with similar shape parameters for each phenomenon, suggesting that they may be driven by a single oscillatory mechanism.
Collapse
Affiliation(s)
- Dina Devyatko
- National Research University Higher School of Economics, Moscow, Russia; Institute of Information Processing and Decision Making, University of Haifa, Israel
| | - L Gregory Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Stephen R Mitroff
- Department of Psychology, The George Washington University, Washington, DC, USA
| |
Collapse
|
86
|
Meso AI, Montagnini A, Bell J, Masson GS. Looking for symmetry: fixational eye movements are biased by image mirror symmetry. J Neurophysiol 2016; 116:1250-60. [PMID: 27306681 DOI: 10.1152/jn.01152.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/13/2016] [Indexed: 11/22/2022] Open
Abstract
Humans are highly sensitive to symmetry. During scene exploration, the area of the retina with dense light receptor coverage acquires most information from relevant locations determined by gaze fixation. We characterized patterns of fixational eye movements made by observers staring at synthetic scenes either freely (i.e., free exploration) or during a symmetry orientation discrimination task (i.e., active exploration). Stimuli could be mirror-symmetric or not. Both free and active exploration generated more saccades parallel to the axis of symmetry than along other orientations. Most saccades were small (<2°), leaving the fovea within a 4° radius of fixation. Analysis of saccade dynamics showed that the observed parallel orientation selectivity emerged within 500 ms of stimulus onset and persisted throughout the trials under both viewing conditions. Symmetry strongly distorted existing anisotropies in gaze direction in a seemingly automatic process. We argue that this bias serves a functional role in which adjusted scene sampling enhances and maintains sustained sensitivity to local spatial correlations arising from symmetry.
Collapse
Affiliation(s)
- Andrew Isaac Meso
- Institut de Neurosciences de la Timone, UMR 7289 CNRS and Aix-Marseille Université, Marseille, France; School of Psychology, University of Western Australia, Crawley, Western Australia, Australia; and Psychology and Interdisciplinary Neuroscience Research Group, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, United Kingdom
| | - Anna Montagnini
- Institut de Neurosciences de la Timone, UMR 7289 CNRS and Aix-Marseille Université, Marseille, France
| | - Jason Bell
- School of Psychology, University of Western Australia, Crawley, Western Australia, Australia; and
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone, UMR 7289 CNRS and Aix-Marseille Université, Marseille, France
| |
Collapse
|
87
|
Eye fixation during multiple object attention is based on a representation of discrete spatial foci. Sci Rep 2016; 6:31832. [PMID: 27561413 PMCID: PMC4999942 DOI: 10.1038/srep31832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/27/2016] [Indexed: 11/21/2022] Open
Abstract
We often look at and attend to several objects at once. How the brain determines where to point our eyes when we do this is poorly understood. Here we devised a novel paradigm to discriminate between different models of spatial selection guiding fixation. In contrast to standard static attentional tasks where the eye remains fixed at a predefined location, observers selected their own preferred fixation position while they tracked static targets that were arranged in specific geometric configurations and which changed identity over time. Fixations were best predicted by a representation of discrete spatial foci, not a polygonal grouping, simple 2-foci division of attention or a circular spotlight. Moreover, attentional performance was incompatible with serial selection. Together with previous studies, our findings are compatible with a view that attentional selection and fixation rely on shared spatial representations and suggest a more nuanced definition of overt vs. covert attention.
Collapse
|
88
|
Yu G, Xu B, Zhao Y, Zhang B, Yang M, Kan JYY, Milstein DM, Thevarajah D, Dorris MC. Microsaccade direction reflects the economic value of potential saccade goals and predicts saccade choice. J Neurophysiol 2016; 115:741-51. [PMID: 26609118 DOI: 10.1152/jn.00987.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/20/2015] [Indexed: 11/22/2022] Open
Abstract
Microsaccades are small-amplitude (typically <1°), ballistic eye movements that occur when attempting to fixate gaze. Initially thought to be generated randomly, it has recently been established that microsaccades are influenced by sensory stimuli, attentional processes, and certain cognitive states. Whether decision processes influence microsaccades, however, is unknown. Here, we adapted two classic economic tasks to examine whether microsaccades reflect evolving saccade decisions. Volitional saccade choices of monkey and human subjects provided a measure of the subjective value of targets. Importantly, analyses occurred during a period of complete darkness to minimize the known influence of sensory and attentional processes on microsaccades. As the time of saccadic choice approached, microsaccade direction became the following: 1) biased toward targets as a function of their subjective value and 2) predictive of upcoming, voluntary choice. Our results indicate that microsaccade direction is influenced by and is a reliable tell of evolving saccade decisions. Our results are consistent with dynamic decision processes within the midbrain superior colliculus; that is, microsaccade direction is influenced by the transition of activity toward caudal saccade regions associated with high saccade value and/or future saccade choice.
Collapse
Affiliation(s)
- Gongchen Yu
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Baijie Xu
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Yuchen Zhao
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Beizhen Zhang
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Mingpo Yang
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; and
| | - Janis Ying Ying Kan
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - David Martin Milstein
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Dhushan Thevarajah
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael Christopher Dorris
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; and
| |
Collapse
|
89
|
Singh T, Perry CM, Herter TM. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment. J Neuroeng Rehabil 2016; 13:10. [PMID: 26812907 PMCID: PMC4728792 DOI: 10.1186/s12984-015-0107-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. RESULTS Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. CONCLUSIONS The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal plane with variable depth.
Collapse
Affiliation(s)
- Tarkeshwar Singh
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC-29208, USA.
| | - Christopher M Perry
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC-29208, USA.
| | - Troy M Herter
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC-29208, USA.
| |
Collapse
|
90
|
Abstract
We measured saccadic latencies in a large sample (total n = 459) of individuals with amblyopia or risk factors for amblyopia, e.g., strabismus or anisometropia, and normal control subjects. We presented an easily visible target randomly to the left or right, 3.5° from fixation. The interocular difference in saccadic latency is highly correlated with the interocular difference in LogMAR (Snellen) acuity-as the acuity difference increases, so does the latency difference. Strabismic and strabismic-anisometropic amblyopes have, on average, a larger difference between their eyes in LogMAR acuity than anisometropic amblyopes and thus their interocular latency difference is, on average, significantly larger than anisometropic amblyopes. Despite its relation to LogMAR acuity, the longer latency in strabismic amblyopes cannot be attributed either to poor resolution or to reduced contrast sensitivity, because their interocular differences in grating acuity and in contrast sensitivity are roughly the same as for anisometropic amblyopes. The correlation between LogMAR acuity and saccadic latency arises because of the confluence of two separable effects in the strabismic amblyopic eye-poor letter recognition impairs LogMAR acuity while an intrinsic sluggishness delays reaction time. We speculate that the frequent microsaccades and the accompanying attentional shifts, made while strabismic amblyopes struggle to maintain fixation with their amblyopic eyes, result in all types of reactions being irreducibly delayed.
Collapse
|
91
|
Abstract
Eye movements are essential to human vision. A new study shows that the tiny eye movements we make while holding our gaze on a point of interest are associated with brief, attention-like changes in the sensitivity of visual neurons.
Collapse
|
92
|
Port NL, Trimberger J, Hitzeman S, Redick B, Beckerman S. Micro and regular saccades across the lifespan during a visual search of "Where's Waldo" puzzles. Vision Res 2015; 118:144-57. [PMID: 26049037 DOI: 10.1016/j.visres.2015.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/01/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Despite the fact that different aspects of visual-motor control mature at different rates and aging is associated with declines in both sensory and motor function, little is known about the relationship between microsaccades and either development or aging. Using a sample of 343 individuals ranging in age from 4 to 66 and a task that has been shown to elicit a high frequency of microsaccades (solving Where's Waldo puzzles), we explored microsaccade frequency and kinematics (main sequence curves) as a function of age. Taking advantage of the large size of our dataset (183,893 saccades), we also address (a) the saccade amplitude limit at which video eye trackers are able to accurately measure microsaccades and (b) the degree and consistency of saccade kinematics at varying amplitudes and directions. Using a modification of the Engbert-Mergenthaler saccade detector, we found that even the smallest amplitude movements (0.25-0.5°) demonstrate basic saccade kinematics. With regard to development and aging, both microsaccade and regular saccade frequency exhibited a very small increase across the life span. Visual search ability, as per many other aspects of visual performance, exhibited a U-shaped function over the lifespan. Finally, both large horizontal and moderate vertical directional biases were detected for all saccade sizes.
Collapse
Affiliation(s)
- Nicholas L Port
- School of Optometry, Indiana University, 800 E Atwater Ave, Bloomington, IN 47405, United States; Program in Neuroscience, Department of Psychological and Brain Sciences, Cognitive Science Program, Indiana University, United States.
| | - Jane Trimberger
- School of Optometry, Indiana University, 800 E Atwater Ave, Bloomington, IN 47405, United States; Illinois College of Optometry, 3241 South Michigan Avenue, Chicago, IL 60616, United States
| | - Steve Hitzeman
- School of Optometry, Indiana University, 800 E Atwater Ave, Bloomington, IN 47405, United States
| | - Bryan Redick
- School of Optometry, Indiana University, 800 E Atwater Ave, Bloomington, IN 47405, United States
| | - Stephen Beckerman
- Illinois College of Optometry, 3241 South Michigan Avenue, Chicago, IL 60616, United States
| |
Collapse
|
93
|
|
94
|
Choe KW, Blake R, Lee SH. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation. Vision Res 2015; 118:48-59. [PMID: 25578924 DOI: 10.1016/j.visres.2014.12.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/08/2014] [Accepted: 12/30/2014] [Indexed: 11/20/2022]
Abstract
Video-based eye tracking relies on locating pupil center to measure gaze positions. Although widely used, the technique is known to generate spurious gaze position shifts up to several degrees in visual angle because pupil centration can change without eye movement during pupil constriction or dilation. Since pupil size can fluctuate markedly from moment to moment, reflecting arousal state and cognitive processing during human behavioral and neuroimaging experiments, the pupil size artifact is prevalent and thus weakens the quality of the video-based eye tracking measurements reliant on small fixational eye movements. Moreover, the artifact may lead to erroneous conclusions if the spurious signal is taken as an actual eye movement. Here, we measured pupil size and gaze position from 23 human observers performing a fixation task and examined the relationship between these two measures. Results disclosed that the pupils contracted as fixation was prolonged, at both small (<16s) and large (∼4min) time scales, and these pupil contractions were accompanied by systematic errors in gaze position estimation, in both the ellipse and the centroid methods of pupil tracking. When pupil size was regressed out, the accuracy and reliability of gaze position measurements were substantially improved, enabling differentiation of 0.1° difference in eye position. We confirmed the presence of systematic changes in pupil size, again at both small and large scales, and its tight relationship with gaze position estimates when observers were engaged in a demanding visual discrimination task.
Collapse
Affiliation(s)
- Kyoung Whan Choe
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Randolph Blake
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-742, Republic of Korea; Vanderbilt Vision Research Center and Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|