51
|
van Gendt MJ, Koka K, Kalkman RK, Stronks HC, Briaire JJ, Litvak L, Frijns JHM. Simulating intracochlear electrocochleography with a combined model of acoustic hearing and electric current spread in the cochlea. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2049. [PMID: 32237816 DOI: 10.1121/10.0000948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Intracochlear electrocochleography (ECochG) is a potential tool for the assessment of residual hearing in cochlear implant users during implantation and acoustical tuning postoperatively. It is, however, unclear how these ECochG recordings from different locations in the cochlea depend on the stimulus parameters, cochlear morphology, implant design, or hair cell degeneration. In this paper, a model is presented that simulates intracochlear ECochG recordings by combining two existing models, namely a peripheral one that simulates hair cell activation and a three-dimensional (3D) volume-conduction model of the current spread in the cochlea. The outcomes were compared to actual ECochG recordings from subjects with a cochlear implant (CI). The 3D volume conduction simulations showed that the intracochlear ECochG is a local measure of activation. Simulations showed that increasing stimulus frequency resulted in a basal shift of the peak cochlear microphonic (CM) amplitude. Increasing the stimulus level resulted in wider tuning curves as recorded along the array. Simulations with hair cell degeneration resulted in ECochG responses that resembled the recordings from the two subjects in terms of CM onset responses, higher harmonics, and the width of the tuning curve. It was concluded that the model reproduced the patterns seen in intracochlear hair cell responses recorded from CI-subjects.
Collapse
Affiliation(s)
- Margriet J van Gendt
- Department of Otorhinolaryngology, Leiden University Medical Centre, P.O Box 9600, 2300 RC Leiden, The Netherlands
| | - Kanthaiah Koka
- Research and Technology, Advanced Bionics, Valencia, California 91355, USA
| | - Randy K Kalkman
- Department of Otorhinolaryngology, Leiden University Medical Centre, P.O Box 9600, 2300 RC Leiden, The Netherlands
| | - H Christiaan Stronks
- Department of Otorhinolaryngology, Leiden University Medical Centre, P.O Box 9600, 2300 RC Leiden, The Netherlands
| | - Jeroen J Briaire
- Department of Otorhinolaryngology, Leiden University Medical Centre, P.O Box 9600, 2300 RC Leiden, The Netherlands
| | - Leonid Litvak
- Research and Technology, Advanced Bionics, Valencia, California 91355, USA
| | - Johan H M Frijns
- Department of Otorhinolaryngology, Leiden University Medical Centre, P.O Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
52
|
Wu F, Xiong H, Sha S. Noise-induced loss of sensory hair cells is mediated by ROS/AMPKα pathway. Redox Biol 2019; 29:101406. [PMID: 31926629 PMCID: PMC6933152 DOI: 10.1016/j.redox.2019.101406] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
The formation of reactive oxygen species (ROS) is a well-documented process in noise-induced hearing loss (NIHL). We have also previously shown that activation of 5' adenosine monophosphate (AMP)-activated protein kinase (AMPKα) at its catalytic residue T172 is one of the key reactions triggering noise-induced outer hair cell (OHC) death. In this study, we are addressing the link between ROS formation and activation of AMPKα in OHCs after noise exposure. In-vivo treatment of CBA/J mice with the antioxidant N-acetyl cysteine (NAC) reduced noise-induced ROS formation (as assessed by the relative levels of 4-hydroxynonenal and 3-nitrotyrosine) and activation of AMPKα in OHCs. Forskolin, an activator of adenylyl cyclase (AC) and an antioxidant, significantly increased cyclic adenosine monophosphate (cAMP) and decreased ROS formation and noise-induced activation of AMPKα. Consequently, treatment with forskolin attenuated noise-induced losses of OHCs and NIHL. In HEI-OC1 cells, H2O2-induced activation of AMPKα and cell death were inhibited by the application of forskolin. The sum of our data indicates that noise activates AMPKα in OHCs through formation of ROS and that noise-exposure-induced OHC death is mediated by a ROS/AMPKα-dependent pathway. Forskolin may serve as a potential compound for prevention of NIHL.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
53
|
Deus CM, Yambire KF, Oliveira PJ, Raimundo N. Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends Mol Med 2019; 26:71-88. [PMID: 31791731 DOI: 10.1016/j.molmed.2019.10.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Cellular function requires coordination between different organelles and metabolic cues. Mitochondria and lysosomes are essential for cellular metabolism as major contributors of chemical energy and building blocks. It is therefore pivotal for cellular function to coordinate the metabolic roles of mitochondria and lysosomes. However, these organelles do more than metabolism, given their function as fundamental signaling platforms in the cell that regulate many key processes such as autophagy, proliferation, and cell death. Mechanisms of crosstalk between mitochondria and lysosomes are discussed, both under physiological conditions and in diseases that affect these organelles.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - King Faisal Yambire
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany.
| |
Collapse
|
54
|
Abstract
Auditory processing in the cochlea depends on the integrity of the mechanosensory hair cells. Over a lifetime, hearing loss can be acquired from numerous etiologies such as exposure to excessive noise, the use of ototoxic medications, bacterial or viral ear infections, head injuries, and the aging process. Loss of sensory hair cells is a common pathological feature of the varieties of acquired hearing loss. Additionally, the inner hair cell synapse can be damaged by mild insults. Therefore, surface preparations of cochlear epithelia, in combination with immunolabeling techniques and confocal imagery, are a very useful tool for the investigation of cochlear pathologies, including losses of ribbon synapses and sensory hair cells, changes in protein levels in hair cells and supporting cells, hair cell regeneration, and determination of report gene expression (i.e., GFP) for verification of successful transduction and identification of transduced cell types. The cochlea, a bony spiral-shaped structure in the inner ear, holds the auditory sensory end organ, the organ of Corti (OC). Sensory hair cells and surrounding supporting cells in the OC are contained in the cochlear duct and rest on the basilar membrane, organized in a tonotopic fashion with high-frequency detection occurring in the base and low-frequency in the apex. With the availability of molecular and genetic information and the ability to manipulate genes by knockout and knock-in techniques, mice have been widely used in biological research, including in hearing science. However, the adult mouse cochlea is miniscule, and the cochlear epithelium is encapsulated in a bony labyrinth, making microdissection difficult. Although dissection techniques have been developed and used in many laboratories, this modified microdissection method using cell and tissue adhesive is easier and more convenient. It can be used in all types of adult mouse cochleae following decalcification.
Collapse
Affiliation(s)
- Qiao-Jun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina; MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University
| | - Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina;
| |
Collapse
|
55
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
56
|
Wang H, Lin C, Yao J, Shi H, Zhang C, Wei Q, Lu Y, Chen Z, Xing G, Cao X. Deletion of OSBPL2 in auditory cells increases cholesterol biosynthesis and drives reactive oxygen species production by inhibiting AMPK activity. Cell Death Dis 2019; 10:627. [PMID: 31427568 PMCID: PMC6700064 DOI: 10.1038/s41419-019-1858-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
Oxysterol-binding protein like 2 (OSBPL2) was identified as a novel causal gene for autosomal dominant nonsyndromic hearing loss. However, the pathogenesis of OSBPL2 deficits in ADNSHL was still unclear. The function of OSBPL2 as a lipid-sensing regulator in multiple cellular processes suggested that OSBPL2 might play an important role in the regulation of cholesterol-homeostasis, which was essential for inner ear. In this study the potential roles of OSBPL2 in cholesterol biosynthesis and ROS production were investigated in Osbpl2-KO OC1 cells and osbpl2b-KO zebrafish. RNA-seq-based analysis suggested that OSBPL2 was implicated in cholesterol biosynthesis and AMPK signaling pathway. Furthermore, Osbpl2/osbpl2b-KO resulted in a reduction of AMPK activity and up-regulation of Srebp2/srebp2, Hmgcr/hmgcr and Hmgcs1/hmgcs1, key genes in the sterol biosynthetic pathway and associated with AMPK signaling. In addition, OSBPL2 was also found to interact with ATIC, key activator of AMPK. The levels of total cholesterol and ROS in OC1 cells or zebrafish inner ear were both increased in Osbpl2/osbpl2b-KO mutants and the mitochondrial damage was detected in Osbpl2-KO OC1 cells. This study uncovered the regulatory roles of OSBPL2 in cellular cholesterol biosynthesis and ROS production. These founds might contribute to the deep understanding of the pathogenesis of OSBPL2 mutation in ADNSHL.
Collapse
Affiliation(s)
- Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hairong Shi
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China. .,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
57
|
Rybak LP, Dhukhwa A, Mukherjea D, Ramkumar V. Local Drug Delivery for Prevention of Hearing Loss. Front Cell Neurosci 2019; 13:300. [PMID: 31338024 PMCID: PMC6629775 DOI: 10.3389/fncel.2019.00300] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Systemic delivery of therapeutics for targeting the cochlea to prevent or treat hearing loss is challenging. Systemic drugs have to cross the blood-labyrinth barrier (BLB). BLB can significantly prevent effective penetration of drugs in appropriate concentrations to protect against hearing loss caused by inflammation, ototoxic drugs, or acoustic trauma. This obstacle may be obviated by local administration of protective agents. This route can deliver higher concentration of drug compared to systemic application and preclude systemic side effects. Protective agents have been administered by intra-tympanic injection in numerous preclinical studies. Drugs such as steroids, etanercept, D and L-methionine, pifithrin-alpha, adenosine agonists, melatonin, kenpaullone (a cyclin-dependent kinase 2 (CDK2) inhibitor) have been reported to show efficacy against cisplatin ototoxicity in animal models. Several siRNAs have been shown to ameliorate cisplatin ototoxicity when administered by intra-tympanic injection. The application of corticosteroids and a number of other drugs with adjuvants appears to enhance efficacy. Administration of siRNAs to knock down AMPK kinase, liver kinase B1 (LKB1) or G9a in the cochlea have been found to ameliorate noise-induced hearing loss. The local administration of these compounds appears to be effective in protecting the cochlea against damage from cisplatin or noise trauma. Furthermore the intra-tympanic route yields maximum protection in the basal turn of the cochlea which is most vulnerable to cisplatin ototoxicity and noise trauma. There appears to be very little transfer of these agents to the systemic circulation. This would avoid potential side effects including interference with anti-tumor efficacy of cisplatin. Nanotechnology offers strategies to effectively deliver protective agents to the cochlea. This review summarizes the pharmacology of local drug delivery by intra-tympanic injection to prevent hearing loss caused by cisplatin and noise exposure in animals. Future refinements in local protective agents provide exciting prospects for amelioration of hearing loss resulting from cisplatin or noise exposure.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States.,Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Asmita Dhukhwa
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Otolaryngology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, IL, United States
| |
Collapse
|
58
|
Abstract
Antisense oligonucleotides (ASOs) have shown potential as therapeutic molecules for the treatment of inner ear dysfunction. The peripheral sensory organs responsible for both hearing and equilibrium are housed within the inner ear. Hearing loss and vestibular balance problems affect a large portion of the population and limited treatment options exist. Targeting ASOs to the inner ear as a therapeutic strategy has unique pharmacokinetic and drug delivery opportunities and challenges. Here, we review ASO technology, delivery, disease targets, and other key considerations for development of this therapeutic approach.
Collapse
Affiliation(s)
- Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Science and Medicine, North Chicago, IL, 60064, USA.
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE, 68583, USA
| |
Collapse
|
59
|
Fernandez-Mosquera L, Yambire KF, Couto R, Pereyra L, Pabis K, Ponsford AH, Diogo CV, Stagi M, Milosevic I, Raimundo N. Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis. Autophagy 2019; 15:1572-1591. [PMID: 30917721 PMCID: PMC6693470 DOI: 10.1080/15548627.2019.1586256] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin). AMPK is found to be necessary for basal lysosomal function, and AMPK deactivation in RC-deficiency inhibits lysosomal function by decreasing the activity of the lysosomal Ca2+ channel MCOLN1 (mucolipin 1). MCOLN1 is regulated by phosphoinositide kinase PIKFYVE and its product PtdIns(3,5)P2, which is also decreased in RC-deficiency. Notably, reactivation of AMPK, in a PIKFYVE-dependent manner, or of MCOLN1 in RC-deficient cells, restores lysosomal hydrolytic capacity. Building on these data and the literature, we propose that downregulation of the AMPK-PIKFYVE-PtdIns(3,5)P2-MCOLN1 pathway causes lysosomal Ca2+ accumulation and impaired lysosomal catabolism. Besides unveiling a novel role of AMPK in lysosomal function, this study points to the mechanism that links mitochondrial malfunction to impaired lysosomal catabolism, underscoring the importance of AMPK and the complexity of organelle cross-talk in the regulation of cellular homeostasis. Abbreviation: ΔΨm: mitochondrial transmembrane potential; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATP: adenosine triphosphate; ATP6V0A1: ATPase, H+ transporting, lysosomal, V0 subbunit A1; ATP6V1A: ATPase, H+ transporting, lysosomal, V0 subbunit A; BSA: bovine serum albumin; CCCP: carbonyl cyanide-m-chlorophenylhydrazone; CREB1: cAMP response element binding protein 1; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco’s modified Eagle’s medium; DMSO: dimethyl sulfoxide; EBSS: Earl’s balanced salt solution; ER: endoplasmic reticulum; FBS: fetal bovine serum; FCCP: carbonyl cyanide-p-trifluoromethoxyphenolhydrazone; GFP: green fluorescent protein; GPN: glycyl-L-phenylalanine 2-naphthylamide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin 1; MEF: mouse embryonic fibroblast; MITF: melanocyte inducing transcription factor; ML1N*2-GFP: probe used to detect PtdIns(3,5)P2 based on the transmembrane domain of MCOLN1; MTORC1: mechanistic target of rapamycin kinase complex 1; NDUFS4: NADH:ubiquinone oxidoreductase subunit S4; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; pcDNA: plasmid cytomegalovirus promoter DNA; PCR: polymerase chain reaction; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; P/S: penicillin-streptomycin; PVDF: polyvinylidene fluoride; qPCR: quantitative real time polymerase chain reaction; RFP: red fluorescent protein; RNA: ribonucleic acid; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TMRM: tetramethylrhodamine, methyl ester, perchlorate; ULK1: unc-51 like autophagy activating kinase 1; ULK2: unc-51 like autophagy activating kinase 2; UQCRC1: ubiquinol-cytochrome c reductase core protein 1; v-ATPase: vacuolar-type H+-translocating ATPase; WT: wild-type
Collapse
Affiliation(s)
- Lorena Fernandez-Mosquera
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,b Doctoral Program in Molecular Medicine, Georg August University Goettingen , Goettingen , Germany
| | - King Faisal Yambire
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,c International Max-Planck Research School in Neuroscience , Goettingen , Germany.,d European Neuroscience Institute Goettingen, University Medical Center Goettingen and Max-Planck Society , Goettingen , Germany
| | - Renata Couto
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,e Doctoral Program in Molecular Biology of Cells, Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen , Goettingen , Germany
| | - Leonardo Pereyra
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany.,e Doctoral Program in Molecular Biology of Cells, Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen , Goettingen , Germany
| | - Kamil Pabis
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| | - Amy H Ponsford
- f Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Cátia V Diogo
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| | - Massimiliano Stagi
- f Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Ira Milosevic
- d European Neuroscience Institute Goettingen, University Medical Center Goettingen and Max-Planck Society , Goettingen , Germany
| | - Nuno Raimundo
- a Institute of Cellular Biochemistry, University Medical Center Goettingen , Goettingen , Germany
| |
Collapse
|
60
|
Inhibition of Histone Methyltransferase G9a Attenuates Noise-Induced Cochlear Synaptopathy and Hearing Loss. J Assoc Res Otolaryngol 2019; 20:217-232. [PMID: 30710318 DOI: 10.1007/s10162-019-00714-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023] Open
Abstract
Posttranslational modification of histones alters their interaction with DNA and nuclear proteins, influencing gene expression and cell fate. In this study, we investigated the effect of G9a (KMT1C, EHMT2), a major histone lysine methyltransferase encoded by the human EHMT2 gene and responsible for histone H3 lysine 9 dimethylation (H3K9me2) on noise-induced permanent hearing loss (NIHL) in adult CBA/J mice. The conditions of noise exposure used in this study led to losses of cochlear synapses and outer hair cells (OHCs) and permanent auditory threshold shifts. Inhibition of G9a with its specific inhibitor BIX 01294 or with siRNA significantly attenuated these pathological features. Treatment with BIX 01294 also prevented the noise-induced decrease of KCNQ4 immunolabeling in OHCs. Additionally, G9a was increased in cochlear cells, including both outer and inner sensory hair cells, some spiral ganglion neurons (SGNs), and marginal cells, 1 h after the completion of the noise exposure. Also subsequent to noise exposure, immunoreactivity for H3K9me2 appeared in some nuclei of OHCs following a high-to-low frequency gradient with more labeled OHCs in the 45-kHz than the 32-kHz region, as well as in the marginal cells and in some SGNs of the basal turn. These findings suggest that epigenetic modifications of H3K9me2 are involved in NIHL and that pharmacological targeting of G9a may offer a strategy for protection against cochlear synaptopathy and NIHL.
Collapse
|
61
|
Wang X, Zhu Y, Long H, Pan S, Xiong H, Fang Q, Hill K, Lai R, Yuan H, Sha SH. Mitochondrial Calcium Transporters Mediate Sensitivity to Noise-Induced Losses of Hair Cells and Cochlear Synapses. Front Mol Neurosci 2019; 11:469. [PMID: 30670946 PMCID: PMC6331433 DOI: 10.3389/fnmol.2018.00469] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria modulate cellular calcium homeostasis by the combined action of the mitochondrial calcium uniporter (MCU), a selective calcium entry channel, and the sodium calcium exchanger (NCLX), which extrudes calcium from mitochondria. In this study, we investigated MCU and NCLX in noise-induced hearing loss (NIHL) using adult CBA/J mice and noise-induced alterations of inner hair cell (IHC) synapses in MCU knockout mice. Following noise exposure, immunoreactivity of MCU increased in cochlear sensory hair cells of the basal turn, while immunoreactivity of NCLX decreased in a time- and exposure-dependent manner. Inhibition of MCU activity via MCU siRNA pretreatment or the specific pharmacological inhibitor Ru360 attenuated noise-induced loss of sensory hair cells and synaptic ribbons, wave I amplitudes, and NIHL in CBA/J mice. This protection was afforded, at least in part, through reduced cleavage of caspase 9 (CC9). Furthermore, MCU knockout mice on a hybrid genetic CD1 and C57/B6 background showed resistance to noise-induced seizures compared to wild-type littermates. Owing to the CD1 background, MCU knockouts and littermates suffer genetic high frequency hearing loss, but their IHCs remain intact. Noise-induced loss of IHC synaptic connections and reduction of auditory brainstem response (ABR) wave I amplitude were recovered in MCU knockout mice. These results suggest that cellular calcium influx during noise exposure leads to mitochondrial calcium overload via MCU and NCLX. Mitochondrial calcium overload, in turn, initiates cell death pathways and subsequent loss of hair cells and synaptic connections, resulting in NIHL.
Collapse
Affiliation(s)
- Xianren Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanping Zhu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haishan Long
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Song Pan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hao Xiong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Kayla Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ruosha Lai
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hu Yuan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
62
|
Carpena NT, Lee MY. Genetic Hearing Loss and Gene Therapy. Genomics Inform 2018; 16:e20. [PMID: 30602081 PMCID: PMC6440668 DOI: 10.5808/gi.2018.16.4.e20] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Genetic hearing loss crosses almost all the categories of hearing loss which includes the following: conductive, sensory, and neural; syndromic and nonsyndromic; congenital, progressive, and adult onset; high-frequency, low-frequency, or mixed frequency; mild or profound; and recessive, dominant, or sex-linked. Genes play a role in almost half of all cases of hearing loss but effective treatment options are very limited. Genetic hearing loss is considered to be extremely genetically heterogeneous. The advancements in genomics have been instrumental to the identification of more than 6,000 causative variants in more than 150 genes causing hearing loss. Identification of genes for hearing impairment provides an increased insight into the normal development and function of cells in the auditory system. These defective genes will ultimately be important therapeutic targets. However, the auditory system is extremely complex which requires tremendous advances in gene therapy including gene vectors, routes of administration, and therapeutic approaches. This review summarizes and discusses recent advances in elucidating the genomics of genetic hearing loss and technologies aimed at developing a gene therapy that may become a treatment option for in the near future.
Collapse
Affiliation(s)
- Nathanial T Carpena
- Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Min Young Lee
- Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan 31116, Korea.,Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
63
|
Yu Y, Hu B, Bao J, Mulvany J, Bielefeld E, Harrison RT, Neton SA, Thirumala P, Chen Y, Lei D, Qiu Z, Zheng Q, Ren J, Perez-Flores MC, Yamoah EN, Salehi P. Otoprotective Effects of Stephania tetrandra S. Moore Herb Isolate against Acoustic Trauma. J Assoc Res Otolaryngol 2018; 19:653-668. [PMID: 30187298 PMCID: PMC6249158 DOI: 10.1007/s10162-018-00690-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Abstract
Noise is the most common occupational and environmental hazard, and noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit. Although therapeutics that target the free-radical pathway have shown promise, none of these compounds is currently approved against NIHL by the United States Food and Drug Administration. The present study has demonstrated that tetrandrine (TET), a traditional Chinese medicinal alkaloid and the main chemical isolate of the Stephania tetrandra S. Moore herb, significantly attenuated NIHL in CBA/CaJ mice. TET is known to exert antihypertensive and antiarrhythmic effects through the blocking of calcium channels. Whole-cell patch-clamp recording from adult spiral ganglion neurons showed that TET blocked the transient Ca2+ current in a dose-dependent manner and the half-blocking concentration was 0.6 + 0.1 μM. Consistent with previous findings that modulations of calcium-based signaling pathways have both prophylactic and therapeutic effects against neural trauma, NIHL was significantly diminished by TET administration. Importantly, TET has a long-lasting protective effect after noise exposure (48 weeks) in comparison to 2 weeks after noise exposure. The otoprotective effects of TET were achieved mainly by preventing outer hair cell damage and synapse loss between inner hair cells and spiral ganglion neurons. Thus, our data indicate that TET has great potential in the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Yan Yu
- The First People’s Hospital of Zhangjiagang, 68 W Jiyang Road, Zhangjiagang City, 215600 Jiangsu China
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Bing Hu
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Jianxin Bao
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Jessica Mulvany
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Eric Bielefeld
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Ryan T. Harrison
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Sarah A. Neton
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Partha Thirumala
- The University of Pittsburgh Medical Center, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Yingying Chen
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Debin Lei
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Jihao Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Maria Cristina Perez-Flores
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Pezhman Salehi
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| |
Collapse
|
64
|
Kuwako KI, Okano H. Versatile Roles of LKB1 Kinase Signaling in Neural Development and Homeostasis. Front Mol Neurosci 2018; 11:354. [PMID: 30333724 PMCID: PMC6176002 DOI: 10.3389/fnmol.2018.00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Kinase signaling pathways orchestrate a majority of cellular structures and functions across species. Liver kinase B1 (LKB1, also known as STK11 or Par-4) is a ubiquitously expressed master serine/threonine kinase that plays crucial roles in numerous cellular events, such as polarity control, proliferation, differentiation and energy homeostasis, in many types of cells by activating downstream kinases of the AMP-activated protein kinase (AMPK) subfamily members. In contrast to the accumulating evidence for LKB1 functions in nonneuronal tissues, its functions in the nervous system have been relatively less understood until recently. In the brain, LKB1 initially emerged as a principal regulator of axon/dendrite polarity in forebrain neurons. Thereafter, recent investigations have rapidly uncovered diverse and essential functions of LKB1 in the developing and mature nervous system, such as migration, neurite morphogenesis, myelination and the maintenance of neural integrity, demonstrating that LKB1 is also a multifunctional master kinase in the nervous system. In this review article, we summarize the expanding knowledge about the functional aspects of LKB1 signaling in neural development and homeostasis.
Collapse
Affiliation(s)
- Ken-Ichiro Kuwako
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
65
|
Fu X, Sun X, Zhang L, Jin Y, Chai R, Yang L, Zhang A, Liu X, Bai X, Li J, Wang H, Gao J. Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss. J Clin Invest 2018; 128:4938-4955. [PMID: 30247156 DOI: 10.1172/jci98058] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/08/2018] [Indexed: 12/29/2022] Open
Abstract
The underlying molecular mechanisms of age-related hearing loss (ARHL) in humans and many strains of mice have not been fully characterized. This common age-related disorder is assumed to be closely associated with oxidative stress. Here, we demonstrate that mTORC1 signaling is highly and specifically activated in the cochlear neurosensory epithelium (NSE) in aging mice, and rapamycin injection prevents ARHL. To further examine the specific role of mTORC1 signaling in ARHL, we generated murine models with NSE-specific deletions of Raptor or Tsc1, regulators of mTORC1 signaling. Raptor-cKO mice developed hearing loss considerably more slowly than WT littermates. Conversely, Tsc1 loss led to the early-onset death of cochlear hair cells and consequently accelerated hearing loss. Tsc1-cKO cochleae showed features of oxidative stress and impaired antioxidant defenses. Treatment with rapamycin and the antioxidant N-acetylcysteine rescued Tsc1-cKO hair cells from injury in vivo. In addition, we identified the peroxisome as the initial signaling organelle involved in the regulation of mTORC1 signaling in cochlear hair cells. In summary, our findings identify overactive mTORC1 signaling as one of the critical causes of ARHL and suggest that reduction of mTORC1 activity in cochlear hair cells may be a potential strategy to prevent ARHL.
Collapse
Affiliation(s)
- Xiaolong Fu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Linqing Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Yecheng Jin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Renjie Chai
- Key Laboratory for Development Genes and Human Disease, Southeast University, Nanjing, China
| | - Lili Yang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China.,Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiangguo Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
66
|
Noble KV, Reyzer ML, Barth JL, McDonald H, Tuck M, Schey KL, Krug EL, Lang H. Use of Proteomic Imaging Coupled With Transcriptomic Analysis to Identify Biomolecules Responsive to Cochlear Injury. Front Mol Neurosci 2018; 11:243. [PMID: 30065626 PMCID: PMC6056684 DOI: 10.3389/fnmol.2018.00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Exposure to noise or ototoxic agents can result in degeneration of cells in the sensory epithelium and auditory nerve, as well as non-sensory cells of the cochlear lateral wall. However, the molecular mechanisms underlying this pathology remain unclear. The purpose of this study was to localize and identify proteins in the cochlea that are responsive to noise or ototoxic exposure using a complementary proteo-transcriptomic approach. MALDI imaging of cochlear sections revealed numerous protein signals with distinct cochlear localization patterns in both cochlear injury models, of which six were chosen for further investigation. A query of proteomic databases identified 709 candidates corresponding to m/z values for the six proteins. An evaluation of mRNA expression data from our previous studies of these injured models indicated that 208 of the candidates were affected in both injury models. Downstream validation analyses yielded proteins with confirmatory distributions and responses to injury. The combined analysis of MALDI imaging with gene expression data provides a new strategy to identify molecular regulators responsive to cochlear injury. This study demonstrates the applicability of MALDI imaging for investigating protein localization and abundance in frozen sections from animals modeling cochlear pathology.
Collapse
Affiliation(s)
- Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Michael Tuck
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Edward L. Krug
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
67
|
Lim HW, Pak K, Ryan AF, Kurabi A. Screening Mammalian Cochlear Hair Cells to Identify Critical Processes in Aminoglycoside-Mediated Damage. Front Cell Neurosci 2018; 12:179. [PMID: 30013464 PMCID: PMC6036173 DOI: 10.3389/fncel.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
There is considerable interest in discovering drugs with the potential to protect inner ear hair cells (HCs) from damage. One means of discovery is to screen compound libraries. Excellent screening protocols have been developed employing cell lines derived from the cochlea and zebrafish larvae. However, these do not address the differentiated mammalian hair cell. We have developed a screening method employing micro-explants of the mammalian organ of Corti (oC) to identify compounds with the ability to influence aminoglycoside-induced HC loss. The assay is based on short segments of the neonatal mouse oC, containing ~80 HCs which selectively express green fluorescent protein (GFP). This allows the screening of hundreds of potential protectants in an assay that includes both inner and outer HCs. This review article describes various screening methods, including the micro-explant assay. In addition, two micro-explant screening studies in which antioxidant and kinase inhibitor libraries were evaluated are reviewed. The results from these screens are related to current models of HC damage and protection.
Collapse
Affiliation(s)
- Hyun Woo Lim
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Kwang Pak
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,San Diego VA Healthcare System, La Jolla, CA, United States.,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
68
|
Lee MY, Park YH. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8137614. [PMID: 30009175 PMCID: PMC6020521 DOI: 10.1155/2018/8137614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells (HCs) or a damaged afferent nerve pathway to the auditory cortex. The most common option for the treatment of sensorineural hearing loss is hearing rehabilitation using hearing devices. Various kinds of hearing devices are available but, despite recent advancements, their perceived sound quality does not mimic that of the "naïve" cochlea. Damage to crucial cochlear structures is mostly irreversible and results in permanent hearing loss. Cochlear HC regeneration has long been an important goal in the field of hearing research. However, it remains challenging because, thus far, no medical treatment has successfully regenerated cochlear HCs. Recent advances in genetic modulation and developmental techniques have led to novel approaches to generating HCs or protecting against HC loss, to preserve hearing. In this review, we present and review the current status of two different approaches to restoring or protecting hearing, gene therapy, including the newly introduced CRISPR/Cas9 genome editing, and stem cell therapy, and suggest the future direction.
Collapse
Affiliation(s)
- Min Yong Lee
- Department of Otorhinolaryngology and Head & Neck Surgery, Dankook University Hospital, Cheonan, Chungnam, Republic of Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
69
|
Shen Y, Ye B, Chen P, Wang Q, Fan C, Shu Y, Xiang M. Cognitive Decline, Dementia, Alzheimer's Disease and Presbycusis: Examination of the Possible Molecular Mechanism. Front Neurosci 2018; 12:394. [PMID: 29937713 PMCID: PMC6002513 DOI: 10.3389/fnins.2018.00394] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
The incidences of presbycusis and dementia are high among geriatric diseases. Presbycusis is the general term applied to age-related hearing loss and can be caused by many risk factors, such as noise exposure, smoking, medication, hypertension, family history, and other factors. Mutation of mitochondrial DNA in hair cells, spiral ganglion cells, and stria vascularis cells of the cochlea is the basic mechanism of presbycusis. Dementia is a clinical syndrome that includes the decline of cognitive and conscious states and is caused by many neurodegenerative diseases, of which Alzheimer’s disease (AD) is the most common. The amyloid cascade hypothesis and tau hypothesis are the two major hypotheses that describe the AD pathogenic mechanism. Recent studies have shown that deposition of Aβ and hyperphosphorylation of the tau protein may cause mitochondrial dysfunction. An increasing number of papers have reported that, on one hand, the auditory system function in AD patients is damaged as their cognitive ability declines and that, on the other hand, hearing loss may be a risk factor for dementia and AD. However, the relationship between presbycusis and AD is still unknown. By reviewing the relevant literature, we found that the SIRT1-PGC1α pathway and LKB1 (or CaMKKβ)-AMPK pathway may play a role in the preservation of cerebral neuron function by taking part in the regulation of mitochondrial function. Then vascular endothelial growth factor signal pathway is activated to promote vascular angiogenesis and maintenance of the blood–brain barrier integrity. Recently, experiments have also shown that their expression levels are altered in both presbycusis and AD mouse models. Therefore, we propose that exploring the specific molecular link between presbycusis and AD may provide new ideas for their prevention and treatment.
Collapse
Affiliation(s)
- Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.,Department of Otolaryngology & Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yilai Shu
- Department of Otolaryngology & Head and Neck Surgery, EENT Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
70
|
Yousaf R, Gu C, Ahmed ZM, Khan SN, Friedman TB, Riazuddin S, Shears SB, Riazuddin S. Mutations in Diphosphoinositol-Pentakisphosphate Kinase PPIP5K2 are associated with hearing loss in human and mouse. PLoS Genet 2018; 14:e1007297. [PMID: 29590114 PMCID: PMC5891075 DOI: 10.1371/journal.pgen.1007297] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/09/2018] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Autosomal recessive nonsyndromic hearing loss is a genetically heterogeneous disorder. Here, we report a severe-to-profound sensorineural hearing loss locus, DFNB100 on chromosome 5q13.2-q23.2. Exome enrichment followed by massive parallel sequencing revealed a c.2510G>A transition variant in PPIP5K2 that segregated with DFNB100-associated hearing loss in two large apparently unrelated Pakistani families. PPIP5Ks enzymes interconvert 5-IP7 and IP8, two key members of the inositol pyrophosphate (PP-IP) cell-signaling family. Their actions at the interface of cell signaling and bioenergetic homeostasis can impact many biological processes. The c.2510G>A transition variant is predicted to substitute a highly invariant arginine residue with histidine (p.Arg837His) in the phosphatase domain of PPIP5K2. Biochemical studies revealed that the p.Arg837His variant reduces the phosphatase activity of PPIP5K2 and elevates its kinase activity. We found that in mouse inner ear, PPIP5K2 is expressed in the cochlear and vestibular sensory hair cells, supporting cells and spiral ganglion neurons. Mice homozygous for a targeted deletion of the Ppip5k2 phosphatase domain exhibit degeneration of cochlear outer hair cells and elevated hearing thresholds. Our demonstration that PPIP5K2 has a role in hearing in humans indicates that PP-IP signaling is important to hair cell maintenance and function within inner ear. Exome sequencing coupled with homozygosity mapping was used to identify a missense variant [c.2510G>A; p.(Arg837His)] in PPIP5K2 at the DFNB100 locus that is associated with nonsyndromic, prelingual sensorineural deafness in two large consanguineous Pakistani families. PPIP5Ks are pivotal enzymes for regulating inositol pyrophosphate (PP-IP) turnover. Biochemical analyses revealed that, compared to wild type human PPIP5K2, the PPIP5K2R837H variant exhibited lower phosphatase activity and higher kinase activity, indicating that it promotes increased metabolic flux from 5-IP7 to IP8 in vivo. In rodent inner ears, PPIP5K2 immunoreactivity was observed in the cochlear and vestibular hair cells, supporting cells, and spiral ganglion neurons. Mouse mutants homozygous for the targeted deletion of Ppip5k2 phosphatase domain exhibit degeneration of cochlear outer hair cells and progressive hearing loss. Our work provides the first description of any amino acid variant of PPIP5K2 that is both functionally-significant and associates with a human disorder. The ‘futile cycling’ of the kinase/phosphatase activity of PPIP5K2 makes inner ear function particularly susceptible to even minor changes in the phosphatase activity of PPIP5K2. We have shown that a pathogenic variant in PPIP5K2 is associated with hearing loss in humans. Thus, PPIP5K2 is given new clinical significance by our observations.
Collapse
Affiliation(s)
- Rizwan Yousaf
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United States of America
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America
| | - Zubair M. Ahmed
- Laboratory of Neurogenetics and Regenerative Medicine, Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United States of America
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Thomas B. Friedman
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States of America
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America
| | - Saima Riazuddin
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
71
|
Xiong H, Ou Y, Xu Y, Huang Q, Pang J, Lai L, Zheng Y. Resveratrol Promotes Recovery of Hearing following Intense Noise Exposure by Enhancing Cochlear SIRT1 Activity. Audiol Neurootol 2018; 22:303-310. [DOI: 10.1159/000485312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
The sirtuin SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase known to have protective effects against a wide range of neurological disorders. In the present study, we discovered that C57BL/6 mice fed a long-term diet supplemented with high-dose resveratrol exhibited increased cochlear SIRT1 activity and presented a better recovery of hearing and less loss of hair cells after intense noise exposure compared with those fed a standard chew. Moreover, resveratrol attenuated cochlear SIRT1 decrease and reduced oxidative stress in the cochlea after noise exposure. These results suggest a considerable therapeutic potential of resveratrol for the treatment of noise-induced hearing loss.
Collapse
|
72
|
Nicholas BD, Francis S, Wagner EL, Zhang S, Shin JB. Protein Synthesis Inhibition and Activation of the c-Jun N-Terminal Kinase Are Potential Contributors to Cisplatin Ototoxicity. Front Cell Neurosci 2017; 11:303. [PMID: 29033791 PMCID: PMC5627031 DOI: 10.3389/fncel.2017.00303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022] Open
Abstract
Cisplatin has been regarded as an effective and versatile chemotherapeutic agent for nearly 40 years. Though the associated dose-dependent ototoxicity is known, the cellular mechanisms by which cochleovestibular hair cell death occur are not well understood. We have previously shown that aminoglycoside ototoxicity is mediated in part by cytosolic protein synthesis inhibition. Despite a lack of molecular similarity, aminoglycosides were shown to elicit similar stress pathways to cisplatin. We therefore reasoned that there may be some role of protein synthesis inhibition in cisplatin ototoxicity. Employing a modification of the bioorthogonal noncanonical amino acid tagging (BONCAT) method, we evaluated the effects of cisplatin on cellular protein synthesis. We show that cisplatin inhibits cellular protein synthesis in organ of Corti explant cultures. Similar to what was found after gentamicin exposure, cisplatin activates both the c-Jun N-terminal kinase (JNK) and mammalian target of rapamycin (mTOR) pathways. In contrast to aminoglycosides, cisplatin also inhibits protein synthesis in all cochlear cell types. We further demonstrate that the multikinase inhibitor sorafenib completely prevents JNK activation, while providing only moderate hair cell protection. Simultaneous stimulation of cellular protein synthesis by insulin, however, significantly improved hair cell survival in culture. The presented data provides evidence for a potential role of protein synthesis inhibition in cisplatin-mediated ototoxicity.
Collapse
Affiliation(s)
- Brian D Nicholas
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Shimon Francis
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Sibo Zhang
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
73
|
Bodmer D. An update on drug design strategies to prevent acquired sensorineural hearing loss. Expert Opin Drug Discov 2017; 12:1161-1167. [PMID: 28838250 DOI: 10.1080/17460441.2017.1372744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute sensorineural hearing loss is a dramatic event for the patient. Different pathologies might result in acute sensorineural hearing loss, such as sudden hearing loss, exposure to medications/drugs or loud sound. Current therapeutic approaches include steroids and hyperbaric oxygen in addition to other methods. Research activities of the past have shed light on the molecular mechanisms involved in damage to hair cells, the synapses at the hair cell spiral ganglion junction and the stria vascularis. Molecular events and signaling pathways which underlie damage to these structures have been discovered. Areas covered: This paper summarizes current research efforts involved in investigating the molecular mechanisms involved in acute sensorineural hearing loss. Expert opinion: While progress has been made in unraveling basic mechanisms involved in acute sensorineural hearing loss, it is difficult to translate basic concepts to the clinic. There are often conflicting data in animal and human studies on the effect of a given intervention. There is also a lack of high quality clinical trials (double blind, placebo controlled and high powered). However, this author is confident that research efforts will pay out and that some of these efforts will translate into new therapeutic options for patients with acute hearing loss.
Collapse
Affiliation(s)
- Daniel Bodmer
- a Department of Biomedicine, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland.,b Department of Otolaryngology, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland
| |
Collapse
|
74
|
Liu S, Xu T, Wu X, Lin Y, Bao D, Di Y, Ma T, Dang Y, Jia P, Xian J, Wang A, Liu Y. Pomegranate peel extract attenuates D-galactose-induced oxidative stress and hearing loss by regulating PNUTS/PP1 activity in the mouse cochlea. Neurobiol Aging 2017; 59:30-40. [PMID: 28837860 DOI: 10.1016/j.neurobiolaging.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/11/2017] [Accepted: 07/15/2017] [Indexed: 01/20/2023]
Abstract
Oxidative stress is considered to be a major contributor to age-related hearing loss (ARHL). Here, we investigated whether pomegranate peel extract (PPE) protected against hearing loss by decreased oxidative stress in the cochlea of D-galactose-induced accelerated aging mice. The aging mice exhibited an increase in hearing threshold shifts and hair cells loss, which were improved in the PPE-treated aging mice. The aging mice also exhibited an increase in 4-hydroxynonenal, the expression of protein phosphatase 1 nuclear targeting subunit (PNUTS), p53 and caspase-3, and a decrease in protein phosphatase 1 (PP1) and MDM2 in the cochlea. PPE treatment reversed the changes in aforementioned molecules. Our results suggested that PPE can protect against ARHL, the underlying mechanisms may involve in the inhibition of oxidative damage of cochlea, possibly by regulating PNUTS/PP1 pathway. The results from the present study provide a new therapeutic strategy to use PPE for prevention of ARHL.
Collapse
Affiliation(s)
- Shuangyue Liu
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xidi Wu
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yuhan Lin
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Dongyan Bao
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yang Di
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Tingting Ma
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yan Dang
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Peili Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Jianqiao Xian
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China.
| | - Yongxin Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Hospital of Jinzhou Medical University, Jinzhou, P.R. China.
| |
Collapse
|
75
|
Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP. Translational issues in cochlear synaptopathy. Hear Res 2017; 349:164-171. [PMID: 28069376 DOI: 10.1016/j.heares.2016.12.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
Understanding the biology of the previously underappreciated sensitivity of cochlear synapses to noise insult, and its clinical consequences, is becoming a mission for a growing number of auditory researchers. In addition, several research groups have become interested in developing therapeutic approaches that can reverse synaptopathy and restore hearing function. One of the major challenges to realizing the potential of synaptopathy rodent models is that current clinical audiometric approaches cannot yet reveal the presence of this subtle cochlear pathology in humans. This has catalyzed efforts, both from basic and clinical perspectives, to investigate novel means for diagnosing synaptopathy and to determine the main functional consequences for auditory perception and hearing abilities. Such means, and a strong concordance between findings in pre-clinical animal models and clinical studies in humans, are important for developing and realizing therapeutics. This paper frames the key outstanding translational questions that need to be addressed to realize this ambitious goal.
Collapse
Affiliation(s)
- Ann E Hickox
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Erik Larsen
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | - Michael G Heinz
- Speech, Language, and Hearing Sciences and Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, IN, 47907, USA.
| | - Leslie Shinobu
- Decibel Therapeutics, 215 First St, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
76
|
Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 2016; 26:85-96. [PMID: 27918210 DOI: 10.1080/13543784.2017.1269171] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) due to industrial, military, and recreational noise exposure is a major, but also potentially preventable cause of acquired hearing loss. For the United States it is estimated that 26 million people (15% of the population) between the ages of 20 and 69 have a high-frequency NIHL at a detriment to the quality of life of the affected individuals and great economic cost to society. Areas covered: This review outlines the pathology and pathophysiology of hearing loss as seen in humans and animal models. Results from molecular studies are presented that have provided the basis for therapeutic strategies successfully applied to animals. Several compounds emerging from these studies (mostly antioxidants) are now being tested in field trials. Expert opinion: Although no clinically applicable intervention has been approved yet, recent trials are encouraging. In order to maximize protective therapies, future work needs to apply stringent criteria for noise exposure and outcome parameters. Attention needs to be paid not only to permanent NIHL due to death of sensory cells but also to temporary effects that may show delayed consequences. Existing results combined with the search for efficacious new therapies should establish a viable treatment within a decade.
Collapse
Affiliation(s)
- Su-Hua Sha
- a Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Jochen Schacht
- b Kresge Hearing Research Institute , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|