51
|
Ouyang CS, Chiang CT, Yang RC, Wu RC, Lin LC. Quantitative electroencephalogram analysis of frontal cortex functional changes in patients with migraine. Kaohsiung J Med Sci 2020; 36:543-551. [PMID: 32259398 DOI: 10.1002/kjm2.12213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023] Open
Abstract
The functional abnormality of brain areas accounting for the migraine remains to be elucidated. Most related studies have used functional magnetic resonance imaging to investigate brain areas involved in migraine. However, the results are heterogeneous. In this study, we used a convenient tool to explore the brain regions involved in migraine. In this study, 40 children with migraine and 40 sex- and age-matched health controls were enrolled, and electroencephalogram was used to explore the functional abnormal areas of migraine through electroencephalogram bands and low-resolution electromagnetic tomography analysis. The results revealed that spectrum edge frequency 50 in all electroencephalogram channels in patients with migraine were lower than those in controls. Significant differences were discovered over frontal areas. In addition, significantly higher current density over the frontopolar prefrontal cortex and orbitofrontal cortex and higher connectivity over the left prefrontal cortex were observed in patients with migraine. We suggest that functional disturbance of the prefrontal cortex may play a potential role in children with migraine, and that low-resolution electromagnetic tomography is a reliable and convenient tool for studying the functional disturbance of migraine.
Collapse
Affiliation(s)
- Chen-Sen Ouyang
- Department of Information Engineering, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Ching-Tai Chiang
- Department of Computer and Communication, National Pingtung University, Pingtung, Taiwan, ROC
| | - Rei-Cheng Yang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Rong-Ching Wu
- Department of Electrical Engineering, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Lung-Chang Lin
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC.,Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
52
|
Tu Y, Zeng F, Lan L, Li Z, Maleki N, Liu B, Chen J, Wang C, Park J, Lang C, Yujie G, Liu M, Fu Z, Zhang Z, Liang F, Kong J. An fMRI-based neural marker for migraine without aura. Neurology 2020; 94:e741-e751. [PMID: 31964691 PMCID: PMC7176301 DOI: 10.1212/wnl.0000000000008962] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To identify and validate an fMRI-based neural marker for migraine without aura (MwoA) and to examine its association with treatment response. METHODS We conducted cross-sectional studies with resting-state fMRI data from 230 participants and machine learning analyses. In studies 1 through 3, we identified, cross-validated, independently validated, and cross-sectionally validated an fMRI-based neural marker for MwoA. In study 4, we assessed the relationship between the neural marker and treatment responses in migraineurs who received a 4-week real or sham acupuncture treatment, or were waitlisted, in a registered clinical trial. RESULTS In study 1 (n = 116), we identified a neural marker with abnormal functional connectivity within the visual, default mode, sensorimotor, and frontal-parietal networks that could discriminate migraineurs from healthy controls (HCs) with 93% sensitivity and 89% specificity. In study 2 (n = 38), we investigated the generalizability of the marker by applying it to an independent cohort of migraineurs and HCs and achieved 84% sensitivity and specificity. In study 3 (n = 76), we verified the specificity of the marker with new datasets of migraineurs and patients with other chronic pain disorders (chronic low back pain and fibromyalgia) and demonstrated 78% sensitivity and 76% specificity for discriminating migraineurs from nonmigraineurs. In study 4 (n = 116), we found that the changes in the marker responses showed significant correlation with the changes in headache frequency in response to real acupuncture. CONCLUSION We identified an fMRI-based neural marker that captures distinct characteristics of MwoA and can link disease pattern changes to brain changes.
Collapse
Affiliation(s)
- Yiheng Tu
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Fang Zeng
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Lei Lan
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Zhengjie Li
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Nasim Maleki
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Bo Liu
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Jun Chen
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Chenchen Wang
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Joel Park
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Courtney Lang
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Gao Yujie
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Mailan Liu
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Zening Fu
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Zhiguo Zhang
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Fanrong Liang
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China
| | - Jian Kong
- From the Department of Psychiatry (Y.T., N.M., J.P., C.L., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Third Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Sichuan; Department of Radiology (B.L., J.C.), Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Center for Complementary and Integrative Medicine (C.W.), Division of Rheumatology, Tufts Medical Center, Boston, MA; Traditional Chinese Medicine School (G.Y), Ningxia Medical University, Yinchuan; The Acupuncture and Tuina School (M.L.), Hunan University of Traditional Chinese Medicine, Changsha, China; The Mind Research Network (Z.F.), Albuquerque, NM; and School of Biomedical Engineering (Z.Z.), Health Science Center, Shenzhen University, China.
| |
Collapse
|
53
|
Borsook D, Upadhyay J, Hargreaves R, Wager T. Enhancing Choice and Outcomes for Therapeutic Trials in Chronic Pain: N-of-1 + Imaging (+ i). Trends Pharmacol Sci 2020; 41:85-98. [DOI: 10.1016/j.tips.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
|
54
|
Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm (Vienna) 2019; 127:551-566. [DOI: 10.1007/s00702-019-02089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
|
55
|
De Micco R, Esposito F, di Nardo F, Caiazzo G, Siciliano M, Russo A, Cirillo M, Tedeschi G, Tessitore A. Sex-related pattern of intrinsic brain connectivity in drug-naïve Parkinson's disease patients. Mov Disord 2019; 34:997-1005. [PMID: 31180598 DOI: 10.1002/mds.27725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sex difference is related to specific clinical features in PD patients over the disease course. OBJECTIVES To investigate the potential sex-difference effect on the spontaneous neuronal activity within the most reported resting-state networks in early untreated PD patients and its correlation with baseline and longitudinal clinical features. METHODS Fifty-six drug-naïve PD patients (30/26 male/female) and 30 (15/15 male/female) matched controls were enrolled in the study. Topological and spectral resting-state functional MRI features of the sensorimotor, dorsal and ventral attention, frontoparietal, and default-mode networks were analyzed for possible sex-difference effects in both PD patients and controls groups. Additionally, a region-of-interest analysis was performed to test for a sex effect on basal ganglia connectivity. Multivariate ordinal regression was used to investigate whether connectivity findings at baseline were predictors of motor impairment over a 2-year follow-up period. RESULTS Compared to female PD patients and controls, male PD patients showed an abnormal spectral composition of the sensorimotor and dorsal attention networks in the slow-5 band. The region-of-interest analysis showed an increased connectivity within the basal ganglia in female PD patients compared to males. Functional sensorimotor connectivity changes at baseline showed to be an independent predictor of disease severity at 2-year follow-up. CONCLUSIONS Our findings revealed the presence of a disease-related, sex-specific cortical and subcortical connectivity pattern within the sensorimotor network, in the early stage of PD. We hypothesize that these findings may be related to the presence of different sex-specific nigrostriatal dopaminergic pathways and might predict PD progression. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, (SA), Italy
| | - Federica di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,Neuropsychology Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.,MRI Research Center, University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
56
|
Tu Y, Fu Z, Zeng F, Maleki N, Lan L, Li Z, Park J, Wilson G, Gao Y, Liu M, Calhoun V, Liang F, Kong J. Abnormal thalamocortical network dynamics in migraine. Neurology 2019; 92:e2706-e2716. [PMID: 31076535 DOI: 10.1212/wnl.0000000000007607] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/01/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the dynamic functional connectivity of thalamocortical networks in interictal migraine patients and whether clinical features are associated with abnormal connectivity. METHODS We investigated dynamic functional network connectivity (dFNC) of the migraine brain in 89 interictal migraine patients and 70 healthy controls. We focused on the temporal properties of thalamocortical connectivity using sliding window cross-correlation, clustering state analysis, and graph-theory methods. Relationships between clinical symptoms and abnormal dFNC were evaluated using a multivariate linear regression model. RESULTS Five dFNC brain states were identified to characterize and compare dynamic functional connectivity patterns. We demonstrated that migraineurs spent more time in a strongly interconnected between-network state, but they spent less time in a sparsely connected state. Interestingly, we found that abnormal posterior thalamus (pulvinar nucleus) dFNC with the visual cortex and the precuneus were significantly correlated with headache frequency of migraine. Further topologic measures revealed that migraineurs had significantly lower efficiency of information transfer in both global and local dFNC. CONCLUSION Our results demonstrated a transient pathologic state with atypical thalamocortical connectivity in migraineurs and extended current findings regarding abnormal thalamocortical networks and dysrhythmia in migraine.
Collapse
Affiliation(s)
- Yiheng Tu
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Zening Fu
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Fang Zeng
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Nasim Maleki
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Lei Lan
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Zhengjie Li
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Joel Park
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Georgia Wilson
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Yujie Gao
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Mailan Liu
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Vince Calhoun
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China
| | - Fanrong Liang
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China.
| | - Jian Kong
- From the Department of Psychiatry (Y.T., N.M., J.P., G.W., J.K.), Massachusetts General Hospital and Harvard Medical School, Charlestown; The Mind Research Network (Z.F., V.C.), Albuquerque, NM; Acupuncture and Tuina School/3rd Teaching Hospital (F.Z., L.L., Z.L., F.L.), Chengdu University of Traditional Chinese Medicine, Chengdu; Traditional Chinese Medicine School (Y.G.), Ningxia Medical University, Yinchuan; and The Acupuncture and Tuina School (M.L.), Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
57
|
Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, Zürcher NR, Akeju O, Bonnier G, Price J, Hooker JM, Napadow V, Loggia ML, Hadjikhani N. Imaging of neuroinflammation in migraine with aura: A [ 11C]PBR28 PET/MRI study. Neurology 2019; 92:e2038-e2050. [PMID: 30918090 DOI: 10.1212/wnl.0000000000007371] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine if migraine with aura is associated with neuroinflammation, which has been suggested by preclinical models of cortical spreading depression (CSD) as well as imaging of human pain conditions. METHODS Thirteen migraineurs with aura and 16 healthy controls received integrated PET/MRI brain scans with [11C]PBR28, a radioligand that binds to the 18 kDa translocator protein, a marker of glial activation. Standardized uptake value ratio (SUVR) was compared between groups, and regressed against clinical variables, using region of interest and whole-brain voxelwise analyses. RESULTS Compared to healthy controls, migraineurs demonstrated SUVR elevations in nociceptive processing areas (e.g., thalamus and primary/secondary somatosensory and insular cortices) as well as in areas previously shown to be involved in CSD generation (visual cortex). SUVR levels in frontoinsular cortex, primary/secondary somatosensory cortices, and basal ganglia were correlated with frequency of migraine attacks. CONCLUSIONS These findings demonstrate that migraine with aura is associated with neuroimmune activation/neuroinflammation, and support a possible link between CSD and glial activation, previously observed in animals.
Collapse
Affiliation(s)
- Daniel S Albrecht
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Caterina Mainero
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Eri Ichijo
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Noreen Ward
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Cristina Granziera
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Nicole R Zürcher
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Oluwaseun Akeju
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Guillaume Bonnier
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Julie Price
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Jacob M Hooker
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Vitaly Napadow
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Marco L Loggia
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Nouchine Hadjikhani
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
| |
Collapse
|
58
|
Plasticity in the dynamic pain connectome associated with ketamine-induced neuropathic pain relief. Pain 2019; 160:1670-1679. [DOI: 10.1097/j.pain.0000000000001545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
59
|
Younis S, Hougaard A, Noseda R, Ashina M. Current understanding of thalamic structure and function in migraine. Cephalalgia 2018; 39:1675-1682. [PMID: 30079744 DOI: 10.1177/0333102418791595] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To review and discuss the literature on the role of thalamic structure and function in migraine. DISCUSSION The thalamus holds an important position in our understanding of allodynia, central sensitization and photophobia in migraine. Structural and functional findings suggest abnormal functional connectivity between the thalamus and various cortical regions pointing towards an altered pain processing in migraine. Pharmacological nociceptive modulation suggests that the thalamus is a potential drug target. CONCLUSION A critical role for the thalamus in migraine-related allodynia and photophobia is well established. Additionally, the thalamus is most likely involved in the dysfunctional pain modulation and processing in migraine, but further research is needed to clarify the exact clinical implications of these findings.
Collapse
Affiliation(s)
- Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
60
|
Abnormal Low-Frequency Oscillations Reflect Trait-Like Pain Ratings in Chronic Pain Patients Revealed through a Machine Learning Approach. J Neurosci 2018; 38:7293-7302. [PMID: 30012686 DOI: 10.1523/jneurosci.0578-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
Measures of moment-to-moment fluctuations in brain activity of an individual at rest have been shown to be a sensitive and reliable metric for studying pathological brain mechanisms across various chronic pain patient populations. However, the relationship between pathological brain activity and clinical symptoms are not well defined. Therefore, we used regional BOLD signal variability/amplitude of low-frequency oscillations (LFOs) to identify functional brain abnormalities in the dynamic pain connectome in chronic pain patients that are related to chronic pain characteristics (i.e., pain intensity). Moreover, we examined whether there were sex-specific attributes of these functional brain abnormalities and whether functional brain abnormalities in patients is related to pain intensity characteristics on different time scales. We acquired resting-state functional MRI and quantified frequency-specific regional LFOs in chronic pain patients with ankylosing spondylitis. We found that patients exhibit frequency-specific aberrations in LFOs. Specifically, lower-frequency (slow-5) abnormalities were restricted to the ascending pain pathway (thalamus and S1), whereas higher-frequency abnormalities also included the default mode (i.e., posterior cingulate cortex; slow-3, slow-4) and salience (i.e., mid-cingulate cortex) networks (slow-4). Using a machine learning approach, we found that these abnormalities, in particular within higher frequencies (slow-3), can be used to make generalizable inferences about patients' average pain ratings (trait-like pain) but not current (i.e., state-like) pain levels. Furthermore, we identified sex differences in LFOs in patients that were not present in healthy controls. These novel findings reveal mechanistic brain abnormalities underlying the longer-lasting symptoms (trait pain intensity) in chronic pain.SIGNIFICANCE STATEMENT Measures of moment-to-moment fluctuations in brain activity of an individual at rest have been shown to be a reliable metric for studying functional brain associated with chronic pain. The current results demonstrate that dysfunction in these intrinsic fluctuations/oscillations in the ascending pain pathway, default mode network, and salience network during resting state display sex differences and can be used to make inferences about trait-like pain intensity ratings in chronic pain patients. These results provide robust and generalizable implications for investigating brain mechanisms associated with longer-lasting/trait-like chronic pain symptoms.
Collapse
|
61
|
Dynamic pain connectome functional connectivity and oscillations reflect multiple sclerosis pain. Pain 2018; 159:2267-2276. [DOI: 10.1097/j.pain.0000000000001332] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
62
|
Schulte LH, Allers A, May A. Visual stimulation leads to activation of the nociceptive trigeminal nucleus in chronic migraine. Neurology 2018; 90:e1973-e1978. [DOI: 10.1212/wnl.0000000000005622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 01/03/2023] Open
Abstract
ObjectiveThe visual system has often been described to be sensitized in migraineurs, with light being perceived as aversive or even painful. One possible explanation for this altered perception is crosslinks between the visual and the trigeminonociceptive system. Visual stimulation in chronic migraineurs on the level of the brainstem might lead to enhanced activity within the spinal trigeminal nucleus (sTN) as the main site of trigeminal pain processing within this area.MethodsEighteen episodic migraineurs (EM), 17 chronic migraineurs (CM), and 19 healthy controls (HC) underwent one session of high-resolution brainstem imaging during which a rotating checkerboard was presented repeatedly as a visual stimulus. Data were analyzed using SPM12 and MATLAB with the classic first-level–second-level approach of SPM. Analyses of variance were used for group comparisons.ResultsCM showed enhanced activation within the sTN as compared to HC. In addition, we observed enhanced activity within the right superior colliculus in CM as compared to HC. When comparing all migraineurs with headaches during scanning with all migraineurs without headaches during scanning and HC, we also found the sTN to be more strongly activated during headaches.ConclusionOur data provide evidence for the existence of visual–nociceptive integration on brainstem level in chronic migraineurs.
Collapse
|
63
|
Granovsky Y, Shor M, Shifrin A, Sprecher E, Yarnitsky D, Bar-Shalita T. Assessment of Responsiveness to Everyday Non-Noxious Stimuli in Pain-Free Migraineurs With Versus Without Aura. THE JOURNAL OF PAIN 2018; 19:943-951. [PMID: 29597079 DOI: 10.1016/j.jpain.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/11/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
Migraineurs with aura (MWA) express higher interictal response to non-noxious and noxious experimental sensory stimuli compared with migraineurs without aura (MWoA), but whether these differences also prevail in response to everyday non-noxious stimuli is not yet explored. This is a cross-sectional study testing 53 female migraineurs (30 MWA; 23 MWoA) who underwent a wide battery of noxious psychophysical testing at a pain-free phase, and completed a Sensory Responsiveness Questionnaire and pain-related psychological questionnaires. The MWA group showed higher questionnaire-based sensory over-responsiveness (P = .030), higher magnitude of pain temporal summation (P = .031) as well as higher monthly attack frequency (P = .027) compared with the MWoA group. Overall, 45% of migraineurs described abnormal sensory (hyper- or hypo-) responsiveness; its incidence was higher among MWA (19 of 30, 63%) versus MWoA (6 of 23, 27%, P = .012), with an odds ratio of 3.58 for MWA. Sensory responsiveness scores were positively correlated with attack frequency (r = .361, P = .008) and temporal summation magnitude (r = .390, P = .004), both regardless of migraine type. MWA express higher everyday sensory responsiveness than MWoA, in line with higher response to experimental noxious stimuli. Abnormal scores of sensory responsiveness characterize people with sensory modulation dysfunction, suggesting possible underlying mechanisms overlap, and possibly high incidence of both clinical entities. PERSPECTIVE This article presents findings distinguishing MWA, showing enhanced pain amplification, monthly attack frequency, and over-responsiveness to everyday sensations, compared with MWoA. Further, migraine is characterized by a high incidence of abnormal responsiveness to everyday sensation, specifically sensory over-responsiveness, that was also found related to pain.
Collapse
Affiliation(s)
- Yelena Granovsky
- Department of Neurology, Rambam Medical Center, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Merav Shor
- Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Alla Shifrin
- Department of Neurology, Rambam Medical Center, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - David Yarnitsky
- Department of Neurology, Rambam Medical Center, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
64
|
Vanneste S, Song JJ, De Ridder D. Thalamocortical dysrhythmia detected by machine learning. Nat Commun 2018; 9:1103. [PMID: 29549239 PMCID: PMC5856824 DOI: 10.1038/s41467-018-02820-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/02/2018] [Indexed: 12/30/2022] Open
Abstract
Thalamocortical dysrhythmia (TCD) is a model proposed to explain divergent neurological disorders. It is characterized by a common oscillatory pattern in which resting-state alpha activity is replaced by cross-frequency coupling of low- and high-frequency oscillations. We undertook a data-driven approach using support vector machine learning for analyzing resting-state electroencephalography oscillatory patterns in patients with Parkinson’s disease, neuropathic pain, tinnitus, and depression. We show a spectrally equivalent but spatially distinct form of TCD that depends on the specific disorder. However, we also identify brain areas that are common to the pathology of Parkinson’s disease, pain, tinnitus, and depression. This study therefore supports the validity of TCD as an oscillatory mechanism underlying diverse neurological disorders. Thalamocortical dysrhythmia has been proposed to occur in a number of neurological and psychiatric disorders. Here, the authors use a data-driven approach to demonstrate thalamocortical dysrhythmia occurs in individuals with Parkinson’s disease, neuropathic pain, tinnitus, and depression.
Collapse
Affiliation(s)
- Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.
| | - Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
65
|
Brennan KC, Pietrobon D. A Systems Neuroscience Approach to Migraine. Neuron 2018; 97:1004-1021. [PMID: 29518355 PMCID: PMC6402597 DOI: 10.1016/j.neuron.2018.01.029] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Migraine is an extremely common but poorly understood nervous system disorder. We conceptualize migraine as a disorder of sensory network gain and plasticity, and we propose that this framing makes it amenable to the tools of current systems neuroscience.
Collapse
Affiliation(s)
- K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
66
|
The pathophysiology of migraine: implications for clinical management. Lancet Neurol 2018; 17:174-182. [DOI: 10.1016/s1474-4422(17)30435-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022]
|
67
|
Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, Wang SJ. Neurochemical changes in the medial wall of the brain in chronic migraine. Brain 2017; 141:377-390. [DOI: 10.1093/brain/awx331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Municipal Gandau Hospital. Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
68
|
Uglem M, Omland PM, Stjern M, Gravdahl GB, Sand T. Habituation of laser-evoked potentials by migraine phase: a blinded longitudinal study. J Headache Pain 2017; 18:100. [PMID: 28971336 PMCID: PMC5624861 DOI: 10.1186/s10194-017-0810-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Migraineurs seem to have cyclic variations in cortical excitability in several neurophysiological modalities. Laser-evoked potentials (LEP) are of particular interest in migraine because LEP specifically targets pain pathways, and studies have reported different LEP-changes both between and during headaches. Our primary aim was to explore potential cyclic variations in LEP amplitude and habituation in more detail with a blinded longitudinal study design. Methods We compared N1 and N2P2 amplitudes and habituation between two blocks of laser stimulations to the dorsal hand, obtained from 49 migraineurs with four sessions each. We used migraine diaries to categorize sessions as interictal (> one day from previous and to next attack), preictal (< one day before the attack), ictal or postictal (< one day after the attack). Also, we compared 29 interictal recordings from the first session to 30 controls. Results N1 and N2P2 amplitudes and habituation did not differ between preictal, interictal and postictal phase sessions, except for a post hoc contrast that showed deficient ictal habituation of N1. Habituation is present and similar in migraineurs in the interictal phase and controls. Conclusions Hand-evoked LEP amplitudes and habituation were mainly invariable between migraine phases, but this matter needs further study. Because hand-evoked LEP-habituation was similar in migraineurs and controls, the present findings contradict several previous LEP studies. Pain-evoked cerebral responses are normal and show normal habituation in migraine. Electronic supplementary material The online version of this article (10.1186/s10194-017-0810-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Uglem
- Department of Neuromedicine and Movement Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,NTNU, Faculty of Medicine and Health Sciences, P.B. 8905, N-7491, Trondheim, Norway.
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Marit Stjern
- Department of Neuromedicine and Movement Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | | | - Trond Sand
- Department of Neuromedicine and Movement Science, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
69
|
Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol 2017; 264:2031-2039. [PMID: 28321564 PMCID: PMC5587613 DOI: 10.1007/s00415-017-8434-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 01/16/2023]
Abstract
Migraine is a common brain disorder with high disability rates which involves a series of abnormal neuronal networks, interacting at different levels of the central and peripheral nervous system. An increase in the interest around migraine pathophysiology has allowed researchers to unravel certain neurophysiological mechanisms and neurotransmitter involvement culminating in the recent development of novel therapies, which might substantially change the clinical approach to migraine patients. The present review will highlight the current aspects of migraine pathophysiology, covering an understanding of the complex workings of the migraine state and the brain regions responsible for them. We will further discuss the therapeutic agents which have appeared in the most recent years for migraine care, from calcitonin gene-related peptide (CGRP) receptor antagonists, gepants; through serotonin 5-HT1F receptor agonists, ditans, and CGRP or CGRP receptor monoclonal antibodies to invasive and non-invasive neuromodulation techniques.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, King's College London, London, UK
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Roberta Messina
- Headache Group, Department of Basic and Clinical Neuroscience, King's College London, London, UK
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, King's College London, London, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK.
| |
Collapse
|
70
|
Cheng J, Bosma R, Hemington K, Kucyi A, Lindquist M, Davis K. Slow-5 dynamic functional connectivity reflects the capacity to sustain cognitive performance during pain. Neuroimage 2017; 157:61-68. [DOI: 10.1016/j.neuroimage.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022] Open
|
71
|
Cortese F, Pierelli F, Bove I, Di Lorenzo C, Evangelista M, Perrotta A, Serrao M, Parisi V, Coppola G. Anodal transcranial direct current stimulation over the left temporal pole restores normal visual evoked potential habituation in interictal migraineurs. J Headache Pain 2017; 18:70. [PMID: 28726157 PMCID: PMC5517389 DOI: 10.1186/s10194-017-0778-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/04/2017] [Indexed: 02/02/2023] Open
Abstract
Background Neuroimaging data has implicated the temporal pole (TP) in migraine pathophysiology; the density and functional activity of the TP were reported to fluctuate in accordance with the migraine cycle. Yet, the exact link between TP morpho-functional abnormalities and migraine is unknown. Here, we examined whether non-invasive anodal transcranial direct current stimulation (tDCS) ameliorates abnormal interictal multimodal sensory processing in patients with migraine. Methods We examined the habituation of visual evoked potentials and median nerve somatosensory evoked potentials (SSEP) before and immediately after 20-min anodal tDCS (2 mA) or sham stimulation delivered over the left TP in interictal migraineurs. Results Prior to tDCS, interictal migraineurs did not exhibit habituation in response to repetitive visual or somatosensory stimulation. After anodal tDCS but not sham stimulation, migraineurs exhibited normal habituation responses to visual stimulation; however, tDCS had no effect on SSEP habituation in migraineurs. Conclusion Our study shows for the first time that enhancing excitability of the TP with anodal tDCS normalizes abnormal interictal visual information processing in migraineurs. This finding has implications for the role of the TP in migraine, and specifically highlights the ventral stream of the visual pathway as a pathophysiological neural substrate for abnormal visual processing in migraine.
Collapse
Affiliation(s)
- Francesca Cortese
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy.
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy.,INM Neuromed IRCCS, Pozzilli (IS), Italy
| | - Ilaria Bove
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy
| | | | - Maurizio Evangelista
- Università Cattolica del Sacro Cuore/CIC, Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Rome, Italy
| | | | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy
| | - Vincenzo Parisi
- G. B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, Rome, Italy
| | - Gianluca Coppola
- G. B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, Rome, Italy
| |
Collapse
|
72
|
Ince F, Erdogan-Bakar E, Unal-Cevik I. Preventive drugs restore visual evoked habituation and attention in migraineurs. Acta Neurol Belg 2017; 117:523-530. [PMID: 28150096 DOI: 10.1007/s13760-017-0749-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023]
Abstract
Visual system pathway dysfunction has been postulated in migraineurs. We wanted to investigate if any difference exists interictally in visual attention and visual evoked habituation of frequently attacked migraineurs compared to the healthy control group. The effects of 3-month prophylactic migraine treatment on these parameters were also assessed. The migraineurs at headache-free interval (n = 52) and age, sex-matched healthy controls (n = 35) were compared by habituation response to 10 blocks of repetitive pattern-reversal visual stimuli (each block consisted 100 responses). The amplitude changes of 5th and 10th blocks were further compared with that of block 1 to assess the response of habituation (i.e., decrease) or potentiation (i.e., increase). The level of sustained visual attention was assessed by Cancellation test. Migraineurs were randomized to three different preventive treatments: propranolol 40 mg tid, flunarizine 5 mg bid, or topiramate 50 mg bid. After 3 months of preventive treatment, migraineurs data were compared with their baseline values. The groups did not differ by sex and age. In electrophysiological studies, the habituation ability observed in the healthy group was not observed in migraineurs. However, it was restored 3 months after preventive treatment. In migraineurs, compared to their baseline values, the distorted visual attention parameters also improved after treatment. All drugs were effective. The loss of habituation ability and low visual attention performance in migraineurs can be restored by migraine preventive treatment. This electrophysiological study accompanied by neuropsychological test may aid an objective and quantitative assessment tool for understanding migraine pathophysiology.
Collapse
Affiliation(s)
- Ferda Ince
- Department of Neurology, Ozel Ilke Yasam Medical Center, Dortyol, Turkey
| | - Emel Erdogan-Bakar
- Department of Psychology, Faculty of Science and Letter, Ufuk University, Ankara, Turkey
| | - Isin Unal-Cevik
- Department of Neurology, Faculty of Medicine, Pain Unit, Hacettepe University, Sıhhiye, 06100, Ankara, Turkey.
| |
Collapse
|
73
|
Youssef AM, Ludwick A, Wilcox SL, Lebel A, Peng K, Colon E, Danehy A, Burstein R, Becerra L, Borsook D. In child and adult migraineurs the somatosensory cortex stands out … again: An arterial spin labeling investigation. Hum Brain Mapp 2017; 38:4078-4087. [PMID: 28560777 DOI: 10.1002/hbm.23649] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/10/2017] [Accepted: 05/03/2017] [Indexed: 11/06/2022] Open
Abstract
Over the past decade, human brain imaging investigations have reported altered regional cerebral blood flow (rCBF) in the interictal phase of migraine. However, there have been conflicting findings across different investigations, making the use of perfusion imaging in migraine pathophysiology more difficult to define. These inconsistencies may reflect technical constraints with traditional perfusion imaging methods such as single-photon emission computed tomography and positron emission tomography. Comparatively, pseudocontinuous arterial spin labeling (pCASL) is a recently developed magnetic resonance imaging technique that is noninvasive and offers superior spatial resolution and increased sensitivity. Using pCASL, we have previously shown increased rCBF within the primary somatosensory cortex (S1) in adult migraineurs, where blood flow was positively associated with migraine frequency. Whether these observations are present in pediatric and young adult populations remains unknown. This is an important question given the age-related variants of migraine prevalence, symptomology, and treatments. In this investigation, we used pCASL to quantitatively compare and contrast blood flow within S1 in pediatric and young adult migraineurs as compared with healthy controls. In migraine patients, we found significant resting rCBF increases within bilateral S1 as compared with healthy controls. Furthermore, within the right S1, we report a positive correlation between blood flow value with migraine attack frequency and cutaneous allodynia symptom profile. Our results reveal that pediatric and young adult migraineurs exhibit analogous rCBF changes with adult migraineurs, further supporting the possibility that these alterations within S1 are a consequence of repeated migraine attacks. Hum Brain Mapp 38:4078-4087, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew M Youssef
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Allison Ludwick
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Sophie L Wilcox
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Alyssa Lebel
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Colon
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Amy Danehy
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
| | - Rami Burstein
- Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative & Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
74
|
Cortico-Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine. eNeuro 2017; 3:eN-NWR-0163-16. [PMID: 28101529 PMCID: PMC5239993 DOI: 10.1523/eneuro.0163-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/28/2016] [Accepted: 11/28/2016] [Indexed: 01/11/2023] Open
Abstract
Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino-vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico-cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients (N = 40) and matched healthy control subjects (N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico-cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms.
Collapse
|
75
|
Kucyi A, Davis KD. The Neural Code for Pain: From Single-Cell Electrophysiology to the Dynamic Pain Connectome. Neuroscientist 2016; 23:397-414. [DOI: 10.1177/1073858416667716] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pain occurs in time. In naturalistic settings, pain perception is sometimes stable but often varies in intensity and quality over the course of seconds, minutes, and days. A principal aim in classic electrophysiology studies of pain was to uncover a neural code based on the temporal patterns of single neuron firing. In contrast, modern neuroimaging studies have placed emphasis on uncovering the spatial pattern of brain activity (or “map”) that may reflect the pain experience. However, in the emerging field of connectomics, communication within and among brain networks is characterized as intrinsically dynamic on multiple time scales. In this review, we revisit the single-cell electrophysiological evidence for a nociceptive neural code and consider how those findings relate to recent advances in understanding systems-level dynamic processes that suggest the existence of a “dynamic pain connectome” as a spatiotemporal physiological signature of pain. We explore how spontaneous activity fluctuations in this dynamic system shape, and are shaped by, acute and chronic pain experiences and individual differences in those experiences. Highlighting the temporal dimension of pain, we aim to move pain theory beyond the concept of a static neurosignature and toward an ethologically relevant account of naturalistic dynamics.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Neurology & Neurological Sciences, Stanford University, Stanford CA, USA
| | - Karen D. Davis
- Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|