51
|
Mrachacz-Kersting N, Ibáñez J, Farina D. Towards a mechanistic approach for the development of non-invasive brain-computer interfaces for motor rehabilitation. J Physiol 2021; 599:2361-2374. [PMID: 33728656 DOI: 10.1113/jp281314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Brain-computer interfaces (BCIs) designed for motor rehabilitation use brain signals associated with motor-processing states to guide neuroplastic changes in a state-dependent manner. These technologies are uniquely positioned to induce targeted and functionally relevant plastic changes in the human motor nervous system. However, while several studies have shown that BCI-based neuromodulation interventions may improve motor function in patients with lesions in the central nervous system, the neurophysiological structures and processes targeted with the BCI interventions have not been identified. In this review, we first summarize current knowledge of the changes in the central nervous system associated with learning new motor skills. Then, we propose a classification of current BCI paradigms for plasticity induction and motor rehabilitation based on the expected neural plastic changes promoted. This classification proposes four paradigms based on two criteria: the plasticity induction methods and the brain states targeted. The existing evidence regarding the brain circuits and processes targeted with these different BCIs is discussed in detail. The proposed classification aims to serve as a starting point for future studies trying to elucidate the underlying plastic changes following BCI interventions.
Collapse
Affiliation(s)
| | - Jaime Ibáñez
- Department of Bioengineering, Centre for Neurotechnologies, Imperial College London, London, UK
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, UK
| | - Dario Farina
- Department of Bioengineering, Centre for Neurotechnologies, Imperial College London, London, UK
| |
Collapse
|
52
|
Does pericentral mu-rhythm "power" corticomotor excitability? - A matter of EEG perspective. Brain Stimul 2021; 14:713-722. [PMID: 33848678 DOI: 10.1016/j.brs.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Electroencephalography (EEG) and single-pulse transcranial magnetic stimulation (spTMS) of the primary motor hand area (M1-HAND) have been combined to explore whether the instantaneous expression of pericentral mu-rhythm drives fluctuations in corticomotor excitability, but this line of research has yielded diverging results. OBJECTIVES To re-assess the relationship between the mu-rhythm power expressed in left pericentral cortex and the amplitude of motor potentials (MEP) evoked with spTMS in left M1-HAND. METHODS 15 non-preselected healthy young participants received spTMS to the motor hot spot of left M1-HAND. Regional expression of mu-rhythm was estimated online based on a radial source at motor hotspot and informed the timing of spTMS which was applied either during epochs belonging to the highest or lowest quartile of regionally expressed mu-power. Using MEP amplitude as dependent variable, we computed a linear mixed-effects model, which included mu-power and mu-phase at the time of stimulation and the inter-stimulus interval (ISI) as fixed effects and subject as a random effect. Mu-phase was estimated by post-hoc sorting of trials into four discrete phase bins. We performed a follow-up analysis on the same EEG-triggered MEP data set in which we isolated mu-power at the sensor level using a Laplacian montage centered on the electrode above the M1-HAND. RESULTS Pericentral mu-power traced as radial source at motor hot spot did not significantly modulate the MEP, but mu-power determined by the surface Laplacian did, showing a positive relation between mu-power and MEP amplitude. In neither case, there was an effect of mu-phase on MEP amplitude. CONCLUSION The relationship between cortical oscillatory activity and cortical excitability is complex and minor differences in the methodological choices may critically affect sensitivity.
Collapse
|
53
|
Vallence AM, Dansie K, Goldsworthy MR, McAllister SM, Yang R, Rothwell JC, Ridding MC. Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. Eur J Neurosci 2021; 53:2755-2762. [PMID: 33480046 DOI: 10.1111/ejn.15124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 01/18/2023]
Abstract
Many brain regions exhibit rhythmical activity thought to reflect the summed behaviour of large populations of neurons. The endogenous alpha rhythm has been associated with phase-dependent modulation of corticospinal excitability. However, whether exogenous alpha rhythm, induced using transcranial alternating current stimulation (tACS) also has a phase-dependent effect on corticospinal excitability remains unknown. Here, we triggered transcranial magnetic stimuli (TMS) on the up- or down-going phase of a tACS-imposed alpha oscillation and measured motor evoked potential (MEP) amplitude and short-interval intracortical inhibition (SICI). There was no significant difference in MEP amplitude or SICI when TMS was triggered on the up- or down-going phase of the tACS-imposed alpha oscillation. The current study provides no evidence of differences in corticospinal excitability or GABAergic inhibition when targeting the up-going (peak) and down-going (trough) phase of the tACS-imposed oscillation.
Collapse
Affiliation(s)
- Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia
| | - Kathryn Dansie
- Australia and New Zealand Dialysis and Transplant Registry (ANZDATA), South Australian Health and Medical Research Institute (SAHMIR), Adelaide, South, Australia
| | - Mitchell R Goldsworthy
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Suzanne M McAllister
- Formerly of the Discipline of Physiology, School of Medical Science, University of Adelaide, Adelaide, Australia
| | | | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| |
Collapse
|
54
|
Zhang W, Song A, Zeng H, Xu B, Miao M. Closed-Loop Phase-Dependent Vibration Stimulation Improves Motor Imagery-Based Brain-Computer Interface Performance. Front Neurosci 2021; 15:638638. [PMID: 33568973 PMCID: PMC7868341 DOI: 10.3389/fnins.2021.638638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
The motor imagery (MI) paradigm has been wildly used in brain-computer interface (BCI), but the difficulties in performing imagery tasks limit its application. Mechanical vibration stimulus has been increasingly used to enhance the MI performance, but its improvement consistence is still under debate. To develop more effective vibration stimulus methods for consistently enhancing MI, this study proposes an EEG phase-dependent closed-loop mechanical vibration stimulation method. The subject's index finger of the non-dominant hand was given 4 different vibration stimulation conditions (i.e., continuous open-loop vibration stimulus, two different phase-dependent closed-loop vibration stimuli and no stimulus) when performing two tasks of imagining movement and rest of the index finger from his/her dominant hand. We compared MI performance and brain oscillatory patterns under different conditions to verify the effectiveness of this method. The subjects performed 80 trials of each type in a random order, and the average phase-lock value of closed-loop stimulus conditions was 0.71. It was found that the closed-loop vibration stimulus applied in the falling phase helped the subjects to produce stronger event-related desynchronization (ERD) and sustain longer. Moreover, the classification accuracy was improved by about 9% compared with MI without any vibration stimulation (p = 0.012, paired t-test). This method helps to modulate the mu rhythm and make subjects more concentrated on the imagery and without negative enhancement during rest tasks, ultimately improves MI-based BCI performance. Participants reported that the tactile fatigue under closed-loop stimulation conditions was significantly less than continuous stimulation. This novel method is an improvement to the traditional vibration stimulation enhancement research and helps to make stimulation more precise and efficient.
Collapse
Affiliation(s)
- Wenbin Zhang
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Aiguo Song
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Hong Zeng
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Baoguo Xu
- The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Minmin Miao
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
55
|
Kasten FH, Herrmann CS. Discrete sampling in perception via neuronal oscillations-Evidence from rhythmic, non-invasive brain stimulation. Eur J Neurosci 2020; 55:3402-3417. [PMID: 33048382 DOI: 10.1111/ejn.15006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/26/2022]
Abstract
A variety of perceptual phenomena suggest that, in contrast to our everyday experience, our perception may be discrete rather than continuous. The possibility of such discrete sampling processes inevitably prompts the question of how such discretization is implemented in the brain. Evidence from neurophysiological measurements suggest that neural oscillations, particularly in the lower frequencies, may provide a mechanism by which such discretization can be implemented. It is hypothesized that cortical excitability is rhythmically enhanced or reduced along the positive and negative half-cycle of such oscillations. In recent years, rhythmic non-invasive brain stimulation approaches such as rhythmic transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are increasingly used to test this hypothesis. Both methods are thought to entrain endogenous brain oscillations, allowing them to alter their power, frequency, and phase in order to study their roles in perception. After a brief introduction to the core mechanisms of both methods, we will provide an overview of rTMS and tACS studies probing the role of brain oscillations for discretized perception in different domains and will contrast these results with unsuccessful attempts. Further, we will discuss methodological pitfalls and challenges associated with the methods.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing for All", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
56
|
Baur D, Galevska D, Hussain S, Cohen LG, Ziemann U, Zrenner C. Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor μ-rhythm. Brain Stimul 2020; 13:1580-1587. [PMID: 32949780 PMCID: PMC7710977 DOI: 10.1016/j.brs.2020.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/01/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background Neural oscillations reflect rapidly changing brain excitability states. We have demonstrated previously with EEG-triggered transcranial magnetic stimulation (TMS) of human motor cortex that the positive vs. negative peak of the sensorimotor μ-oscillation reflect corticospinal low-vs. high-excitability states. In vitro experiments showed that induction of long-term depression (LTD) by low-frequency stimulation depends on the postsynaptic excitability state. Objective/Hypothesis: We tested the hypothesis that induction of LTD-like corticospinal plasticity in humans by 1 Hz repetitive TMS (rTMS) is enhanced when rTMS is synchronized with the low-excitability state, but decreased or even shifted towards long-term (LTP)-like plasticity when synchronized with the high-excitability state. Methods We applied real-time EEG-triggered 1-Hz-rTMS (900 pulses) to the hand area of motor cortex in healthy subjects. In a randomized double-blind three-condition crossover design, pulses were synchronized to either the positive or negative peak of the sensorimotor μ-oscillation, or were applied at random phase (control). The amplitude of motor evoked potentials was recorded as an index of corticospinal excitability before and after 1-Hz-rTMS. Results 1-Hz-rTMS at random phase resulted in a trend towards LTD-like corticospinal plasticity. RTMS in the positive peak condition (i.e., the low-excitability state) induced significant LTD-like plasticity. RTMS in the negative peak condition (i.e., the high-excitability state) showed a trend towards LTP-like plasticity, which was significantly different from the other two conditions. Conclusion The level of corticospinal depolarization reflected by phase of the μ-oscillation determines the degree of corticospinal plasticity induced by low-frequency rTMS, a finding that may guide future personalized therapeutic stimulation. Positive vs. negative phase of μ-rhythm are states of low vs. high excitability. 1-Hz-rTMS coupled to positive but not negative phase results in LTD-like plasticity. Phase of μ-rhythm determines effect size of 1-Hz-rTMS induced plasticity.
Collapse
Affiliation(s)
- David Baur
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Dragana Galevska
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Sara Hussain
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
57
|
Noreika V, Kamke MR, Canales-Johnson A, Chennu S, Bekinschtein TA, Mattingley JB. Alertness fluctuations when performing a task modulate cortical evoked responses to transcranial magnetic stimulation. Neuroimage 2020; 223:117305. [PMID: 32861789 PMCID: PMC7762840 DOI: 10.1016/j.neuroimage.2020.117305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been widely used in human cognitive neuroscience to examine the causal role of distinct cortical areas in perceptual, cognitive and motor functions. However, it is widely acknowledged that the effects of focal cortical stimulation can vary substantially between participants and even from trial to trial within individuals. Recent work from resting state functional magnetic resonance imaging (fMRI) studies has suggested that spontaneous fluctuations in alertness over a testing session can modulate the neural dynamics of cortical processing, even when participants remain awake and responsive to the task at hand. Here we investigated the extent to which spontaneous fluctuations in alertness during wake-to-sleep transition can account for the variability in neurophysiological responses to TMS. We combined single-pulse TMS with neural recording via electroencephalography (EEG) to quantify changes in motor and cortical reactivity with fluctuating levels of alertness defined objectively on the basis of ongoing brain activity. We observed rapid, non-linear changes in TMS-evoked responses with decreasing levels of alertness, even while participants remained responsive in the behavioural task. Specifically, we found that the amplitude of motor evoked potentials peaked during periods of EEG flattening, whereas TMS-evoked potentials increased and remained stable during EEG flattening and the subsequent occurrence of theta ripples that indicate the onset of NREM stage 1 sleep. Our findings suggest a rapid and complex reorganization of active neural networks in response to spontaneous fluctuations of alertness over relatively short periods of behavioural testing during wake-to-sleep transition.
Collapse
Affiliation(s)
- Valdas Noreika
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia; Cambridge Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom; Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| | - Marc R Kamke
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrés Canales-Johnson
- Cambridge Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom; Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca, Chile
| | - Srivas Chennu
- School of Computing, University of Kent, Medway, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Tristan A Bekinschtein
- Cambridge Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Jason B Mattingley
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia; School of Psychology, University of Queensland, St Lucia, QLD 4072, Australia; Canadian Institute for Advanced Research (CIFAR), Canada
| |
Collapse
|
58
|
Bergmann TO, Hartwigsen G. Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience. J Cogn Neurosci 2020; 33:195-225. [PMID: 32530381 DOI: 10.1162/jocn_a_01591] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation or transcranial direct and alternating current stimulation, are advocated as measures to enable causal inference in cognitive neuroscience experiments. Transcending the limitations of purely correlative neuroimaging measures and experimental sensory stimulation, they allow to experimentally manipulate brain activity and study its consequences for perception, cognition, and eventually, behavior. Although this is true in principle, particular caution is advised when interpreting brain stimulation experiments in a causal manner. Research hypotheses are often oversimplified, disregarding the underlying (implicitly assumed) complex chain of causation, namely, that the stimulation technique has to generate an electric field in the brain tissue, which then evokes or modulates neuronal activity both locally in the target region and in connected remote sites of the network, which in consequence affects the cognitive function of interest and eventually results in a change of the behavioral measure. Importantly, every link in this causal chain of effects can be confounded by several factors that have to be experimentally eliminated or controlled to attribute the observed results to their assumed cause. This is complicated by the fact that many of the mediating and confounding variables are not directly observable and dose-response relationships are often nonlinear. We will walk the reader through the chain of causation for a generic cognitive neuroscience NIBS study, discuss possible confounds, and advise appropriate control conditions. If crucial assumptions are explicitly tested (where possible) and confounds are experimentally well controlled, NIBS can indeed reveal cause-effect relationships in cognitive neuroscience studies.
Collapse
Affiliation(s)
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|