51
|
Kochubey S, Semyanov A, Savtchenko L. Network with shunting synapses as a non-linear frequency modulator. Neural Netw 2011; 24:407-16. [PMID: 21444192 DOI: 10.1016/j.neunet.2011.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
The role of 'noisy' excitation in synchronizing interneuron networks with shunting synapses was studied. The excitatory input was simulated as a Poisson pattern of presynaptic conductance with varying frequencies and amplitudes. We find that higher excitation frequencies induce stronger synchronisation of the network. Within the range of 1-10000 Hz, only frequencies between 20 Hz and 200 Hz affected network synchronisation. No detectable network synchronisation was found at excitation frequencies below 20 Hz, and the network's synchronisation was either almost independent of the external input or falling down to zero when the input frequency was greater than 200 Hz. Thus the network transformed the input signals with frequencies above 20 Hz into output signals with the network's synchronisation frequency. The network's synchronisation frequency in our model ranged from 20 to 68 Hz depending on the frequency of the excitatory input. We conclude that a network of interconnected interneurons is capable of converting an asynchronous excitatory input into a synchronous inhibitory output as a frequency amplifier with the amplification coefficient dependent on the number of converging excitatory inputs. Another important result of our work revealed that the external frequency may affect, in opposite ways, the frequency of the network with shunting synapses depending on the excitatory synaptic conductance and the magnitude of leak conductance.
Collapse
|
52
|
Salah A, Perkins KL. Persistent ictal-like activity in rat entorhinal/perirhinal cortex following washout of 4-aminopyridine. Epilepsy Res 2011; 94:163-76. [PMID: 21353480 DOI: 10.1016/j.eplepsyres.2011.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/27/2022]
Abstract
Application of 4-aminopyridine (4-AP, 100μM) in a solution containing 0.6mM Mg(2+) and 1.2mM Ca(2+) to hippocampal-entorhinal-perirhinal slices of adult rat brain induced ictal-like epileptiform activity in entorhinal and perirhinal cortices as revealed by electrophysiological field potential recordings. The ictal-like activity persisted after washing out the 4-AP. This persistence indicated that a change had occurred in the slice so that it was now "epileptic" in the absence of the convulsant 4-AP. Induction of persistent ictal-like activity was dependent upon the concentration of divalent cations during 4-AP exposure; that is, although 4-AP caused ictal-like activity in approximately half the slices in solution containing 1.6mM Mg(2+) and 2.0mM Ca(2+), this ictal-like activity did not persist upon washout of the 4-AP. Expression of the persistent ictal-like epileptiform activity required ionotropic glutamate-mediated synaptic transmission: application of the AMPA/kainate receptor antagonist NBQX after 4-AP washout reduced persistent ictal-like activity, and the combined application of NBQX and the NMDA receptor antagonist d-AP5 completely blocked it. In order to investigate the mechanism of induction of persistent ictal-like activity, several agents were applied before the introduction of 4-AP. Application of d-AP5 did not block the onset of ictal-like activity upon introduction of 4-AP but did prevent the persistence of the ictal-like activity upon washout of the 4-AP. In contrast, induction of persistent ictal-like activity was not prevented by simultaneous application of the group I metabotropic glutamate receptor (mGluR) antagonists LY 367385 and MPEP or by application of the protein synthesis inhibitor cycloheximide. In conclusion, we have characterized a new in vitro model of epileptogenesis in which induction of ictal-like activity is dependent upon NMDA receptor activation but not upon group I mGluR activation or protein synthesis.
Collapse
Affiliation(s)
- Alejandro Salah
- Program in Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Katherine L Perkins
- Program in Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| |
Collapse
|
53
|
Yang L, Afroz S, Michelson HB, Goodman JH, Valsamis HA, Ling DSF. Spontaneous epileptiform activity in rat neocortex after controlled cortical impact injury. J Neurotrauma 2010; 27:1541-8. [PMID: 20504156 DOI: 10.1089/neu.2009.1244] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A hallmark of severe traumatic brain injury (TBI) is the development of post-traumatic epilepsy (PTE). However, the mechanisms underlying PTE remain poorly understood. In this study, we used a controlled cortical impact (CCI) model in rats to examine post-traumatic changes in neocortical excitability. Neocortical slices were prepared from rats at 7-9 days (week 1) and 14-16 days (week 2) after CCI injury. By week 2, we observed a substantial gray matter lesion with a cavity that extended to the hippocampal structure. Fluoro-Jade B staining of slices revealed active neuronal degeneration during weeks 1 and 2. Intracellular and extracellular recordings obtained from layer V revealed evoked and spontaneous epileptiform discharges in neocortices of CCI-injured rats. At week 1, intracellular recordings from pyramidal cells revealed evoked epileptiform firing that was synchronized with population events recorded extracellularly, suggestive of increased excitability. This activity was characterized by bursts of action potentials that were followed by recurrent, repetitive after-discharges. At week 2, both spontaneous and evoked epileptiform firing were recorded in slices from injured rats. The evoked discharges resembled those observed at week 1, but with longer burst durations. Spontaneous activity included prolonged, ictal-like discharges lasting up to 8-10 sec, and briefer interictal-like burst events (<1 sec). These results indicate that during the first 2 weeks following severe CCI injury, there is a progressive development of neocortical hyperexcitability that ultimately leads to spontaneous epileptiform firing, suggesting a rapid epileptogenic process.
Collapse
Affiliation(s)
- Lie Yang
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
54
|
Functional, metabolic, and synaptic changes after seizures as potential targets for antiepileptic therapy. Epilepsy Behav 2010; 19:105-13. [PMID: 20705520 DOI: 10.1016/j.yebeh.2010.06.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 01/11/2023]
Abstract
Little is known about how the brain limits seizure duration and terminates seizures. Depending on severity and duration, a single seizure is followed by various functional, metabolic, and synaptic changes that may form targets for novel therapeutic strategies. It is long known that most seizures are followed by a period of postictal refractoriness during which the threshold for induction of additional seizures is increased. The endogenous anticonvulsant mechanisms involved in this phenomenon may be relevant for both spontaneous seizure arrest and increase of seizure threshold after seizure arrest. Postictal refractoriness has been extensively studied in various seizure and epilepsy models, including electrically and chemically induced seizures, kindling, and genetic animal models of epilepsy. During kindling development, two antagonistic processes occur simultaneously, one responsible for kindling-like events and the other for terminating ictus and postictal refractoriness. Frequently occurring seizures may lead to an accumulation of postictal refractoriness that may last weeks. The mechanisms involved in seizure termination and postictal refractoriness include changes in ionic microenvironment, in pH, and in various endogenous neuromodulators such as adenosine and neuropeptides. In animal models, the anticonvulsant efficacy of several antiepileptic drugs (AEDs) is increased during postictal refractoriness, which is a logical consequence of the interaction between endogenous anticonvulsant processes and the mechanism of AEDs. As discussed in this review, enhanced understanding of these endogenous processes may lead to novel targets for AED development.
Collapse
|
55
|
Frei MG, Zaveri HP, Arthurs S, Bergey GK, Jouny C, Lehnertz K, Gotman J, Osorio I, Netoff TI, Freeman WJ, Jefferys J, Worrell G, Le Van Quyen M, Schiff SJ, Mormann F. Controversies in epilepsy: debates held during the Fourth International Workshop on Seizure Prediction. Epilepsy Behav 2010; 19:4-16. [PMID: 20708976 PMCID: PMC2943379 DOI: 10.1016/j.yebeh.2010.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 01/21/2023]
Abstract
Debates on six controversial topics were held during the Fourth International Workshop on Seizure Prediction (IWSP4) convened in Kansas City, KS, USA, July 4-7, 2009. The topics were (1) Ictogenesis: Focus versus Network? (2) Spikes and Seizures: Step-relatives or Siblings? (3) Ictogenesis: A Result of Hyposynchrony? (4) Can Focal Seizures Be Caused by Excessive Inhibition? (5) Do High-Frequency Oscillations Provide Relevant Independent Information? (6) Phase Synchronization: Is It Worthwhile as Measured? This article, written by the IWSP4 organizing committee and the debaters, summarizes the arguments presented during the debates.
Collapse
Affiliation(s)
- Mark G. Frei
- Flint Hills Scientific, L.L.C., Lawrence, KS, USA, Organizing Committee Member, Fourth International Workshop on Seizure Prediction,Corresponding Author. Address: 2513 Via Linda Drive, Lawrence, KS 66047; Phone: (785) 838-3733; Fax: (785) 838-3715;
| | - Hitten P. Zaveri
- Yale University, New Haven, CT, USA, Organizing Committee Member, Fourth International Workshop on Seizure Prediction
| | - Susan Arthurs
- Alliance for Epilepsy Research, Dexter, MI, USA, Organizing Committee Member, Fourth International Workshop on Seizure Prediction
| | | | | | | | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Ivan Osorio
- Flint Hills Scientific, L.L.C., Lawrence, KS, USA, University of Kansas Medical Center, Kansas City, KS, USA, Organizing Committee Member, Fourth International Workshop on Seizure Prediction
| | | | | | | | | | - Michel Le Van Quyen
- Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière (CRICM), Paris, France
| | | | - Florian Mormann
- University of Bonn, Bonn, Germany, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
56
|
Jiruska P, Powell AD, Deans JK, Jefferys JG. Effects of direct brain stimulation depend on seizure dynamics. Epilepsia 2010; 51 Suppl 3:93-7. [DOI: 10.1111/j.1528-1167.2010.02619.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Jaseja H. EEG fast oscillations and epileptogenesis during meditation: corroborative empirical evidence. Epilepsy Behav 2010; 18:133. [PMID: 20451462 DOI: 10.1016/j.yebeh.2010.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/02/2010] [Indexed: 02/05/2023]
|
58
|
Carriero G, Uva L, Gnatkovsky V, Avoli M, de Curtis M. Independent epileptiform discharge patterns in the olfactory and limbic areas of the in vitro isolated Guinea pig brain during 4-aminopyridine treatment. J Neurophysiol 2010; 103:2728-36. [PMID: 20220076 DOI: 10.1152/jn.00862.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In vitro studies performed on brain slices demonstrate that the potassium channel blocker 4-aminopyridine (4AP, 50 microM) discloses electrographic seizure activity and interictal discharges. These epileptiform patterns have been further analyzed here in a isolated whole guinea pig brain in vitro by using field potential recordings in olfactory and limbic structures. In 8 of 13 experiments runs of fast oscillatory activity (fast runs, FRs) in the piriform cortex (PC) propagated to the lateral entorhinal cortex (EC), hippocampus and occasionally to the medial EC. Early and late FRs were asynchronous in the hemispheres showed different duration [1.78 +/- 0.51 and 27.95 +/- 4.55 (SD) s, respectively], frequency of occurrence (1.82 +/- 0.49 and 34.16 +/- 6.03 s) and frequency content (20-40 vs. 40-60 Hz). Preictal spikes independent from the FRs appeared in the hippocampus/EC and developed into ictal-like discharges that did not propagate to the PC. Ictal-like activity consisted of fast activity with onset either in the hippocampus (n = 6) or in the mEC (n = 2), followed by irregular spiking and sequences of diffusely synchronous bursts. Perfusion of the N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid (100 microM) did not prevent FRs, increased the duration of limbic ictal-like discharges and favored their propagation to olfactory structures. The AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (50 microM) blocked ictal-like events and reduced FRs. In conclusion, 4AP-induced epileptiform activities are asynchronous and independent in olfactory and hippocampal-entorhinal regions. Epileptiform discharges in the isolated guinea pig brain show different pharmacological properties compared with rodent in vitro slices.
Collapse
Affiliation(s)
- Giovanni Carriero
- Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | | | | | | | | |
Collapse
|
59
|
Stafford MM, Brown MN, Mishra P, Stanwood GD, Mathews GC. Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus. Hippocampus 2010; 20:134-44. [PMID: 19338018 DOI: 10.1002/hipo.20600] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tight coupling between gamma-aminobutyric acid (GABA) synthesis and vesicle filling suggests that the presynaptic supply of precursor glutamate could dynamically regulate inhibitory synapses. Although the neuronal glutamate transporter excitatory amino acid transporter 3 (EAAT3) has been proposed to mediate such a metabolic role, highly efficient astrocytic uptake of synaptically released glutamate normally maintains low-extracellular glutamate levels. We examined whether axodendritic inhibitory synapses in stratum radiatum of hippocampal area CA1, which are closely positioned among excitatory glutamatergic synapses, are regulated by synaptic glutamate release via presynaptic uptake. Under conditions of spatially and temporally coordinated release of glutamate and GABA within pyramidal cell dendrites, blocking glial glutamate uptake enhanced quantal release of GABA in a transporter-dependent manner. These physiological findings correlated with immunohistochemical studies revealing expression of EAAT3 by interneurons and uptake of D-asparate into putative axodendritic inhibitory terminals only when glial uptake was blocked. These results indicate that spillover of glutamate between adjacent excitatory and inhibitory synapses can occur under conditions when glial uptake incompletely clears synaptically released glutamate. Our anatomical studies also suggest that perisomatic inhibitory synapses, unlike synapses within dendritic layers of hippocampus, are not capable of glutamate uptake and therefore transporter-mediated dynamic regulation of inhibition is a unique feature of axodendritic synapses that may play a role in maintaining a homeostatic balance of inhibition and excitation.
Collapse
Affiliation(s)
- Misty M Stafford
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
60
|
Jaseja H. Potential role of self-induced EEG fast oscillations in predisposition to seizures in meditators. Epilepsy Behav 2010; 17:124-5. [PMID: 19932061 DOI: 10.1016/j.yebeh.2009.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 02/08/2023]
Abstract
Meditation is a mental exercise practiced widely as an antistress measure and in the belief that it possesses remedial efficacy for a number of medical ailments, especially neurological disorders. Further, there is a general belief that meditation is an absolutely safe practice devoid of any harmful effects. However, with the advent of neuroimaging techniques, the possibility of adverse effects has been raised in recent times. One such issue that has been debated is the potential epileptogenic versus antiepileptic influence exerted by meditation. This brief article attempts to study the potential role of meditation-induced EEG fast oscillations in the predisposition to seizures in meditation practitioners with epilepsy.
Collapse
Affiliation(s)
- Harinder Jaseja
- Physiology Department, G.R. Medical College, 8, C-Block, Near Paliwal Health Club, Harishanker-puram, Lashkar, Gwalior 474009, MP, India.
| |
Collapse
|
61
|
Siniatchkin M, Reich AL, Shepherd AJ, van Baalen A, Siebner HR, Stephani U. Peri-ictal changes of cortical excitability in children suffering from migraine without aura. Pain 2009; 147:132-40. [PMID: 19796876 DOI: 10.1016/j.pain.2009.08.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/18/2009] [Accepted: 08/26/2009] [Indexed: 11/26/2022]
Abstract
In adult patients with migraine, transcranial magnetic stimulation (TMS) has been used to examine cortical excitability between attacks, but there have been discrepant results. No TMS study has examined cortical excitability in children or adolescents with migraine. Here, we employed TMS to study regional excitability of the occipital (phosphene threshold [PT] and suppression of visual perception) and motor (resting motor threshold and cortical silent period) cortex in ten children suffering from migraine without aura and ten healthy age-matched controls. Patients were studied 1-2 days before and after a migraine attack as well as during the inter-migraine interval. The motion aftereffect was also investigated at each time-point as an index of cortical reactivity to moving visual stimuli. Migraineurs had lower PTs compared to healthy participants at each time-point, indicating increased occipital excitability. This increase in occipital excitability was attenuated 1-2 days before a migraine attack as indicated by a relative increase in PTs. The increase in PTs before the next attack was associated with a stronger TMS-induced suppression of visual perception and a prolongation of the motion aftereffect. Motor cortex excitability was not altered in patients and did not change during the migraine cycle. These findings show that pediatric migraine without aura is associated with a systematic shift in occipital excitability preceding the migraine attack. Similar systematic fluctuations in cortical excitability might be present in adult migraineurs and may reflect either a protective mechanism or an abnormal decrease in cortical excitability that predisposes an individual to a migraine attack.
Collapse
|
62
|
Lasztóczi B, Nyitrai G, Héja L, Kardos J. Synchronization of GABAergic Inputs to CA3 Pyramidal Cells Precedes Seizure-Like Event Onset in Juvenile Rat Hippocampal Slices. J Neurophysiol 2009; 102:2538-53. [DOI: 10.1152/jn.91318.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we address how dynamics of glutamatergic and GABAergic synaptic input to CA3 pyramidal cells contribute to spontaneous emergence and evolution of recurrent seizure-like events (SLEs) in juvenile (P10-13) rat hippocampal slices bathed in low-[Mg2+] artificial cerebrospinal fluid. In field potential recordings from the CA3 pyramidal layer, a short epoch of high-frequency oscillation (HFO; 400–800 Hz) was observed during the first 10 ms of SLE onset. GABAergic synaptic input currents to CA3 pyramidal cells were synchronized and coincided with HFO, whereas the glutamatergic input lagged by ∼10 ms. If the intracellular [Cl−] remained unperturbed (cell-attached recordings) or was set high with whole cell electrode solution, CA3 pyramidal cell firing peaked with HFO and GABAergic input. By contrast, with low intracellular [Cl−], spikes of CA3 pyramidal cells lagged behind HFO and GABAergic input. This temporal arrangement of HFO, synaptic input sequence, synchrony of GABAergic currents, and pyramidal cell firing emerged gradually with preictal discharges until the SLE onset. Blockade of GABAA receptor-mediated currents by picrotoxin reduced the inter-SLE interval and the number of preictal discharges and did not block recurrent SLEs. Our data suggest that dynamic changes of the functional properties of GABAergic input contribute to ictogenesis and GABAergic and glutamatergic inputs are both excitatory at the instant of SLE onset. At the SLE onset GABAergic input contributes to synchronization and recruitment of pyramidal cells. We conjecture that this network state is reached by an activity-dependent shift in GABA reversal potential during the preictal phase.
Collapse
Affiliation(s)
- Bálint Lasztóczi
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Nyitrai
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Héja
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Julianna Kardos
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
63
|
Tyzio R, Khalilov I, Represa A, Crepel V, Zilberter Y, Rheims S, Aniksztejn L, Cossart R, Nardou R, Mukhtarov M, Minlebaev M, Epsztein J, Milh M, Becq H, Jorquera I, Bulteau C, Fohlen M, Oliver V, Dulac O, Dorfmüller G, Delalande O, Ben-Ari Y, Khazipov R. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome. Ann Neurol 2009; 66:209-18. [PMID: 19743469 DOI: 10.1002/ana.21711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. METHODS Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. RESULTS Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. INTERPRETATION SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.
Collapse
|
64
|
Abstract
Tumor-associated epilepsy is an important contributor to morbidity in patients with brain tumors. Proposed pathophysiological mechanisms to explain these effects range from neuronal and glial dysfunction to deranged vascular homeostasis, to ionic and pH changes. Perilesional tissue alterations play a vital role in the generation of tumor-associated seizures. Clinical studies have determined that tumor-associated seizures are usually focal with secondary generalization and often resistant to antiepileptic drugs. Tumor histopathological characteristics and location are independent factors that impact seizure burden. Further understanding of the mechanisms of tumor-associated epilepsy may lead to new types of treatments targeted at perilesional tissue alterations.
Collapse
Affiliation(s)
- Kiran F Rajneesh
- Department of Neurological Surgery, University of California, Irvine, California, USA
| | | |
Collapse
|
65
|
Kang JQ, Macdonald RL. Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 2009; 15:430-8. [PMID: 19717338 DOI: 10.1016/j.molmed.2009.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
Abstract
Nonsense mutations that generate premature translation-termination codons (PTCs) are responsible for approximately one- third of human genetic diseases. PTCs in both voltage- and ligand-gated ion channel genes, including those for sodium, potassium, nicotinic cholinergic receptor and GABA(A) receptor channels, have been associated with genetic epilepsies but the epilepsy syndromes they cause are variable. It was recently proposed that two well-established molecular pathways, nonsense-mediated decay (NMD) and endoplasmic reticulum-associated degradation (ERAD), determine the effects of PTCs in GABA(A) receptor subunit genes associated with genetic epilepsies on the cellular fates of mutant subunit mRNAs and proteins. Activation of these different molecular mechanisms might contribute in part to different clinical phenotypes in patients with GABA(A) receptor subunit gene PTCs and thus different approaches for treatment of their genetic epilepsies might be required.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552, USA.
| | | |
Collapse
|
66
|
de Curtis M, Gnatkovsky V. Reevaluating the mechanisms of focal ictogenesis: The role of low-voltage fast activity. Epilepsia 2009; 50:2514-25. [PMID: 19674056 DOI: 10.1111/j.1528-1167.2009.02249.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mechanisms that control the transition into a focal seizure are still uncertain. The introduction of presurgical intracranial recordings to localize the epileptogenic zone in patients with drug-resistant focal epilepsies opened a new window to the interpretation of seizure generation (ictogenesis). One of the most frequent focal patterns observed with intracranial electrodes at seizure onset is characterized by low-voltage fast activity in the beta-gamma range that may or may not be preceded by changes of ongoing interictal activities. In the present commentary, the mechanisms of generation of focal seizures are reconsidered, focusing on low-voltage fast activity patterns. Experimental findings on models of temporal lobe seizures support the view that the low-voltage fast activity observed at seizure onset is associated with reinforcement and synchronization of inhibitory networks. A minor role for the initiation of the ictal pattern is played by principal neurons that are progressively recruited with a delay, when inhibition declines and synchronous high-voltage discharges ensue. The transition from inhibition into excitatory recruitment is probably mediated by local increase in potassium concentration associated with synchronized interneuronal firing. These findings challenge the classical theory that proposes an increment of excitation and/or a reduction of inhibition as a cause for the transition to seizure in focal epilepsies. A new definition of ictogenesis mechanisms, as herewith hypothesized, might possibly help to develop new therapeutic strategies for focal epilepsies.
Collapse
Affiliation(s)
- Marco de Curtis
- Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy.
| | | |
Collapse
|
67
|
Uva L, Avoli M, de Curtis M. Synchronous GABA-receptor-dependent potentials in limbic areas of the in-vitro isolated adult guinea pig brain. Eur J Neurosci 2009; 29:911-20. [PMID: 19291222 PMCID: PMC4873282 DOI: 10.1111/j.1460-9568.2009.06672.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epileptiform discharges are known to reflect the hypersynchronous glutamatergic activation of cortical neurons. However, experimental evidence has revealed that epileptiform synchronization is also contributed to by population events mediated by GABA(A) receptors. Here, we analysed the spatial distribution of GABA(A)-receptor-dependent interictal events in the hippocampal/parahippocampal region of the adult guinea pig brain isolated in vitro. We found that arterial perfusion of this preparation with 4-aminopyridine caused the appearance of glutamatergic-independent interictal potentials that were reversibly abolished by GABA(A) receptor antagonism. Laminar profiles and current source density analysis performed in different limbic areas demonstrated that these GABA(A)-receptor-mediated events were independently generated in different areas of the hippocampal/parahippocampal formation (most often in the medial entorhinal cortex) and propagated between interconnected limbic structures of both hemispheres. Finally, intracellular recordings from principal neurons of the medial entorhinal cortex demonstrated that the GABAergic field potential correlated to inhibitory postsynaptic potentials (membrane potential reversal, -68.12 +/- 8.01 mV, n = 5) that were interrupted by ectopic spiking. Our findings demonstrate that, in an acute seizure model developed in the adult guinea pig brain, hypersynchronous GABA(A)-receptor-mediated interictal events are generated from independent sources and propagate within limbic cortices in the absence of excitatory synaptic transmission. As spared or enhanced inhibition was reported in models of epilepsy, our data may support a role of GABA-mediated signaling in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Laura Uva
- Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
68
|
Lehmkuhle MJ, Thomson KE, Scheerlinck P, Pouliot W, Greger B, Dudek FE. A simple quantitative method for analyzing electrographic status epilepticus in rats. J Neurophysiol 2009; 101:1660-70. [PMID: 19129295 DOI: 10.1152/jn.91062.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrographic status epilepticus (ESE) is a medical emergency consisting of repetitive seizures and may result in death or severe brain damage. Epilepsy can develop following ESE. The properties of ESE (e.g., duration and intensity) are variable, as are the effects of putative therapeutic treatments. Therefore a straightforward method to quantify different components of ESE would be beneficial for both researchers and clinicians. A frequency range close to the gamma band was selected for extraction of seizure-related activity from the EEG. This filtering strategy reduced motion artifacts and other noise sources in the electrophysiological recordings, thus increasing the signal-to-noise ratio of the EEG spike activity. EEG spiking was quantified using an energy operator and modeled by an eighth-order polynomial. In a benzodiazepine-resistant rat model of pilocarpine-induced ESE, the efficacy of various pharmaceutical agents at suppressing ESE was analyzed with this and other methods on data collected for < or =24 h after ESE induction. This approach allows for the objective, quantitative, and rapid assessment of the effects of both short- and long-lasting pharmacological manipulations on ESE and other forms of prolonged repetitive electrical activity.
Collapse
Affiliation(s)
- M J Lehmkuhle
- Department of Physiology, University of Utah School of Medicine, 420 Chipeta Way, Suite 1700, Salt Lake City, UT 84108, USA
| | | | | | | | | | | |
Collapse
|
69
|
King-Stephens D. Epilepsy. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Gnatkovsky V, Librizzi L, Trombin F, de Curtis M. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro. Ann Neurol 2008; 64:674-86. [DOI: 10.1002/ana.21519] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
71
|
Voss LJ, Sleigh JW, Barnard JPM, Kirsch HE. The Howling Cortex: Seizures and General Anesthetic Drugs. Anesth Analg 2008; 107:1689-703. [PMID: 18931234 DOI: 10.1213/ane.0b013e3181852595] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
72
|
Panuccio G, Curia G, Colosimo A, Cruccu G, Avoli M. Epileptiform synchronization in the cingulate cortex. Epilepsia 2008; 50:521-36. [PMID: 19178556 DOI: 10.1111/j.1528-1167.2008.01779.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The anterior cingulate cortex (ACC)--which plays a role in pain, emotions and behavior--can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. METHODS We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. RESULTS Bath-application of the convulsant 4-aminopyridine (4AP, 50 microM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N-methyl-D-aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. CONCLUSIONS Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC.
Collapse
Affiliation(s)
- Gabriella Panuccio
- Department of Neurology, Montreal Neurological Institute , McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
73
|
Le Duigou C, Bouilleret V, Miles R. Epileptiform activities in slices of hippocampus from mice after intra-hippocampal injection of kainic acid. J Physiol 2008; 586:4891-904. [PMID: 18755752 DOI: 10.1113/jphysiol.2008.156281] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intra-hippocampal kainate injection induces the emergence of recurrent seizures after a delay of 3-4 weeks. We examined the cellular and synaptic basis of this activity in vitro using extracellular and intracellular records from longitudinal hippocampal slices. These slices permitted recordings from the dentate gyrus, the CA3 and CA1 regions and the subiculum of both the injected and the contralateral non-injected hippocampus. A sclerotic zone was evident in dorsal regions of slices from the injected hippocampus, while ventral regions and tissue from the contralateral hippocampus were not sclerotic. Interictal field potentials of duration 50-200 ms were generated spontaneously in both ipsilateral and contralateral hippocampal slices, but not in the sclerotic region, at 3-12 months after injection. They were initiated in the CA1 and CA3 regions and the subiculum. They were blocked by antagonists at glutamatergic receptors and were transformed into prolonged epileptiform events by GABAergic receptor antagonists. The membrane potential and the reversal potential of GABAergic synaptic events were more depolarized in CA1 pyramidal cells from kainate-treated animals than in control animals. Ictal-like events of duration 8-80 s were induced by tetanic stimulation (50 Hz, 0.2-1 s) preferentially in dorsal contralateral and ventral ipsilateral slices. Similar events were initiated by focal application of a combination of high K(+) and GABA. These data show that both interictal and ictal-like activities can be induced in slices of both ipsilateral and contralateral hippocampus from kainate-treated animals and suggest that changes in cellular excitability and inhibitory synaptic signalling may contribute to their generation.
Collapse
Affiliation(s)
- Caroline Le Duigou
- INSERM U739, CHU Pitié-Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | | | | |
Collapse
|
74
|
Wang K, Zheng C, Wu C, Gao M, Liu Q, Yang K, Ellsworth K, Xu L, Wu J. alpha-Chloralose diminishes gamma oscillations in rat hippocampal slices. Neurosci Lett 2008; 441:66-71. [PMID: 18597935 DOI: 10.1016/j.neulet.2008.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 12/01/2022]
Abstract
alpha-Chloralose is an anesthetic characterized by its ability to maintain animals in physiological conditions though immobilized and anesthetized. In addition, alpha-chloralose induces a loss of consciousness with little influence on either pain response or cardiovascular reflexes. The pharmacological mechanisms of alpha-chloralose's actions are poorly understood. In vitro experiments have demonstrated alpha-chloralose enhances GABA(A) receptor function, which may underlie its anesthetic effect. However, how alpha-chloralose affects hippocampal synaptic function and neuronal network synchronization is unknown. In the present study, we performed electrophysiological recordings to examine the effects of alpha-chloralose on synaptic transmission, tetanic stimulation-induced gamma oscillations (30-80 Hz) and neuronal receptor function in rat hippocampal slices and dissociated hippocampal CA1 pyramidal neurons. The results demonstrated that alpha-chloralose (30-100 microM) diminished tetanic stimulation-induced gamma oscillations without affecting single stimulation-induced field potential responses. In single, dissociated hippocampal CA1 pyramidal neurons, alpha-chloralose activated GABA(A) receptors at a high concentration while it potentiated GABA(A) receptor-mediated currents at low concentrations. However, alpha-chloralose did not affect glutamate-, glycine-, or ACh-induced currents. Slice-patch recordings revealed alpha-chloralose enhanced GABAergic leak current and prolonged the decay constant of spontaneous inhibitory postsynaptic currents (sIPSCs). It is concluded that alpha-chloralose suppresses hippocampal gamma oscillations without significantly affecting basic synaptic transmission or ionotropic glutamate, choline and glycine receptor function. Enhancement of GABAergic leak current and prolongation of GABAergic sIPSCs by alpha-chloralose likely underlie its disruption of neuronal network synchronization in the hippocampus.
Collapse
Affiliation(s)
- Kui Wang
- Neurophysiology Laboratory, Division of Neurology, NRC 444, St Joseph's Hospital & Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 902] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
76
|
Derchansky M, Jahromi SS, Mamani M, Shin DS, Sik A, Carlen PL. Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation. J Physiol 2007; 586:477-94. [PMID: 17991696 DOI: 10.1113/jphysiol.2007.143065] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The neural dynamics and mechanisms responsible for the transition from the interictal to the ictal state (seizures) are unresolved questions in epilepsy. It has been suggested that a shift from inhibitory to excitatory GABAergic drive can promote seizure generation. In this study, we utilized an experimental model of temporal lobe epilepsy which produces recurrent seizure-like events in the isolated immature mouse hippocampus (P8-16), perfused with low magnesium ACSF, to investigate the cellular dynamics of seizure transition. Whole-cell and perforated patch recordings from CA1 pyramidal cells and from fast- and non-fast-spiking interneurons in the CA1 stratum oriens hippocampal region showed a change in intracellular signal integration during the transition period, starting with dominant phasic inhibitory synaptic input, followed by dominant phasic excitation prior to a seizure. Efflux of bicarbonate ions through the GABA A receptor did not fully account for this excitation and GABAergic excitation via reversed IPSPs was also excluded as the prime mechanism generating the dominant excitation, since somatic and dendritic GABA A responses to externally applied muscimol remained hyperpolarizing throughout the transition period. In addition, abolishing EPSPs in a single neuron by intracellularly injected QX222, revealed that inhibitory synaptic drive was maintained throughout the entire transition period. We suggest that rather than a major shift from inhibitory to excitatory GABAergic drive prior to seizure onset, there is a change in the interaction between afferent synaptic inhibition, and afferent and intrinsic excitatory processes in pyramidal neurons and interneurons, with maintained inhibition and increasing, entrained 'overpowering' excitation during the transition to seizure.
Collapse
Affiliation(s)
- M Derchansky
- Division of Cellular and Molecular Biology, Toronto Western Hospital, 399 Bathurst St, 12-413, Toronto, Ontario, Canada M5T2S8
| | | | | | | | | | | |
Collapse
|
77
|
Fujiwara-Tsukamoto Y, Isomura Y, Imanishi M, Fukai T, Takada M. Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity. Eur J Neurosci 2007; 25:2713-25. [PMID: 17459104 DOI: 10.1111/j.1460-9568.2007.05543.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has recently been shown that electrical stimulation in normal extracellular fluid induces seizure-like afterdischarge activity that is always preceded by GABA-dependent slow depolarization. These afterdischarge responses are synchronous among mature hippocampal neurons and driven by excitatory GABAergic input. However, the differences in the mechanisms whereby the GABAergic signals in pyramidal cells and interneurons are transiently converted from hyperpolarizing to depolarizing (and even excitatory) have remained unclear. To clarify the network mechanisms underlying this rapid GABA conversion that induces afterdischarges, we examined the temporal changes in GABAergic responses in pyramidal cells and/or interneurons of the rat hippocampal CA1 area in vitro. The extents of slow depolarization and GABA conversion were much larger in the pyramidal cell group than in any group of interneurons. Besides GABA(A) receptor activation, neuronal excitation by ionotropic glutamate receptors enhanced GABA conversion in the pyramidal cells and consequent induction of afterdischarge. The slow depolarization was confirmed to consist of two distinct phases; an early phase that depended primarily on GABA(A)-mediated postsynaptic Cl- accumulation, and a late phase that depended on extracellular K+ accumulation, both of which were enhanced by glutamatergic neuron excitation. Moreover, extracellular K+ accumulation augmented each oscillatory response of the afterdischarge, probably by further Cl- accumulation through K+-coupled Cl- transporters. Our findings suggest that the GABA reversal potential may be elevated above their spike threshold predominantly in the pyramidal cells by biphasic Cl- intrusion during the slow depolarization in GABA- and glutamate-dependent fashion, leading to the initiation of seizure-like epileptiform activity.
Collapse
Affiliation(s)
- Yoko Fujiwara-Tsukamoto
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | | | |
Collapse
|
78
|
Grasshoff C, Thiermann H, Antkowiak B. Anaesthesia in patients suffering from organophosphorus intoxication—interactions between general anaesthetics and acetylcholine in cortical networks in vitro. Toxicology 2007; 233:214-22. [PMID: 17030394 DOI: 10.1016/j.tox.2006.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
In scenarios of mass destruction it is likely that victims are intoxicated by organophosphates and, at the same time, physically injured. Organophosphate compounds produce excessive cholinergic overstimulation in the CNS via blocking acetylcholinesterase activity. The specifics of acute care and anaesthesia in physically traumatized and intoxicated patients are largely unknown. Recent studies in animals and human subjects demonstrated that acetylcholinesterase inhibitors reverse anaesthesia. Two distinct mechanisms are potentially involved. First, acetylcholine produces an excitatory drive onto neurons, thereby counterbalancing the inhibitory actions of anaesthetics. Anaesthesia is reversed because it critically depends on a distinctive depression of several central nervous functions. Second, cholinergic stimulation may affect the mechanisms by which anaesthetics mediate their depressant actions on central neurons. In this case acetylcholine reverses anaesthesia by decreasing the potency of anaesthetic agents. In order to identify potential mechanisms involved in cholinergic reversal of anaesthesia we have investigated interactions between acetylcholine and the volatile anaesthetic sevoflurane in isolated cortical brain slices. Our results provide evidence that cholinergic stimulation counterbalances the effects of general anaesthetics by increasing neuronal excitability, and, in addition, by decreasing anaesthetic potency. These findings imply that in patients suffering from organophosphorus intoxication dose requirements for general anaesthetics are considerably increased.
Collapse
Affiliation(s)
- Christian Grasshoff
- Department of Anesthesiology, Experimental Anesthesiology Section, University of Tuebingen, Schaffhausenstr. 113, D-72072 Tuebingen, Germany
| | | | | |
Collapse
|
79
|
Yang L, Ling DSF. Carbenoxolone modifies spontaneous inhibitory and excitatory synaptic transmission in rat somatosensory cortex. Neurosci Lett 2007; 416:221-6. [PMID: 17382470 PMCID: PMC1934620 DOI: 10.1016/j.neulet.2007.01.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/30/2006] [Accepted: 01/22/2007] [Indexed: 11/16/2022]
Abstract
Gap junction (GJ) coupling between neocortical GABAergic interneurons plays a critical role in the synchronization of activity in cortical networks in physiological and pathophysiological states, e.g., seizures. Past studies have shown that GJ blockers exert anticonvulsant actions in both in vivo and in vitro models of epilepsy. However, the precise mechanisms underlying these antiepileptic effects have not been fully elucidated. This is due, in part, to a lack of information of the influence of GJ blockade on network activity in the absence of convulsant agents or enhanced neuronal excitation. One key question is whether GJ blockers act on excitatory or inhibitory systems, or both. To address this issue, we examined the effects of the GJ blocker carbenoxolone (CarbX, 150 microM) on spontaneous inhibitory postsynaptic currents (sIPSCs) and excitatory postsynaptic currents (sEPSCs) in acute slices of rat somatosensory cortex. Results showed that CarbX decreased the amplitude and frequency of sIPSCs by 30.2% and 25.7%, respectively. CarbX increased the mean frequency of sEPSCs by 24.1%, but had no effect on sEPSC amplitude. During blockade of GABAA-mediated events with picrotoxin (20 microM), CarbX induced only a small increase in sEPSC frequency that was not statistically different from control, indicating CarbX enhancement of sEPECs was secondary to the depression of synaptic inhibition. These findings suggest that in neocortex, blockade of GJs leads to an increase in spontaneous excitation by uncoupling GABAergic interneurons, and that electronic communication between inhibitory cells plays a significant role in regulating tonic synaptic excitation.
Collapse
Affiliation(s)
- Lie Yang
- Department of Physiology and The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
80
|
Association of GABRG2 polymorphisms with idiopathic generalized epilepsy. Pediatr Neurol 2007; 36:40-4. [PMID: 17162195 DOI: 10.1016/j.pediatrneurol.2006.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/21/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
Missense mutations in the gamma2 subunit of gamma-aminobutyric acid (GABA) receptor gene have recently been described in families with idiopathic generalized epilepsies. This study aimed to evaluate whether polymorphisms of the gamma2 subunit of the GABA receptor gene are associated with idiopathic generalized epilepsies. A total of 77 children with idiopathic generalized epilepsies and 83 normal control subjects were included in the study. Polymerase chain reaction was used to identify the C/T and A/G polymorphisms of the gamma2 subunit of the GABA receptor gene on chromosome 5q33. Genotypes and allelic frequencies in both groups were compared. The gamma2 subunit of the GABA receptor (nucleotide position 3145 in intron G-> A) gene in both groups was not significantly different. In contrast, the gamma2 subunit of GABA receptor (SNP211037)-C allele frequency in patients with idiopathic generalized epilepsies was significantly higher than that in healthy control subjects (P = 0.002). The odds ratio for developing idiopathic generalized epilepsies in individuals with the gamma2 subunit of the GABA receptor (SNP211037)-C/C genotype was 3.61 compared with individuals with the gamma2 subunit of the GABA receptor (SNP211037)-T/T genotype. These data suggest that the gamma2 subunit of the GABA receptor gene might be one of the susceptibility factors for idiopathic generalized epilepsies.
Collapse
|
81
|
Grasshoff C, Drexler B, Antkowiak B. Effects of cholinergic overstimulation on isoflurane potency and efficacy in cortical and spinal networks. Toxicology 2007; 229:206-13. [PMID: 17141935 DOI: 10.1016/j.tox.2006.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 11/19/2022]
Abstract
In scenarios of terrorist attacks with organophosphorus compounds it appears likely that medical aid is required by victims not only suffering from the intoxication but also from physical trauma. These subjects may have to undergo surgical interventions, raising the need for anaesthesia. This prompts the question of how anaesthetic agents work in intoxicated patients. Organophosphates block acetylcholinesterase activity, thereby inducing excessive cholinergic overstimulation in the central nervous system. As the neocortex and spinal cord are important substrates for general anaesthetics, we investigated to what extent cholinergic overstimulation affects the potency and efficacy of the commonly used volatile anaesthetic isoflurane in depressing action potential activity of cortical and spinal neurons. We first quantified the effects of isoflurane in the absence of acetylcholine by performing extracellular voltage recordings in cultured tissue slices. Isoflurane induced a concentration-dependent decrease of neuronal activity in neocortical (EC(50)=0.43+/-0.08 MAC) and spinal slices (EC(50)=0.41+/-0.03 MAC). At concentrations above 1.5 MAC, the anaesthetic almost completely depressed action potential firing in both preparations. Next, we studied the effects of acetylcholine (10microM) in the absence of isoflurane. Acetylcholine approximately doubled spontaneous activity in neocortical and spinal slices. When applying isoflurane together with acetylcholine, different interactions between these agents were observed in neocortical and spinal networks. Acetylcholine significantly reduced both the potency and efficacy of the anaesthetic in neocortical (efficacy 83%; EC(50)=1.16+/-0.02 MAC) but not in spinal (efficacy 100%; EC(50)=0.41+/-0.04 MAC) slices. Our results indicate that cholinergic overstimulation increases the requirement for anaesthetic agents in patients suffering from organophosphorus poisoning via enhancing neuronal background activity of neocortical and spinal neurons and in addition via decreasing drug potency and efficacy in the cortex. Raising anaesthetic concentrations into a high-dose range may not be an appropriate alternative to compensate the increased excitability, since high concentrations of anaesthetics may worsen cardiac abnormalities and hemodynamic instability frequently observed in these patients.
Collapse
Affiliation(s)
- Christian Grasshoff
- Department of Anesthesiology, Experimental Anesthesiology Section, Eberhard-Karls-University, Schaffhausenstrasse 113, D-72072 Tuebingen, Germany.
| | | | | |
Collapse
|
82
|
Le Van Quyen M, Khalilov I, Ben-Ari Y. The dark side of high-frequency oscillations in the developing brain. Trends Neurosci 2006; 29:419-427. [PMID: 16793147 DOI: 10.1016/j.tins.2006.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/19/2006] [Accepted: 06/02/2006] [Indexed: 11/28/2022]
Abstract
Adult brain networks generate a wide range of oscillations. Some of these are behaviourally relevant, whereas others occur during seizures and other pathological conditions. This raises the question of how physiological oscillations differ from pathogenic ones. In this review, this issue is discussed from a developmental standpoint. Indeed, both epileptic and physiological high-frequency oscillations (HFOs) appear progressively during maturation, and it is therefore possible to determine how this program corresponds to maturation of the neuronal populations that generate these oscillations. We review here important differences in the development of neuronal populations that might contribute to their different oscillatory properties. In particular, at an early stage, the density of glutamatergic synapses is too low for physiological HFOs but an additional drive can be provided by excitatory GABA, triggering epileptic HFOs and the cascades involved in long-lasting epileptogenic transformations. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).
Collapse
Affiliation(s)
- Michel Le Van Quyen
- LENA-CNRS UPR640, Université Pierre et Marie Curie, Hôpital de la Salpêtrière, 47 Bd de l'Hôpital, 75651 Paris Cedex 13, France
| | - Ilgam Khalilov
- INMED-INSERM U29, 163 Route de Luminy, 13273 Marseille Cedex 09, France
| | - Yehezkel Ben-Ari
- INMED-INSERM U29, 163 Route de Luminy, 13273 Marseille Cedex 09, France.
| |
Collapse
|
83
|
Gigout S, Louvel J, Kawasaki H, D'Antuono M, Armand V, Kurcewicz I, Olivier A, Laschet J, Turak B, Devaux B, Pumain R, Avoli M. Effects of gap junction blockers on human neocortical synchronization. Neurobiol Dis 2006; 22:496-508. [PMID: 16478664 DOI: 10.1016/j.nbd.2005.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 12/14/2005] [Accepted: 12/19/2005] [Indexed: 11/26/2022] Open
Abstract
Field potentials and intracellular recordings were obtained from human neocortical slices to study the role of gap junctions (GJ) in neuronal network synchronization. First, we examined the effects of GJ blockers (i.e., carbenoxolone, octanol, quinine, and quinidine) on the spontaneous synchronous events (duration = 0.2-1.1 s; intervals of occurrence = 3-27 s) generated by neocortical slices obtained from temporal lobe epileptic patients during application of 4-aminopyridine (4AP, 50 muM) and glutamatergic receptor antagonists. The synchronicity of these potentials (recorded at distances up to 5 mm) was decreased by GJ blockers within 20 min of application, while prolonged GJ blockers treatment at higher doses made them disappear with different time courses. Second, we found that slices from patients with focal cortical dysplasia (FCD) could generate in normal medium spontaneous synchronous discharges (duration = 0.4-8 s; intervals of occurrence = 0.5-90 s) that were (i) abolished by NMDA receptor antagonists and (ii) slowed down by carbenoxolone. Finally, octanol or carbenoxolone blocked 4AP-induced ictal-like discharges (duration = up to 35 s) in FCD slices. These data indicate that GJ play a role in synchronizing human neocortical networks and may implement epileptiform activity in FCD.
Collapse
Affiliation(s)
- S Gigout
- INSERM U 573, Paris, 75014 France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Avoli M, Louvel J, Pumain R, Köhling R. Cellular and molecular mechanisms of epilepsy in the human brain. Prog Neurobiol 2006; 77:166-200. [PMID: 16307840 DOI: 10.1016/j.pneurobio.2005.09.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/27/2005] [Accepted: 09/20/2005] [Indexed: 12/20/2022]
Abstract
Animal models have provided invaluable data for identifying the pathogenesis of epileptic disorders. Clearly, the relevance of these experimental findings would be strengthened by the demonstration that similar fundamental mechanisms are at work in the human epileptic brain. Epilepsy surgery has indeed opened the possibility to directly study the functional properties of human brain tissue in vitro, and to analyze the mechanisms underlying seizures and epileptogenesis. Here, we summarize the findings obtained over the last 40 years from electrophysiological, histochemical and molecular experiments made with the human brain tissue. In particular, this review will focus on (i) the synaptic and non-synaptic properties of neocortical neurons along with their ability to produce synchronous activity; (ii) the anatomical and functional alterations that characterize limbic structures in patients presenting with mesial temporal lobe epilepsy; (iii) the issue of antiepileptic drug action and resistance; and (iv) the pathophysiology of seizure genesis in Taylor's type focal cortical dysplasia. Finally, we will address some of the problems that are inherent to this type of experimental approach, in particular the lack of proper controls and possible strategies to obviate this limitation.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology and Neurosurgery, and of Physiology, McGill University, Montreal, Canada.
| | | | | | | |
Collapse
|
85
|
Fujiwara-Tsukamoto Y, Isomura Y, Takada M. Comparable GABAergic Mechanisms of Hippocampal Seizurelike Activity in Posttetanic and Low-Mg2+ Conditions. J Neurophysiol 2006; 95:2013-9. [PMID: 16339009 DOI: 10.1152/jn.00238.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is known that GABA is a major inhibitory neurotransmitter in mature mammalian brains, but the effect of this substance is sometimes converted into depolarizing or even excitatory when the postsynaptic Cl– concentration becomes high. Recently we have shown that seizurelike afterdischarge induced by tetanic stimulation in normal extracellular fluid (posttetanic afterdischarge) is mediated through GABAergic excitation in mature hippocampal CA1 pyramidal cells. In this study, we examined the possible contribution of similar depolarizing/excitatory GABAergic input to the CA1 pyramidal cells to the seizurelike afterdischarge induced in a low extracellular Mg2+ condition, another experimental model of epileptic seizure activity (low-Mg2+ afterdischarge). Perfusion of the GABAA antagonist bicuculline abolished the low-Mg2+ afterdischarge, but not the interictal-like activity, in most cases. Each oscillatory response during the low-Mg2+ afterdischarge was dependent on Cl– conductance and contained an F–-insensitive depolarizing component in the pyramidal cells, thus indicating that the afterdischarge response may be mediated through both GABAergic and nonGABAergic transmissions. In addition, local GABA application to the recorded cells revealed that GABA responses were indeed depolarizing during the low-Mg2+ afterdischarge. Furthermore, the GABAergic interneurons located in the strata pyramidale and oriens fired in oscillatory cycles more actively than those in other layers of the CA1 region. These results suggest that the depolarizing GABAergic input may facilitate oscillatory synchronization among the hippocampal CA1 pyramidal cells during the low-Mg2+ afterdischarge in a manner similar to the expression of the posttetanic afterdischarge.
Collapse
Affiliation(s)
- Yoko Fujiwara-Tsukamoto
- Dept. of System Neuroscience, Tokyo Metropolitan Inst. for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan.
| | | | | |
Collapse
|
86
|
Khalilov I, Le Van Quyen M, Gozlan H, Ben-Ari Y. Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus. Neuron 2005; 48:787-96. [PMID: 16337916 DOI: 10.1016/j.neuron.2005.09.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 07/28/2005] [Accepted: 09/22/2005] [Indexed: 11/28/2022]
Abstract
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.
Collapse
Affiliation(s)
- Ilgam Khalilov
- INMED-INSERM, U 29 Marseille, 163, route de Luminy, 13273 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
87
|
Köhling R, Senner V, Paulus W, Speckmann EJ. Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants. Neurobiol Dis 2005; 22:64-75. [PMID: 16309916 DOI: 10.1016/j.nbd.2005.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/15/2022] Open
Abstract
Seizures occur commonly with brain tumors. The underlying mechanisms are not understood. We analyzed network and cellular excitability changes in tumor-invaded and sham neocortical tissue in vitro using a rat glioblastoma model. Rat C6 glioma cells were transplanted into rat neocortex, yielding diffusely invading gliomas resembling human glioblastomas. We hypothesized that network excitability would increase in regions neighboring the tumor, and that initiation of epileptic discharges might be correlated to a higher density of intrinsically bursting neurones. Voltage-sensitive dye imaging revealed epileptic activity to be initiated in paratumoral zones (1-2 mm from main tumor mass), in contrast to control tissue, where epileptic foci appeared randomly throughout the neocortex. Neuronal firing patterns revealed significantly more intrinsically bursting neurones within these initiation zones than in regions directly adjacent to the tumor or in control tissue. We conclude that gliomas are associated with a higher density of intrinsically bursting neurones, and that these may preferentially initiate epileptiform events.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Institute of Physiology, University of Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
88
|
Thuault SJ, Brown JT, Calver AR, Collingridge GL, Randall A, Davies CH. Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices expressing a C-terminal truncated GABA(B2) receptor subunit. Epilepsy Res 2005; 65:41-51. [PMID: 15979855 DOI: 10.1016/j.eplepsyres.2005.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 04/10/2005] [Accepted: 04/17/2005] [Indexed: 10/25/2022]
Abstract
GABAergic synaptic transmission plays an important role in the patterning of epileptiform activity. We have previously shown that global loss of GABA(B) receptor function due to transgenic deletion of the GABA(B1) receptor subunit exacerbates epileptiform activity induced by pharmacological manipulations in hippocampal slices. Here we show that a similar hyperexcitable phenotype is observed in hippocampal slices prepared from a transgenic mouse expressing a GABA(B2) receptor subunit lacking its C terminal tail (the DeltaGB2-Ct mouse); a molecular manipulation that also produces complete loss of GABA(B) receptor function. Thus, epileptiform bursts that are sensitive to NMDA receptor antagonists (induced by either the GABA(A) receptor antagonist bicuculline (10muM) or removal of extracellular Mg(2+)) were significantly longer in duration in DeltaGB2-Ct slices relative to WT slices. We now extend these observations to demonstrate that a stimulus train induced bursting (STIB) protocol also evokes significantly longer bicuculline sensitive bursts of activity in DeltaGB2-Ct slices compared to WT. Furthermore, synchronous GABA(A) receptor-mediated potentials recorded in the presence of the potassium channel blocker 4-aminopyridine (4-AP, 100muM) and the ionotropic glutamate receptor antagonists NBQX (20muM) and D-AP5 (50muM) were significantly prolonged in duration in DeltaGB2-Ct versus WT slices. These data suggest that the loss of GABA(B) receptor function in DeltaGB2-Ct hippocampal slices promotes depolarising GABA(A) receptor-mediated events, which in turn, leads to the generation of ictal-like events, which may contribute to the epilepsy phenotype observed in vivo.
Collapse
Affiliation(s)
- Sébastien J Thuault
- Neurology and GI CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | | | |
Collapse
|
89
|
Tosetti P, Ferrand N, Colin-Le Brun I, Gaïarsa JL. Epileptiform activity triggers long-term plasticity of GABA(B) receptor signalling in the developing rat hippocampus. J Physiol 2005; 568:951-66. [PMID: 16096337 PMCID: PMC1464168 DOI: 10.1113/jphysiol.2005.094631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
GABA(B) receptor (GABA(B)R)-mediated presynaptic inhibition regulates neurotransmitter release from synaptic terminals. In the neonatal hippocampus, GABA(B)R activation reduces GABA release and terminates spontaneous network discharges called giant depolarizing potentials (GDPs). Blocking GABA(B)Rs transforms GDPs into longer epileptiform discharges. Thus, GABA(B)R-mediated presynaptic inhibition of GABA release (GABA auto-inhibition) controls both spontaneous network activity and excitability in the developing hippocampus. Here we show that extensive release of endogenous GABA during epileptiform activity impairs GABA auto-inhibition, but not GABA(B)R-mediated inhibition of glutamate release, leading to hyperexcitability of the neonatal hippocampal network. Paired-pulse depression of GABA release (PPD) and heterosynaptic depression of glutamate release were used to monitor the efficacy of presynaptic GABA(B)R-mediated inhibition in slices. PPD, but not heterosynaptic depression, was dramatically reduced after potassium (K+)-induced ictal-like discharges (ILDs), suggesting a selective impairment of GABA(B)R-dependent presynaptic inhibition of GABAergic terminals. Impairing GABA auto-inhibition induced a 44% increase in GDP width and the appearance of pathological network discharges. Preventing GABA-induced activation of GABA(B)Rs during ILDs avoided PPD loss and most modifications of the network activity. In contrast, a partial block of GABA(B)Rs induced network discharges strikingly similar to those observed after K+-driven ILDs. Finally, neither loss of GABA auto-inhibition nor network hyperexcitability could be observed following synchronous release of endogenous GABA in physiological conditions (during GDPs at 1 Hz). Thus, epileptiform activity was instrumental to impair GABA(B)R-dependent presynaptic inhibition of GABAergic terminals. In conclusion, our results indicate that endogenous GABA released during epileptiform activity can reduce GABA auto-inhibition and trigger pathological network discharges in the newborn rat hippocampus. Such functional impairment may play a role in acute post-seizure plasticity.
Collapse
Affiliation(s)
- P Tosetti
- Institut de Génomique Fonctionnelle, CNRS UMR5203/INSERM U661/UM1/UM2, Montpellier, France.
| | | | | | | |
Collapse
|
90
|
Bihi RI, Jefferys JGR, Vreugdenhil M. The role of extracellular potassium in the epileptogenic transformation of recurrent GABAergic inhibition. Epilepsia 2005; 46 Suppl 5:64-71. [PMID: 15987256 DOI: 10.1111/j.1528-1167.2005.01011.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Epileptiform burst-firing can occur in hippocampal area CA1 where recurrent excitation is relatively weak and recurrent inhibition strong. Recent observations suggest that recurrent inhibition can transform into recurrent excitation because of collapse of the chloride gradient. Here we assess the role of potassium in this epileptogenic transformation. METHODS Extracellular field potential recordings, combined with either intracellular recordings from pyramidal neurons or extracellular potassium concentration recordings, were made in vitro from isolated CA1 minislices cut from the rat hippocampus and in vivo from area CA1 in urethane-anesthetized rats. Burst responses were evoked by 5-Hz alveus stimulation. RESULTS The 5-Hz alveus stimulation in vitro caused a transient period of burst responses that was associated with a transient increase in synaptic input in stratum oriens and a transient shift of the reversal potential of the synaptic potential. These changes were related to the transient increase in extracellular potassium concentration in stratum oriens. Observations in vivo confirmed the relation between bursting and extracellular potassium concentration in stratum oriens. CONCLUSIONS Use-dependent increase of extracellular potassium concentration in stratum oriens facilitates the collapse of the chloride gradient in the basal dendrites and transforms gamma-aminobutyric acid (GABA)ergic inhibition into GABAergic excitation, giving rise to burst firing. Improvement of intracellular chloride homeostasis or extracellular potassium homeostasis could reduce epileptogenicity.
Collapse
Affiliation(s)
- Rachid Id Bihi
- Department of Neurophysiology, University of Birmingham, Birmingham, United Kingdom
| | | | | |
Collapse
|
91
|
Isaev D, Isaeva E, Khazipov R, Holmes GL. Anticonvulsant action of GABA in the high potassium-low magnesium model of ictogenesis in the neonatal rat hippocampus in vivo and in vitro. J Neurophysiol 2005; 94:2987-92. [PMID: 16000527 DOI: 10.1152/jn.00138.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous developmental studies in vitro suggested that the inhibitory neurotransmitter GABA exerts depolarizing and excitatory actions on the immature neurons and that depolarizing GABA is causally linked to ictal activity during the first weeks of postnatal life. However, remarkably little is known on the role of GABA in the generation of neonatal seizures in vivo. Here, using extracellular recordings from CA3 hippocampus, we studied the effects of GABA(A)-acting drugs on electrographic seizures induced by local intrahippocampal injection of the epileptogenic agents (high K(+)/low Mg(2+)) in the nonanesthetized rats in vivo and in the hippocampal slices in vitro during the second postnatal week (postnatal days P8-12). We found that in vivo, the induction of ictal-like events was facilitated by co-infusion of high-K(+)/low Mg(2+) together with the GABA(A) antagonist bicuculline or gabazine. Moreover, the infusion of bicuculline alone caused ictal-like activity in approximately 30% of cases. Co-infusion of the GABA(A) receptor agonist isoguvacine or the GABA(A)-positive allosteric modulator diazepam completely prevented high-K(+)/low Mg(2+)-induced seizures. In in vitro studies using hippocampal slices, we also found that high-K(+)/low Mg(2+) produced ictal activity that was exacerbated by bicuculline and gabazine and reduced by isoguvacine. Thus in the model of high-K(+)/low Mg(2+)-induced seizures both in in vivo and in vitro conditions, GABA, acting via GABA(A) receptors, has an anticonvulsant effect during the critical developmental period of enhanced excitability.
Collapse
Affiliation(s)
- Dmytro Isaev
- Section of Neurology, Dartmouth Medical School, Dartmouth-Hitchcock Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
92
|
Song C, Murray TA, Kimura R, Wakui M, Ellsworth K, Javedan SP, Marxer-Miller S, Lukas RJ, Wu J. Role of alpha7-nicotinic acetylcholine receptors in tetanic stimulation-induced gamma oscillations in rat hippocampal slices. Neuropharmacology 2005; 48:869-80. [PMID: 15829257 DOI: 10.1016/j.neuropharm.2005.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 12/08/2004] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Hippocampal gamma oscillations, as a form of neuronal network synchronization, are speculated to be associated with learning, memory and attention. Nicotinic acetylcholine receptor alpha7 subtypes (alpha7-nAChRs) are highly expressed in hippocampal neurons and play important roles in modulating neuronal function, synaptic plasticity, learning and memory. However, little is known about the role of alpha7-nAChRs in hippocampal gamma oscillations. Here, we examined the effects of selective alpha7- and non-alpha7-nAChR antagonists on tetanic gamma oscillations in rat hippocampal slices. We found that brief tetanic stimulation-induced gamma oscillations (30-80 Hz) and pharmacological blockade of alpha7-nAChRs using the relatively selective alpha7-nAChR antagonists, methyllycaconitine (10 or 100 nM) or alpha-bungarotoxin (10 nM), significantly reduced the frequency spectrum power, the number of spikes, and burst duration of evoked gamma oscillations. Neither mecamylamine nor dihydro-beta-erythroidine, which are selective antagonists of non-alpha7-nAChRs, demonstrated significant effects on tetanic gamma oscillations. Nicotine exposure promotes hippocampal gamma oscillations in a methyllycaconitine-sensitive manner. It is concluded that alpha7-nAChRs in hippocampal slices play important roles in regulation of gamma oscillations, thus potentially helping to explain roles of nAChRs in cognitive functions such as learning, memory and attention.
Collapse
Affiliation(s)
- Chuanzhe Song
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kaneda K, Fujiwara-Tsukamoto Y, Isomura Y, Takada M. Region-specific modulation of electrically induced synchronous oscillations in the rat hippocampus and cerebral cortex. Neurosci Res 2005; 52:83-94. [PMID: 15811556 DOI: 10.1016/j.neures.2005.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/25/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Strong tetanization induces synchronous membrane potential oscillations (seizure-like afterdischarge) in mature pyramidal cells of the hippocampal CA1 region. To investigate whether local networks in other brain regions can generate such an afterdischarge independently, we studied the inducibility of afterdischarge in individual 'isolated slices' of the rat hippocampal CA1 and CA3 regions, dentate gyrus (DG), entorhinal cortex (EC), and temporal cortex (TC) using intracellular and extracellular recordings. The strong tetanization constantly induced afterdischarges in the CA1 and CA3 pyramidal cells as well as in the EC and TC superficial principal cells. However, parameters of the afterdischarges, such as the frequency and duration of afterdischarges, varied among the regions. A mixture of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists or a GABA(A) receptor antagonist completely blocked the afterdischarges. Local GABA application during the afterdischarge elicited depolarization, rather than hyperpolarization. Moreover, reversal potentials of the afterdischarge were around -40 mV. In contrast, the tetanization resulted in occasional afterdischarge-like activities in DG slices, which were blocked by the non-NMDA or GABA(A) receptor antagonist. These findings suggest that the afterdischarges mediated through the excitatory GABAergic and glutamatergic transmissions might be common to, but be modulated differently by individual local networks in the hippocampus and cortex.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | |
Collapse
|
94
|
Derchansky M, Shahar E, Wennberg RA, Samoilova M, Jahromi SS, Abdelmalik PA, Zhang L, Carlen PL. Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus. Hippocampus 2005; 14:935-47. [PMID: 15390177 DOI: 10.1002/hipo.20007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study presents a model of chronic, recurrent, spontaneous seizures in the intact isolated hippocampal preparation from mice aged P8-P25. Field activity from the CA1 pyramidal cell layer was recorded and recurrent, spontaneous seizure-like events (SLEs) were observed in the presence of low Mg2+ (0.25 mM) artificial cerebrospinal fluid (ACSF). Hippocampi also showed interictal epileptiform discharges (IEDs) of 0.9-4.2 Hz occurring between seizures. No age-specific differences were found in SLE occurrence (2 SLEs per 10 min, on average), duration, and corresponding frequencies. After long exposure to low Mg2+ ACSF (>3 h), SLEs were completely reversible within minutes with the application of normal (2 mM Mg2+) ACSF. The AMPA antagonist, CNQX, blocked all epileptiform activity, whereas the NMDA antagonist, APV, did not. The gamma-aminobutyric acid (GABA)A antagonist, bicuculline, attenuated and fragmented SLEs, implicating interneurons in SLE generation. The L-type Ca2+ blocker, nifedipine, enhanced epileptiform activity. Analysis of dual site recordings along the septotemporal hippocampus demonstrated that epileptiform activity began first in the temporal pole of the hippocampus, as illustrated by disconnection experiments. Once an SLE had been established, however, the septal hippocampus was sometimes seen to lead the epileptiform activity. The whole hippocampus with intact local circuitry, treated with low Mg2+, provides a realistic model of recurrent spontaneous seizures, which may be used, in normal and genetically modified mice, to study the dynamics of seizures and seizure evolution, as well as the mechanisms of action of anti-epileptic drugs and other therapeutic modalities.
Collapse
Affiliation(s)
- M Derchansky
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Idiopathic generalized epilepsy (IGE) syndromes are diseases that are characterized by absence, myoclonic, and/or primary generalized tonic-clonic seizures in the absence of structural brain abnormalities. Although it was long hypothesized that IGE had a genetic basis, only recently have causative genes been identified. Here we review mutations in the GABA(A) receptor alpha1, gamma2, and delta subunits that have been associated with different IGE syndromes. These mutations affect GABA(A) receptor gating, expression, and/or trafficking of the receptor to the cell surface, all pathophysiological mechanisms that result in neuronal disinhibition and thus predispose affected patients to seizures.
Collapse
Affiliation(s)
- Robert L Macdonald
- Department of Neurology, Vanderbilt University, 6140 Medical Research Building III, 465 21st Ave Nashville, TN 37232-8552, USA.
| | | | | | | |
Collapse
|
96
|
Vreugdenhil M, Bracci E, Jefferys JGR. Layer-specific pyramidal cell oscillations evoked by tetanic stimulation in the rat hippocampal area CA1 in vitro and in vivo. J Physiol 2004; 562:149-64. [PMID: 15528242 PMCID: PMC1665487 DOI: 10.1113/jphysiol.2004.075390] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tetanic stimulation of axons terminating in the CA1 region of the hippocampus induces oscillations in the gamma-to-beta frequency band (13-100 Hz) and can induce long-term potentiation (LTP). The rapid pyramidal cell discharge is driven by a mainly GABA(A)-receptor-mediated slow depolarization and entrained mainly through ephaptic interactions. This study tests whether cellular compartmentalization can explain how cells, despite severely reduced input resistance, can still fire briskly and have IPSPs superimposed on the slow GABAergic depolarization, and whether this behaviour occurs in vivo. Oscillations induced in CA1 in vitro by tetanic stimulation of the stratum radiatum or oriens were analysed using intracellular and multichannel field potentials along the cell axis. Layer-specific effects of focal application of bicuculline indicate that the GABAergic depolarization is concentrated on tetanized dendrites. Current-source density analysis and characteristics of partial spikes indicate that early action potentials are initiated in the proximal nontetanized dendrite but cannot invade the tetanized dendrite, where recurrent EPSPs and evoked IPSPs were largely suppressed. As the oscillation progresses, IPSPs recover and slow the neuronal firing to beta frequencies, with a small subpopulation of neurons continuing to fire at gamma frequency. Carbonic anhydrase dependence, threshold intensity, frequency, field strength and spike initiation/propagation of tetanus-evoked oscillations in urethane-anaesthetized rats, validate our observations in vitro, and show that these mechanisms operate in healthy tissue. However, the disrupted electrophysiology of the tetanized dendrites will disable normal information processing, has implications for LTP induction and is likely to play a role in pathological synchronization as found during epileptic discharges.
Collapse
Affiliation(s)
- Martin Vreugdenhil
- Department of Neurophysiology, Division of Neuroscience, Medical School, University of Birmingham, Edgbaston B15 2TT, UK.
| | | | | |
Collapse
|
97
|
Schwaller B, Tetko IV, Tandon P, Silveira DC, Vreugdenhil M, Henzi T, Potier MC, Celio MR, Villa AEP. Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures. Mol Cell Neurosci 2004; 25:650-63. [PMID: 15080894 DOI: 10.1016/j.mcn.2003.12.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/01/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022] Open
Abstract
Networks of GABAergic interneurons are of utmost importance in generating and promoting synchronous activity and are involved in producing coherent oscillations. These neurons are characterized by their fast-spiking rate and by the expression of the Ca(2+)-binding protein parvalbumin (PV). Alteration of their inhibitory activity has been proposed as a major mechanism leading to epileptic seizures and thus the role of PV in maintaining the stability of neuronal networks was assessed in knockout (PV-/-) mice. Pentylenetetrazole induced generalized tonic-clonic seizures in all genotypes, but the severity of seizures was significantly greater in PV-/- than in PV+/+ animals. Extracellular single-unit activity recorded from over 1000 neurons in vivo in the temporal cortex revealed an increase of units firing regularly and a decrease of cells firing in bursts. In the hippocampus, PV deficiency facilitated the GABA(A)ergic current reversal induced by high-frequency stimulation, a mechanism implied in the generation of epileptic activity. We postulate that PV plays a key role in the regulation of local inhibitory effects exerted by GABAergic interneurons on pyramidal neurons. Through an increase in inhibition, the absence of PV facilitates synchronous activity in the cortex and facilitates hypersynchrony through the depolarizing action of GABA in the hippocampus.
Collapse
Affiliation(s)
- B Schwaller
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
D'Antuono M, Louvel J, Köhling R, Mattia D, Bernasconi A, Olivier A, Turak B, Devaux A, Pumain R, Avoli M. GABAA receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex. Brain 2004; 127:1626-40. [PMID: 15175227 DOI: 10.1093/brain/awh181] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Patients with Taylor's type focal cortical dysplasia (FCD) present with seizures that are often medically intractable. Here, we attempted to identify the cellular and pharmacological mechanisms responsible for this epileptogenic state by using field potential and K+-selective recordings in neocortical slices obtained from epileptic patients with FCD and, for purposes of comparison, with mesial temporal lobe epilepsy (MTLE), an epileptic disorder that, at least in the neocortex, is not characterized by any obvious structural aberration of neuronal networks. Spontaneous epileptiform activity was induced in vitro by applying 4-aminopyridine (4AP)-containing medium. Under these conditions, we could identify in FCD slices a close temporal relationship between ictal activity onset and the occurrence of slow interictal-like events that were mainly contributed by GABAA receptor activation. We also found that in FCD slices, pharmacological procedures capable of decreasing or increasing GABAA receptor function abolished or potentiated ictal discharges, respectively. In addition, the initiation of ictal events in FCD tissue coincided with the occurrence of GABAA receptor-dependent interictal events leading to [K+]o elevations that were larger than those seen during the interictal period. Finally, by testing the effects induced by baclofen on epileptiform events generated by FCD and MTLE slices, we discovered that the function of GABAB receptors (presumably located at presynaptic inhibitory terminals) was markedly decreased in FCD tissue. Thus, epileptiform synchronization leading to in vitro ictal activity in the human FCD tissue is initiated by a synchronizing mechanism that paradoxically relies on GABAA receptor activation causing sizeable increases in [K+]o. This mechanism may be facilitated by the decreased ability of GABAB receptors to control GABA release from interneuron terminals.
Collapse
Affiliation(s)
- M D'Antuono
- Dipartimento di Fisiologia Umana e Farmacologia V. Erspamer, Università degli Studi di Roma La Sapienza, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Fujiwara-Tsukamoto Y, Isomura Y, Kaneda K, Takada M. Synaptic interactions between pyramidal cells and interneurone subtypes during seizure-like activity in the rat hippocampus. J Physiol 2004; 557:961-79. [PMID: 15107470 PMCID: PMC1665157 DOI: 10.1113/jphysiol.2003.059915] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have recently reported that excitatory GABAergic and glutamatergic mechanisms may be involved in the generation of seizure-like (ictal) rhythmic synchronization (afterdischarge), induced by a strong synaptic stimulation of the CA1 pyramidal cells in the mature rat hippocampus in vitro. To clarify the network mechanism of this neuronal synchronization, dual whole-cell patch-clamp recordings of the afterdischarge responses were performed simultaneously from a variety of interneurones and their neighbouring pyramidal cells in hippocampal CA1-isolated slice preparations. According to morphological and electrophysiological criteria, the recorded interneurones were then classified into distinct subtypes. The non-fast-spiking interneurones located in the strata lacunosum-moleculare and radiatum hardly discharged during the afterdischarge, whereas most of the fast-spiking and non-fast-spiking interneurones in the strata oriens and pyramidale, including the basket, chandelier and bistratified cells, exhibited prominent firings that were precisely synchronous with oscillatory responses in the pyramidal cells. Field potential recordings showed that excitatory synaptic transmissions might take place primarily in the strata oriens and pyramidale during the afterdischarge. Restricted lesions in the strata oriens and pyramidale, but not in the other layers, resulted in the complete desynchronization of afterdischarge activity, and also, local application of glutamate receptor antagonists to these layers blocked the expression of afterdischarge. The present findings indicate that the neuronal synchronization of epileptic afterdischarge may be accomplished in a 'positive feedback circuit' formed by the excitatory GABAergic interneurones and the glutamatergic pyramidal cells within the strata oriens and/or pyramidale of the hippocampal CA1 region.
Collapse
Affiliation(s)
- Yoko Fujiwara-Tsukamoto
- Department of System Neuroscience, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | |
Collapse
|
100
|
Avoli M, Benini R, de Guzman P, Omar A. GABA(B) receptor activation and limbic network ictogenesis. Neuropharmacology 2004; 46:43-51. [PMID: 14654096 DOI: 10.1016/s0028-3908(03)00307-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rat brain slices containing interconnected hippocampus and entorhinal cortex (EC) responded to 4-aminopyridine (50 microM) application by generating: (i) CA3-driven interictal discharges that propagated to the EC; and (ii) N-methyl-D-aspartic (NMDA) acid receptor-dependent ictal events originating in EC (cf. J. Neurosci. 17 (1997) 9308 for experiments made in brain slices). Ictal discharges disappeared within 1-2 h, but were re-established by cutting the Schaffer collaterals, which abolished CA3-driven interictal discharge propagation to EC. In intact slices, GABA(B) receptor activation by baclofen (5-40 microM): (i) depressed CA3-driven interictal activity; and (ii) disclosed non-NMDA glutamatergic receptor-dependent ictal discharges originating in CA3 and propagating to EC. These effects were reversed by the GABA(B) receptor antagonist CGP 35348 (0.5 mM). Application of increasing baclofen doses to slices in which hippocampus and EC networks were surgically isolated decreased epileptiform events with an IC50 that was lower in EC (0.6 microM; n = 12) than in CA3 (2.5 microM; n = 12). Hence, under control conditions, EC ictogenesis depends on NMDA receptor function and is controlled by CA3-driven output activity; in contrast, following GABA(B) receptor activation EC excitability is depressed to a greater extent than CA3, which leads to non-NMDA glutamatergic receptor-mediated ictogenesis in CA3. We propose that GABA(B) receptor modulation may represent an important mechanism for setting the site of initiation, the modalities of propagation and the glutamatergic receptor properties of ictogenesis in the limbic system and, perhaps, in mesial temporal lobe epilepsy patients.
Collapse
Affiliation(s)
- Massimo Avoli
- Departments of Neurology and Neurosurgery, and of Physiology, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4.
| | | | | | | |
Collapse
|