51
|
Dubroff JG, Stevens RT, Hitt J, Hodge CJ, McCasland JS. Anomalous functional organization of barrel cortex in GAP-43 deficient mice. Neuroimage 2005; 29:1040-8. [PMID: 16309923 DOI: 10.1016/j.neuroimage.2005.08.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/26/2005] [Accepted: 08/30/2005] [Indexed: 11/23/2022] Open
Abstract
Growth associated protein 43 (GAP-43), found only in the nervous system, regulates the response of neurons to axon guidance signals. It is also critical for establishing normal somatotopy. Mice lacking GAP-43 (KO) show aberrant pathfinding by thalamocortical afferents, and do not form cortical whisker/barrels. GAP-43 heterozygous (HZ) mice show more subtle deficits--delayed barrel segregation and enlarged barrels at postnatal day 7. Here, we used cortical intrinsic signal imaging to characterize adult somatotopy in wildtype (WT), GAP-43 KO, and HZ mice. We found clear foci of activation in GAP-43 KO cortex in response to single-whisker stimulation. However, the KO spatial activation patterns showed severe anomalies, indicating a loss of functional somatotopy. In some cases, multiple foci were activated by single whiskers, while in other cases, the same cortical zone was activated by several whiskers. The results are consistent with our previous findings of aberrant pathfinding and clustering by thalamocortical afferent axons, and absence of barrel patterning. Our findings indicate that cortex acts to cluster afferents from a given whisker, even in the absence of normal topography. By contrast, single-whisker stimulation revealed normal adult topographic organization in WT and HZ mice. However, we found that functional representations of adult HZ barrels are larger than those found in WT mice. Since histological HZ barrels recover normal dimensions by postnatal day 26, the altered circuit function in GAP-43 HZ cortex could be a secondary consequence of the rescue of barrel dimensions.
Collapse
Affiliation(s)
- J G Dubroff
- Graduate Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
52
|
Alcántara S, Pozas E, Ibañez CF, Soriano E. BDNF-modulated Spatial Organization of Cajal–Retzius and GABAergic Neurons in the Marginal Zone Plays a Role in the Development of Cortical Organization. Cereb Cortex 2005; 16:487-99. [PMID: 16000651 DOI: 10.1093/cercor/bhi128] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study utilizes nestin-BDNF transgenic mice, which offer a model for early increased brain-derived neurotrophic factor (BDNF) signalling, to examine the role of BDNF in the development of cortical architecture. Our results demonstrate that the premature and homogeneous expression of BDNF, while preserving tangential migration from the ganglionic eminence to the cortex, impairs the final radial migration of GABAergic neurons, as well as their integration in the appropriate cortical layers. Moreover, Cajal-Retzius (CR) cells and GABAergic neurons segregate in the cortical marginal zone (MZ) in response to BDNF signalling, leading to an alternating pattern and a columnar cortical organization, within which the migration of different neuronal populations is specifically affected. These results suggest that both CR and GABAergic neurons play a role in directing the radial migration of late-generated cortical neurons, and that the spatial distribution of these cells in the MZ is critical for the development of correct cortical organization. In addition, reelin secreted by CR cells in the MZ is not sufficient to direct the migration of late-born neurons to the upper cortical layers, which most likely requires the presence of reelin-secreting interneurons in layers V-VI. We propose that in addition to modulating reelin expression, BDNF regulates the patched distribution of CR and GABAergic neurons in the MZ, and that this spatial distribution is involved in the formation of anatomical and/or functional columns and convoluted structures.
Collapse
Affiliation(s)
- Soledad Alcántara
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
53
|
Rekart JL, Meiri K, Routtenberg A. Hippocampal-dependent memory is impaired in heterozygous GAP-43 knockout mice. Hippocampus 2005; 15:1-7. [PMID: 15390153 DOI: 10.1002/hipo.20045] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cajal proposed that the rearrangement and growth of neurites and synaptic terminals is a substrate for the formation and storage of long-term memories. Proteins that regulate this learning-dependent growth are therefore likely to be "core determinants" (Sanes and Lichtman, Nat Neurosci 1999; 2:597-604) of such information storage processes. Although the growth-associated, protein kinase C (PKC) substrate GAP-43 has been oft-implicated in synaptic plasticity and memory, it has never been demonstrated that a reduction in the level of this protein has a deleterious effect on memory, because most homozygotes die perinatally. In this report, we observe significant memory impairments in heterozygous GAP-43 knockout mice with GAP-43 levels reduced by one-half. Impaired memory for a context was demonstrated in contextual fear conditioning. Importantly, no significant impairments in cued conditioning or on tests of nociceptive or auditory perception were observed in the heterozygous knockout, indicating that the observed impairments were unlikely related to performance or acquisition factors and are the result of reduced GAP-43 levels in the hippocampus. The present results, taken together with the prior demonstration of enhanced memory in transgenic mice overexpressing GAP-43, provide strong evidence for a pivotal role of hippocampal GAP-43 in the bidirectional regulation of mnemonic processing.
Collapse
Affiliation(s)
- Jerome L Rekart
- Department of Psychology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
54
|
Metz GA, Schwab ME. Behavioral characterization in a comprehensive mouse test battery reveals motor and sensory impairments in growth-associated protein-43 null mutant mice. Neuroscience 2005; 129:563-74. [PMID: 15541878 DOI: 10.1016/j.neuroscience.2004.07.053] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2004] [Indexed: 11/18/2022]
Abstract
The growth-associated protein (GAP)-43 is a major neuronal protein associated with axonal growth, neuronal plasticity and learning. The observation that only 5-10% of mice with a full GAP-43 gene deletion survive weaning suggests that basic neural functions are disturbed. Here we used a comprehensive test battery to characterise and quantify the motor and sensory function of surviving adult homozygous GAP-43 (-/-) mice as compared with GAP-43 (+/-) and wild-type animals. The test battery was comprised of motor, sensory, and reflex tests producing 25 measures of locomotion, as well as epicritic, auditory, olfactory and visual function. The analysis revealed significant impairments in muscle strength, limb coordination and balance in GAP-43 (-/-) mice. Furthermore, GAP-43 (-/-) animals were hyperactive and showed reduced anxiety as measured by open field and light dark tests. In sensory tests, GAP-43 (-/-) mice were tested for impaired tactile and labyrinthine function. Abnormal reflexes were found in the contact and vibrissa placing responses, and in the crossed extensor reflex. GAP-43 (+/-) animals showed only moderate abnormalities as compared with wild-type animals. We conclude that GAP-43 is necessary for the development and function of a variety of neuronal systems. The results also show that the comprehensive test battery used in the present study represents a sensitive approach to assess the functional integrity of ascending and descending pathways in genetically manipulated mice.
Collapse
Affiliation(s)
- G A Metz
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 Canada.
| | | |
Collapse
|
55
|
Aucoin JS, Jiang P, Aznavour N, Tong XK, Buttini M, Descarries L, Hamel E. Selective cholinergic denervation, independent from oxidative stress, in a mouse model of Alzheimer’s disease. Neuroscience 2005; 132:73-86. [PMID: 15780468 DOI: 10.1016/j.neuroscience.2004.11.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2004] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by increases in amyloid-beta (Abeta) peptides, neurofibrillary tangles, oxidative stress and cholinergic deficits. However, the selectivity of these deficits and their relation with the Abeta pathology or oxidative stress remain unclear. We therefore investigated amyloidosis-related changes in acetylcholine (ACh) and serotonin (5-HT) innervations of hippocampus and parietal cortex by quantitative choline acetyltransferase (ChAT) and 5-HT immunocytochemistry, in 6, 12/14 and 18 month-old transgenic mice carrying familial AD-linked mutations (hAPP(Sw,Ind)). Further, using manganese superoxide dismutase (MnSOD) and nitrotyrosine immunoreactivity as markers, we evaluated the relationship between oxidative stress and the ACh deficit in 18 month-old mice. Thioflavin-positive Abeta plaques were seen in both regions at all ages; they were more numerous in hippocampus and increased in number (>15-fold) and size as a function of age. A majority of plaques exhibited or were surrounded by increased MnSOD immunoreactivity, and dystrophic ACh or 5-HT axons were seen in their immediate vicinity. Counts of immunoreactive axon varicosities revealed significant decreases in ACh innervation, with a sparing of the 5-HT, even in aged mice. First apparent in hippocampus, the loss of ACh terminals was in the order of 20% at 12/14 months, and not significantly greater (26%) at 18 months. In parietal cortex, the ACh denervation was significant at 18 months only, averaging 24% across the different layers. Despite increased perivascular MnSOD immunoreactivity, there was no evidence of dystrophic ACh varicosities or their accentuated loss in the perivascular area. Moreover, there was virtually no sign of tyrosine nitration in ChAT nerve terminals or neuronal cell bodies. These data suggest that aggregated Abeta exerts an early, non-selective and focal neurotoxic effect on both ACh and 5-HT axons, but that a selective, plaque- and oxidative stress-independent diffuse cholinotoxicity, most likely caused by soluble Abeta assemblies, is responsible for the hippocampal and cortical ACh denervation.
Collapse
Affiliation(s)
- J-S Aucoin
- Complex Neural Systems, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Room 748, Montréal, QC, Canada H3A 2B4
| | | | | | | | | | | | | |
Collapse
|
56
|
Lesch KP. Genetic alterations of the murine serotonergic gene pathway: the neurodevelopmental basis of anxiety. Handb Exp Pharmacol 2005:71-112. [PMID: 16594255 DOI: 10.1007/3-540-28082-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The relative contribution of genetic and environmental factors in the configuration of behavioral differences is among the most prolonged and contentious controversies in intellectual history. Although current views emphasize the joint influence of genes and environmental sources during early brain development, the physiological complexities of multiple gene-gene and gene-environment interactions in the developmental neurobiology of fear and anxiety remain elusive. Variation in genes coding for proteins that control serotonin (5-hydroxytryptamine, 5-HT) system development and plasticity, establish 5-HT neuron identity, and modulate 5-HT receptor-mediated signal transduction as well as cellular pathways have been implicated in the genetics of anxiety and related disorders. This review selects anxiety and avoidance as paradigmatic traits and behaviors, and it focuses on mouse models that have been modified by deletion of genes coding for key players of serotonergic neurotransmission. In particular, pertinent approaches regarding phenotypic changes in mice bearing inactivation mutations of 5-HT receptors, 5-HT transporter, and monoamine oxidase A and other genes related to 5-HT signaling will be discussed and major findings highlighted.
Collapse
Affiliation(s)
- K P Lesch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| |
Collapse
|
57
|
Mosevitsky MI. Nerve Ending “Signal” Proteins GAP‐43, MARCKS, and BASP1. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:245-325. [PMID: 16125549 DOI: 10.1016/s0074-7696(05)45007-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanisms of growth cone pathfinding in the course of neuronal net formation as well as mechanisms of learning and memory have been under intense investigation for the past 20 years, but many aspects of these phenomena remain unresolved and even mysterious. "Signal" proteins accumulated mainly in the axon endings (growth cones and the presynaptic area of synapses) participate in the main brain processes. These proteins are similar in several essential structural and functional properties. The most prominent similarities are N-terminal fatty acylation and the presence of an "effector domain" (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interactions. However, together with similarities, there are significant differences among the proteins, such as different conditions (Ca2+ contents) for calmodulin binding and different modes of interaction with the actin cytoskeleton. In light of these facts, we consider GAP-43, MARCKS, and BASP1 both separately and in conjunction. Special attention is devoted to a discussion of apparent inconsistencies in results and opinions of different authors concerning specific questions about the structure of proteins and their interactions.
Collapse
Affiliation(s)
- Mark I Mosevitsky
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina Leningrad District, Russian Federation
| |
Collapse
|
58
|
|
59
|
The relationship between neuronal plasticity and serotonergic neurons in the brainstem of SIDS victims. PATHOPHYSIOLOGY 2004. [DOI: 10.1016/j.pathophys.2004.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
60
|
Sawaguchi T, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Nishida H, Kahn A. The relationship between neuronal plasticity and serotonergic neurons in the brainstem of SIDS victims. Early Hum Dev 2003; 75 Suppl:S139-46. [PMID: 14693400 DOI: 10.1016/j.earlhumdev.2003.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The sudden infant death syndrome (SIDS) is still the main cause of postneonatal infant death and its cause is still unknown. Recently, the medullary serotonergic network deficiency theory has been proposed and an association between SIDS and neuronal plasticity has also been suggested. The growth-associated phosphoprotein 43 (GAP43) is a marker of synaptic plasticity and is critical for normal development of the serotonergic innervation. Therefore, the characteristics of GAP43-positive elements and their association with serotonergic neurons were here investigated in the brainstem of SIDS victims. MATERIALS AND METHODS The materials of this study included 26 cases of SIDS and 12 control cases. The brainstem material was collected and the immunohistochemistry of GAP43 and tryptophan hydroxylase (TrypH) carried out. The density of GAP43-positive neurons and dendrites and of TrypH-positive neurons were measured quantitatively. Nonparametric analyses of GAP43 between SIDS and non-SIDS and correlation analyses between GAP43 and TrypH were performed. RESULTS No significant difference in GAP43-associated findings was found between SIDS and non-SIDS nor any significant correlation between GAP43-associated findings and TrypH-positive neurons. CONCLUSIONS The results of this study were not in agreement with the association of GAP43 with SIDS and with serotonergic innervation in SIDS.
Collapse
Affiliation(s)
- Toshiko Sawaguchi
- Department of Legal Medicine, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | |
Collapse
|
61
|
Lesch KP, Zeng Y, Reif A, Gutknecht L. Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharmacol 2003; 480:185-204. [PMID: 14623362 DOI: 10.1016/j.ejphar.2003.08.106] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurobiology of anxiety is complex, reflecting the cumulative physiological effects of multiple genes. These genes are interactive with each other and with the environment in which they are expressed. Variation in genes coding for proteins that control serotonin (5-HT) system development and plasticity, establish 5-HT neuron identity, and modulate 5-HT receptor-mediated signal transduction and cellular pathways have been implicated in the genetics of anxiety and related disorders. Here, we selected anxiety and avoidance as paradigmatic traits and behavior and cover both traditional studies with inbred murine strains and selected lines which have been modified by gene knockout technologies. The design of a mouse model partially or completely lacking a gene of interest during all stages of development (constitutive knockout) or in a spatio-temporal context (conditional knockout) is among the prime strategies directed at elucidating the role of genetic factors in fear and anxiety. In many cases, knockout mice have been able to confirm what has already been anticipated based on pharmacological studies. In other instances, knockout studies have changed views of the relevance of 5-HT homeostasis in brain development and plasticity as well as processes underlying emotional behavior. In this review, we discuss the pertinent literature regarding phenotypic changes in mice bearing inactivation mutations of 5-HT receptors, 5-HT transporter, monoamine oxidase A and other components of the serotonergic pathway. Finally, we attempt to identify future directions of genetic manipulation in animal models to advance our understanding of brain dysregulation characteristic of anxiety disorders.
Collapse
Affiliation(s)
- Klaus Peter Lesch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080, Würzburg, Germany.
| | | | | | | |
Collapse
|
62
|
Judas M, Milosević NJ, Rasin MR, Heffer-Lauc M, Kostović I. Complex patterns and simple architects: molecular guidance cues for developing axonal pathways in the telencephalon. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 32:1-32. [PMID: 12827969 DOI: 10.1007/978-3-642-55557-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M Judas
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
63
|
McIlvain VA, Robertson DR, Maimone MM, McCasland JS. Abnormal thalamocortical pathfinding and terminal arbors lead to enlarged barrels in neonatal GAP-43 heterozygous mice. J Comp Neurol 2003; 462:252-64. [PMID: 12794747 DOI: 10.1002/cne.10725] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GAP-43 has been implicated in axonal pathfinding and sprouting, synaptic plasticity, and neurotransmitter release. However, its effect on cortical development in vivo is poorly understood. We have previously shown that GAP-43 knockout (-/-) mice fail to develop whisker-related barrels or an ordered whisker map in the cortex. Here we used cytochrome oxidase (CO) histochemistry to demonstrate that GAP-43 heterozygous (+/-) mice develop larger than normal barrels at postnatal day 7 (P7), despite normal body and brain weight. Using serotonin transporter (5HT-T) histochemistry to label thalamocortical afferents (TCAs), we found no obvious abnormalities in other somatosensory areas or primary visual cortex of GAP-43 (+/-) mice. However, TCA projections to (+/-) primary auditory cortex were not as clearly defined. To clarify the mechanism underlying the large-barrel phenotype, we used lipophilic (DiI) axon labeling. We found evidence for multiple pathfinding abnormalities among GAP-43 (+/-) TCAs. These axons show increased fasciculation within the internal capsule, as well as abnormal turning and branching in the subcortical white matter. These pathfinding errors most likely reflect failures of signal recognition and/or transduction by ingrowing TCAs. In addition, many DiI-labeled (+/-) TCAs exhibit widespread, sparsely branched terminal arbors in layer IV, reflecting the large-barrel phenotype. They also resemble those found in rat barrel cortex deprived of whisker inputs from birth, suggesting a failure of activity-dependent synaptogenesis and/or synaptic stabilization in (+/-) cortex. Our findings suggest that reduced GAP-43 expression can alter the fine-tuning of a cortical map through a combination of pathfinding and synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Vera A McIlvain
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
64
|
Abstract
The neurobiologic basis of autism is reviewed, with discussion of evidence from genetic, magnetic resonance imaging, neuropathology, and functional neuroimaging studies. Although autism is a behaviorally valid syndrome, it is remarkably heterogeneous and involves multiple developmental domains as well as a wide range of cognitive, language, and socioemotional functioning. Although multiple etiologies are implicated, recent advances have identified common themes in pathophysiology. Genetic factors play a primary role, based on evidence from family studies, identification of putative genes using genome-wide linkage analyses, and comorbidities with known genetic mutations. The RELN gene, which codes for an extracellular protein guiding neuronal migration, has been implicated in autism. Numerous neuropathologic changes have been described, including macroencephaly, acceleration and then deceleration in brain growth, increased neuronal packing and decreased cell size in the limbic system, and decreased Purkinje cell number in the cerebellum. Abnormalities in organization of the cortical minicolumn, representing the fundamental subunit of vertical cortical organization, may underlie the pathology of autism and result in altered thalamocortical connections, cortical disinhibition, and dysfunction of the arousal-modulating system of the brain. The role of acquired factors is speculative, with insufficient evidence to link the measles-mumps-rubella (MMR) vaccine with autism or to change immunization practices.
Collapse
Affiliation(s)
- Maria T Acosta
- Department of Neurology, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970, USA.
| | | |
Collapse
|
65
|
Faison MO, Perozzi EF, Caran N, Stewart JK, Tombes RM. Axonal localization of delta Ca2+/calmodulin-dependent protein kinase II in developing P19 neurons. Int J Dev Neurosci 2002; 20:585-92. [PMID: 12526889 DOI: 10.1016/s0736-5748(02)00107-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase, type II (CaMK-II) is an enzyme encoded by four genes (alpha, beta, gamma and delta) and traditionally associated with synaptic function in the adult central nervous system, but also believed to play a role during neuronal development. P19 mouse embryonic cells are a model system for neurogenesis and primarily express isozymes of delta CaMK-II. It is not yet known whether or where delta CaMK-II is expressed in P19 neurons. Using an antibody specific for the delta CaMK-II C-terminal tail, we detected a 20-fold increase in levels of delta CaMK-II along axons after 8 days of development. This coincides with increased mRNA and protein levels of delta(C) CaMK-II, which contains the alternative tail. This follows the initial stages of neurite outgrowth and beta(3) tubulin expression, which occur after 4 days. delta CaMK-II co-localizes with the axonal protein GAP-43, but not the dendritic microtubule-associated protein MAP-2, a known substrate of alpha CaMK-II. Like delta CaMK-II, GAP-43 shows increased expression after 8 days. These findings demonstrate developmental regulation of the alternative C-terminal delta CaMK-II exon and implicate endogenous delta CaMK-II in axonal development in embryonic cells.
Collapse
Affiliation(s)
- M Omar Faison
- Department of Biology, Virginia Commonwealth University, 1000 West Cary Street, Richmond, VA 23284-2012, USA
| | | | | | | | | |
Collapse
|