51
|
Lesch KP. Genetic alterations of the murine serotonergic gene pathway: the neurodevelopmental basis of anxiety. Handb Exp Pharmacol 2005:71-112. [PMID: 16594255 DOI: 10.1007/3-540-28082-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The relative contribution of genetic and environmental factors in the configuration of behavioral differences is among the most prolonged and contentious controversies in intellectual history. Although current views emphasize the joint influence of genes and environmental sources during early brain development, the physiological complexities of multiple gene-gene and gene-environment interactions in the developmental neurobiology of fear and anxiety remain elusive. Variation in genes coding for proteins that control serotonin (5-hydroxytryptamine, 5-HT) system development and plasticity, establish 5-HT neuron identity, and modulate 5-HT receptor-mediated signal transduction as well as cellular pathways have been implicated in the genetics of anxiety and related disorders. This review selects anxiety and avoidance as paradigmatic traits and behaviors, and it focuses on mouse models that have been modified by deletion of genes coding for key players of serotonergic neurotransmission. In particular, pertinent approaches regarding phenotypic changes in mice bearing inactivation mutations of 5-HT receptors, 5-HT transporter, and monoamine oxidase A and other genes related to 5-HT signaling will be discussed and major findings highlighted.
Collapse
Affiliation(s)
- K P Lesch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080 Würzburg, Germany.
| |
Collapse
|
52
|
|
53
|
Theodosis DT, Schachner M, Neumann ID. Oxytocin neuron activation in NCAM-deficient mice: anatomical and functional consequences. Eur J Neurosci 2004; 20:3270-80. [PMID: 15610159 DOI: 10.1111/j.1460-9568.2004.03779.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During stimulated neurosecretion in the rat, oxytocin neurons display a reduced glial coverage and receive an increased number of synapses, changes that are reversed on arrest of stimulation. We identified polysialic acid on the neural cell adhesion molecule (NCAM) as an important mediator of such plasticity. To investigate further the role of this cell surface glycoprotein, we examined the oxytocin system in mice genetically deficient in NCAM. First, ultrastructural analyses revealed that in wild-type mice, the supraoptic nucleus (SON) underwent the same remodelling as in the rat because oxytocin neurons had a diminished astrocytic coverage and increased synaptic input during lactation or chronic salt loading. Surprisingly, the SON displayed this morphology in NCAM-deficient mice as well, whether they were nongestating and hydrated, lactating or dehydrated. The oxytocin system in NCAM-deficient mice was abnormally hyperactive, as illustrated by enhanced plasma and intranuclear concentrations of oxytocin and reduced anxiety-related behaviour. Plasma oxytocin concentrations were also high in lactating NCAM-deficient dams but certain parameters of lactation and maternal behaviour were impaired. NCAM-deficient mice survived ingestion of 2% saline for 7 days and had increased plasma oxytocin but they did not cope with more severe osmotic challenges. Our observations highlight further the remarkable capacity of the adult oxytocin system to undergo neuronal and glial remodelling whenever it is activated. That lack of NCAM did not prevent remodelling indicates that NCAM can be substituted by other molecular mechanisms. Finally, while NCAM deficiency greatly enhanced oxytocin release, it led to impaired oxytocin-dependent physiological and behavioural responses.
Collapse
Affiliation(s)
- D T Theodosis
- Laboratory of Morphofunctional Neurobiology, Inserm U 378, University Victor Segalen, 733770 Bordeaux, France.
| | | | | |
Collapse
|
54
|
Paul CA, Boegle AK, Maue RA. Before the loss: neuronal dysfunction in Niemann-Pick Type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1685:63-76. [PMID: 15465427 DOI: 10.1016/j.bbalip.2004.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder caused by mutations in either the NPC1 or HE1 genes. Hallmarks of this presently incurable disease include abnormal intracellular accumulation of cholesterol and glycosphingolipids, progressive neuropathology and neurodegeneration, and premature death. There have been increased efforts to understand the effects of NPC disease on neurons of the brain, in part due to the recent development of improved research tools and reagents, and in part due to the rapidly growing appreciation of the importance of cholesterol and lipoproteins in the brain during neuronal development, function, and degeneration. Here, we highlight fundamental aspects of neurons that appear to be affected by NPC disease, including their morphology, metabolism, intracellular transport, electrical signaling, and response to environmental factors, and suggest other potentially important areas for future investigation. This provides a framework for acquiring additional insight to this disorder and shaping new therapeutic approaches to NPC disease.
Collapse
Affiliation(s)
- Colleen A Paul
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
55
|
Abstract
Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes and have been implicated in most signaling processes at the cell surface, but the principles and mechanisms through which lipid rafts influence signaling are not well understood. Recent studies have revealed how lipid rafts are rapidly redistributed and assembled locally in response to extracellular signals, and how components of raft-based signaling domains undergo rapid and regulated rearrangements influencing signal quality, duration, and strength. These findings highlight the exquisitely dynamic properties of signaling domains based on lipid rafts, and suggest that processes of raft trafficking and assembly take central roles in mediating spatial and temporal control of signaling.
Collapse
Affiliation(s)
- Tamara Golub
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | |
Collapse
|
56
|
Brenneke F, Bukalo O, Dityatev A, Lie AA. Mice deficient for the extracellular matrix glycoprotein tenascin-r show physiological and structural hallmarks of increased hippocampal excitability, but no increased susceptibility to seizures in the pilocarpine model of epilepsy. Neuroscience 2004; 124:841-55. [PMID: 15026125 DOI: 10.1016/j.neuroscience.2003.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2003] [Indexed: 11/30/2022]
Abstract
Recognition molecules provide important cues for neuronal survival, axonal fasciculation, axonal pathfinding, synaptogenesis, synaptic plasticity, and regeneration. Our previous studies revealed a link between perisomatic inhibition and the extracellular matrix glycoprotein tenascin-R (TN-R). Therefore, we here studied neuronal excitability and epileptic susceptibility in mice constitutively deficient in TN-R. In vitro analysis of populational spikes in hippocampal slices of TN-R-deficient mice revealed a significant increase in multiple spikes in the CA1 region, as compared with wild-type mice. This difference between genotypes was only partially reduced after blockade of GABA(A) receptors with picrotoxin, indicating a deficit in GABAergic inhibition and an increase in intrinsic excitability of CA1 pyramidal cells in TN-R-deficient mice. Using a battery of immunohistochemical markers and histological stainings, we were able to identify two abnormalities in the hippocampus of TN-R-deficient mice possibly related to increased excitability: the high number of glial fibrillary acidic protein-positive astrocytes and low number of calretinin-positive interneurons in the CA1 and CA3 regions. In order to test whether the revealed abnormalities give rise to increased susceptibility to seizures in TN-R-deficient mice, we used the pilocarpine model of epilepsy. No genotype-specific differences were found with regard to the time-course of pilocarpine-induced and spontaneous seizures, neuronal cell loss, aberrant sprouting and distribution of synaptic and inhibitory interneuron markers. However, pilocarpine-induced astrogliosis and reduction in calretinin-positive interneurons were less pronounced in TN-R mutants, thereby resulting in an occlusion of effects induced by TN-R deficiency and pilocarpine. Thus, TN-R-deficient mutants show several electrophysiological and morphological hallmarks of increased neuronal excitability, which, however, do not give rise to more accelerated or severe epileptogenesis in the pilocarpine model of epilepsy.
Collapse
Affiliation(s)
- F Brenneke
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Strasse 25, D-53127 Bonn, Germany
| | | | | | | |
Collapse
|
57
|
Yoshinaka K, Kumanogoh H, Nakamura S, Maekawa S. Identification of V-ATPase as a major component in the raft fraction prepared from the synaptic plasma membrane and the synaptic vesicle of rat brain. Neurosci Lett 2004; 363:168-72. [PMID: 15172108 DOI: 10.1016/j.neulet.2004.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Revised: 03/27/2004] [Accepted: 04/01/2004] [Indexed: 11/23/2022]
Abstract
Cholesterol is important in the maintenance and remodeling of the synapse. Since membrane cholesterol participates in the formation of the membrane microdomain (raft), the characterization of raft components within membrane structures in the synaptic region could be a good approach to understand the role of cholesterol in the synaptic function. In this study, protein complexes in the raft prepared from synaptic plasma membrane and the synaptic vesicle were analyzed with blue-native polyacrylamide gel electrophoresis and vacuolar H(+)-pump (V-ATPase) was identified as a major raft component using mass spectrometry. The ATPase activity was reduced through cholesterol deprivation with methyl-beta-cyclodextrin. Since the H(+) -gradient is used to transport synaptic transmitters or their precursors into the vesicle, this result suggests the essential role of cholesterol and raft in the synaptic function.
Collapse
Affiliation(s)
- Koji Yoshinaka
- Department of Biosystems Science, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
58
|
Vacca F, Amadio S, Sancesario G, Bernardi G, Volonté C. P2X3receptor localizes into lipid rafts in neuronal cells. J Neurosci Res 2004; 76:653-61. [PMID: 15139024 DOI: 10.1002/jnr.20069] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
P2X receptors are a family of seven (P2X(1-7)) cation channels gated by extracellular ATP, widely expressed in neurons and nonneuronal cells. Lipid rafts are cholesterol/sphingolipid-rich membrane domains, involved in many cellular processes, including transmembrane receptor signaling, vesicle traffic, and protein sorting. We provide direct biochemical evidence that P2X3 receptor localizes into lipid rafts, in primary cultures of cerebellar granule neurons as well as in brain and dorsal root ganglia extracts. We show that P2X3 exhibits all the characteristics distinctive of a protein associated with lipid rafts. These characteristics include resistance to detergent extraction at 4 degrees C, solubility after extraction of cholesterol from membranes with either saponin or methyl-beta-cyclodextrin, and partitioning to low buoyant density fractions after sucrose gradient centrifugation in both detergent-containing and detergent-free conditions. Furthermore, P2X3 localizes in raft-containing fractions in transiently transfected SH-SY5Y neuroblastoma cells. The present finding contributes to the characterization of the functional localization of P2X3 in neurons and provides a novel potential mechanism for correct targeting and dynamic activation of this receptor.
Collapse
|
59
|
Martens JR, O'Connell K, Tamkun M. Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends Pharmacol Sci 2004; 25:16-21. [PMID: 14723974 DOI: 10.1016/j.tips.2003.11.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Voltage-gated K(+) channels are an important determinant of cellular excitability and key components of multiple signal transduction pathways. However, relatively little is known about the mechanisms of K(V) channel localization or their membrane partitioning. Lipid rafts are specialized membrane microdomains that are rich in sphingolipids and cholesterol. These rafts have been implicated in the organization of many membrane-associated signaling pathways and are currently the focus of intense interest in the scientific community. Biochemical and functional evidence indicate that K(V) channels, in addition to other ion channels, localize to lipid raft microdomains on the cell surface. Although several important questions regarding specific mechanisms of channel localization remain, emerging data indicate that protein-lipid interactions should be considered as a new mechanism of ion channel localization and compartmentation that might permit the therapeutic modulation of channel properties via alteration in membrane lipids.
Collapse
Affiliation(s)
- Jeffrey R Martens
- Department of Physiology and Pharmacology, Oregon Health Sciences University,Portland, OR 97201, USA
| | | | | |
Collapse
|
60
|
Leaney JL. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur J Neurosci 2003; 18:2110-8. [PMID: 14622172 DOI: 10.1046/j.1460-9568.2003.02933.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are found in neurons, atrial myocytes and neuroendocrine cells. A characteristic feature is their activation by stimulation of Gi/o-coupled receptors. In central neurons, for example, they are activated by adenosine and GABA and, as such, they play an important role in neurotransmitter-mediated regulation of membrane excitability. The channels are tetrameric assemblies of Kir3.x subunits (Kir3.1-3.4 plus splice variants). In this study I have attempted to identify the channel subunits which contribute to the native GIRK current recorded from primary cultured rat hippocampal pyramidal neurons. Reverse transcriptase-polymerase chain reaction revealed the expression of mRNA for Kir3.1, 3.2A, 3.2C and 3.3 subunits and confocal immunofluorescence microscopy was used to investigate their expression patterns. Diffuse staining was observed on both cell somata and dendrites for Kir3.1 and Kir3.2A yet that for Kir3.2C was weaker and punctate. Whole-cell patch clamp recordings were used to record GIRK currents from hippocampal pyramidal neurons which were identified on the basis of inward rectification, dependence of reversal potential on external potassium concentration and sensitivity to tertiapin. The GIRK currents were enhanced by the stimulation of a number of Gi/o-coupled receptors and were inhibited by pertussis toxin. In order to ascertain which Kir3.x subunits were responsible for the native GIRK current I compared the properties with those of the cloned Kir3.1 + 3.2A and Kir3.1 + 3.2C channels heterologously expressed in HEK293 cells.
Collapse
MESH Headings
- Adenosine/pharmacology
- Analgesics/pharmacology
- Animals
- Animals, Newborn
- Baclofen/pharmacology
- Benzoxazines
- Blotting, Northern
- Calcium Channel Blockers/pharmacology
- Carbachol/pharmacology
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- Cholinergic Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Embryo, Mammalian
- Free Radical Scavengers/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- GABA Agonists/pharmacology
- GTP-Binding Proteins/physiology
- Hippocampus/cytology
- Hormones/pharmacology
- Humans
- Kidney
- Membrane Potentials/drug effects
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Pertussis Toxin/pharmacology
- Potassium Channels/metabolism
- Potassium Channels/physiology
- Potassium Channels, Inwardly Rectifying/classification
- Potassium Channels, Inwardly Rectifying/physiology
- Protein Subunits/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Serotonin/pharmacology
- Somatostatin/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Joanne L Leaney
- Department of Medicine, UCL, The Rayne Building, 5 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
61
|
Rougon G, Hobert O. New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu Rev Neurosci 2003; 26:207-38. [PMID: 12598678 DOI: 10.1146/annurev.neuro.26.041002.131014] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulin superfamily (IgSF) proteins are implicated in diverse steps of brain development, including neuronal migration, axon pathfinding, target recognition and synapse formation, as well as in the maintenance and function of neuronal networks in the adult. We provide here a review of recent findings on the diversity and the role of transmembrane and secreted members of IgSF proteins in the nervous system. We illustrate that the complexity of IgSF protein function results from various different levels of regulation including regulation of gene expression, protein localization, and protein interactions.
Collapse
Affiliation(s)
- Genevieve Rougon
- Laboratoire NMDA CNRS UMR 6156, Universite de la Mediterranee, Institut de Biologie du Developpement (IBDM), Marseille Cedex 9, 13288 France.
| | | |
Collapse
|
62
|
Dityateva G, Hammond M, Thiel C, Ruonala MO, Delling M, Siebenkotten G, Nix M, Dityatev A. Rapid and efficient electroporation-based gene transfer into primary dissociated neurons. J Neurosci Methods 2003; 130:65-73. [PMID: 14583405 DOI: 10.1016/s0165-0270(03)00202-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Non-viral gene transfer into neurons has proved to be a formidable task. Here, we describe an electroporation-based method that allows efficient and reliable DNA transfer into dissociated neural cells before they are plated and cultured. In hippocampal neural cells derived from either neonatal mouse or embryonic chicken brains, a high transfection rate was already observed 5 h after transfection, and reached 40-80% in 24 h, as monitored by expression of enhanced green fluorescent protein (eGFP). The level of eGFP expression per cell depended on the amount of DNA used in a gene transfer experiment. The survival and neuritic length of transfected cells resembled that of non-electroporated cells. The transfected neurons showed normal immunostaining for endogenous synaptic protein synaptophysin and the neural cell adhesion molecule (NCAM). Furthermore, efficient gene transfer of the NCAM isoform NCAM140 and eGFP-tagged NCAM140 could be achieved, allowing visualization of NCAM140 expression. Also, a glycosylphosphatidylinositol-anchored eGFP could be efficiently expressed, highlighting lipid rafts without altering electrophysiological properties of transfected neurons. When neurons transfected with green and red fluorescent proteins were cocultured, fine details of their interactions could be revealed in time-lapse experiments. Thus, the method provides a useful tool for elucidation of genes involved in different neuronal functions, including neurite outgrowth, synaptogenesis and synaptic transmission.
Collapse
Affiliation(s)
- Galina Dityateva
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Lesch KP, Zeng Y, Reif A, Gutknecht L. Anxiety-related traits in mice with modified genes of the serotonergic pathway. Eur J Pharmacol 2003; 480:185-204. [PMID: 14623362 DOI: 10.1016/j.ejphar.2003.08.106] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurobiology of anxiety is complex, reflecting the cumulative physiological effects of multiple genes. These genes are interactive with each other and with the environment in which they are expressed. Variation in genes coding for proteins that control serotonin (5-HT) system development and plasticity, establish 5-HT neuron identity, and modulate 5-HT receptor-mediated signal transduction and cellular pathways have been implicated in the genetics of anxiety and related disorders. Here, we selected anxiety and avoidance as paradigmatic traits and behavior and cover both traditional studies with inbred murine strains and selected lines which have been modified by gene knockout technologies. The design of a mouse model partially or completely lacking a gene of interest during all stages of development (constitutive knockout) or in a spatio-temporal context (conditional knockout) is among the prime strategies directed at elucidating the role of genetic factors in fear and anxiety. In many cases, knockout mice have been able to confirm what has already been anticipated based on pharmacological studies. In other instances, knockout studies have changed views of the relevance of 5-HT homeostasis in brain development and plasticity as well as processes underlying emotional behavior. In this review, we discuss the pertinent literature regarding phenotypic changes in mice bearing inactivation mutations of 5-HT receptors, 5-HT transporter, monoamine oxidase A and other components of the serotonergic pathway. Finally, we attempt to identify future directions of genetic manipulation in animal models to advance our understanding of brain dysregulation characteristic of anxiety disorders.
Collapse
Affiliation(s)
- Klaus Peter Lesch
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Füchsleinstr. 15, 97080, Würzburg, Germany.
| | | | | | | |
Collapse
|
64
|
Stockklausner C, Klocker N. Surface expression of inward rectifier potassium channels is controlled by selective Golgi export. J Biol Chem 2003; 278:17000-5. [PMID: 12609985 DOI: 10.1074/jbc.m212243200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Traffic of integral membrane proteins along the secretory pathway is not simply a default process but can be selective. Such selectivity is achieved by sequence information within the cargo protein that recruits coat protein complexes to drive the formation of transport vesicles. A number of sequence motifs have been identified in the cytoplasmic domains of ion channels that regulate early trafficking events between the endoplasmic reticulum and the Golgi complex. Here, we demonstrate that the following trafficking step from the Golgi compartment to the plasma membrane can also be selective. The N-terminal domain of the inward rectifier potassium channel Kir2.1 contains specific sequence information that is necessary for its efficient export from the Golgi complex. Lack of this information results in accumulation of the protein within the Golgi and a significant decrease in cell surface expression. As similar results were obtained for the N terminus of another Kir channel subfamily member, Kir4.1, which could functionally substitute for the Kir2.1 N terminus, we propose a more general role of the identified N-terminal domains for post-Golgi trafficking of Kir channels.
Collapse
Affiliation(s)
- Clemens Stockklausner
- Department of Physiology II, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | |
Collapse
|
65
|
Leung LW, Contreras RG, Flores-Maldonado C, Cereijido M, Rodriguez-Boulan E. Inhibitors of glycosphingolipid biosynthesis reduce transepithelial electrical resistance in MDCK I and FRT cells. Am J Physiol Cell Physiol 2003; 284:C1021-30. [PMID: 12490435 DOI: 10.1152/ajpcell.00149.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Madin-Darby canine kidney (MDCK) I and Fisher rat thyroid (FRT) cells exhibit transepithelial electrical resistance (TER) values in excess of 5,000 Omega. cm(2). When these cells were incubated in the presence of various inhibitors of sphingolipid biosynthesis, a >5-fold reduction of TER was observed without changes in the gate function for uncharged solutes or the fence function for apically applied fluorescent lipids. The localization of ZO-1 and occludin was not altered between control and inhibitor-treated cells, indicating that the tight junction was still intact. Furthermore, the complexity of tight junction strands, analyzed by freeze-fracture microscopy, was not reduced. Once the inhibitor was removed and the cells were allowed to synthesize sphingolipids, a gradual recovery of the TER was observed. Interestingly, these inhibitors did not attenuate the TER of MDCK II cells, a cell line that typically exhibits values below 800 omega x cm(2.) These results suggest that glycosphingolipids play a role in regulating the electrical properties of epithelial cells.
Collapse
Affiliation(s)
- Lawrence W Leung
- Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
66
|
A raft of possibilities. Nat Rev Neurosci 2002. [DOI: 10.1038/nrn944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|