51
|
Djouhri L, Al Otaibi M, Kahlat K, Smith T, Sathish J, Weng X. Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience 2015; 301:121-33. [PMID: 26047727 DOI: 10.1016/j.neuroscience.2015.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. Here we used in vivo voltage-clamp and current-clamp recordings, in deeply anesthetized rats, to determine whether activation properties of Ih in these C-nociceptors also change following persistent (not acute) hindlimb inflammation induced by complete Freund's adjuvant (CFA). Recordings were made from lumbar (L4/L5) C-nociceptive DRG neurons. Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - M Al Otaibi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - K Kahlat
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - J Sathish
- Department of Molecular and Clinical Pharmacology;Sherrington Buildings, University of Liverpool, L69 3GE, UK
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of B Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
52
|
Ferreira-da-Silva FW, da Silva-Alves KS, Alves-Fernandes TA, Coelho-de-Souza AN, Leal-Cardoso JH. Effects of 1,8-cineole on Na(+) currents of dissociated superior cervical ganglia neurons. Neurosci Lett 2015; 595:45-9. [PMID: 25849529 DOI: 10.1016/j.neulet.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
1,8-Cineole is a terpenoid present in many essential oil of plants with several pharmacological and biological effects, including antinociceptive, smooth muscle relaxant and ion channel activation. Also, 1,8-cineole blocked action potentials, reducing excitability of peripheral neurons. The objective of this work was to investigate effects of 1,8-cineole on Na(+) currents (INa(+)) in dissociated superior cervical ganglion neurons (SCG). Wistar rats of both sexes were used (10-12 weeks old, 200-300g). SCG's were dissected and neurons were enzymatically treated. To study 1,8-cineole effect on INa(+), the patch-clamp technique in whole-cell mode was employed. 1,8-Cineole (6.0mM) partially blocked INa(+) in SCG neurons. The effect stabilized within ∼150s and there was a partial recovery of INa(+) after washout. Current density was reduced from -105.8 to -83.7pA/pF, corresponding to a decrease to ∼20% of control. 1,8-Cineole also reduced the time-to-peak of INa(+) activation and the amplitude and decay time constants of INa(+) inactivation. Current-voltage plots revealed that 1,8-cineole left-shifted the V1/2 of both activation and inactivation curves by ∼10 and ∼20mV, respectively. In conclusion, we demonstrate that 1,8-cineole directly affects Na(+) channels of the SCG by modifying several gating parameters that are likely to be the major cause of excitability blockade.
Collapse
Affiliation(s)
| | - Kerly Shamyra da Silva-Alves
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Thaís Antônia Alves-Fernandes
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | | | - José Henrique Leal-Cardoso
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
53
|
Abstract
Human and mouse genetic studies have led to significant advances in our understanding of the role of voltage-gated sodium channels in pain pathways. In this chapter, we focus on Nav1.7, Nav1.8, Nav1.9 and Nav1.3 and describe the insights gained from the detailed analyses of global and conditional transgenic Nav knockout mice in terms of pain behaviour. The spectrum of human disorders caused by mutations in these channels is also outlined, concluding with a summary of recent progress in the development of selective Nav1.7 inhibitors for the treatment of pain.
Collapse
Affiliation(s)
- Abdella M Habib
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|
54
|
Karlsson P, Nyengaard JR, Polydefkis M, Jensen TS. Structural and functional assessment of skin nerve fibres in small-fibre pathology. Eur J Pain 2014; 19:1059-70. [PMID: 25546653 DOI: 10.1002/ejp.645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
Abstract
Damage to nociceptor nerve fibres may give rise to peripheral neuropathies, some of which are pain free and some are painful. A hallmark of many peripheral neuropathies is the loss of small nerve fibres in the epidermis, a condition called small-fibre neuropathy (SFN) when it is predominantly the small nerve fibres that are damaged. Historically, SFN has been very difficult to diagnose as clinical examination and nerve conduction studies mainly detect large nerve fibres, and quantitative sensory testing is not sensitive enough to detect small changes in small nerve fibres. However, taking a 3-mm punch skin biopsy from the distal leg and quantification of the nerve fibre density has proven to be a useful method to diagnose SFN. However, the correlation between the nerve fibre loss and other test results varies greatly. Recent studies have shown that it is possible not only to extract information about the nerve fibre density from the biopsies but also to get an estimation of the nerve fibre length density using stereology, quantify sweat gland innervation and detect morphological changes such as axonal swelling, all of which may be additional parameters indicating diseased small fibres relating to symptoms reported by the patients. In this review, we focus on available tests to assess structure and function of the small nerve fibres, and summarize recent advances that have provided new possibilities to more specifically relate structural findings with symptoms and function in patients with SFN.
Collapse
Affiliation(s)
- P Karlsson
- Danish Pain Research Center and Stereology & EM Laboratory, Aarhus University Hospital, Denmark.,Stereology and Electron Microscopy Laboratory and Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Denmark
| | - J R Nyengaard
- Stereology and Electron Microscopy Laboratory and Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Denmark
| | - M Polydefkis
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - T S Jensen
- Danish Pain Research Center and Stereology & EM Laboratory, Aarhus University Hospital, Denmark.,Department of Neurology, Aarhus University Hospital, Denmark
| |
Collapse
|
55
|
Liu XD, Yang JJ, Fang D, Cai J, Wan Y, Xing GG. Functional upregulation of nav1.8 sodium channels on the membrane of dorsal root Ganglia neurons contributes to the development of cancer-induced bone pain. PLoS One 2014; 9:e114623. [PMID: 25503076 PMCID: PMC4263726 DOI: 10.1371/journal.pone.0114623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022] Open
Abstract
We have previously reported that enhanced excitability of dorsal root ganglia (DRG) neurons contributes to the development of bone cancer pain, which severely decreases the quality of life of cancer patients. Nav1.8, a tetrodotoxin-resistant (TTX-R) sodium channel, contributes most of the sodium current underlying the action potential upstroke and accounts for most of the current in later spikes in a train. We speculate that the Nav1.8 sodium channel is a potential candidate responsible for the enhanced excitability of DRG neurons in rats with bone cancer pain. Here, using electrophysiology, Western blot and behavior assays, we documented that the current density of TTX-R sodium channels, especially the Nav1.8 channel, increased significantly in DRG neurons of rats with cancer-induced bone pain. This increase may be due to an increased expression of Nav1.8 on the membrane of DRG neurons. Accordantly, blockade of Nav1.8 sodium channels by its selective blocker A-803467 significantly alleviated the cancer-induced mechanical allodynia and thermal hyperalgesia in rats. Taken together, these results suggest that functional upregulation of Nav1.8 channels on the membrane of DRG neurons contributes to the development of cancer-induced bone pain.
Collapse
Affiliation(s)
- Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jing-Jing Yang
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China
| | - Dong Fang
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - You Wan
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing, People's Republic of China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China; Key Laboratory for Neuroscience, Ministry of Education and Ministry of Health, Beijing, People's Republic of China
| |
Collapse
|
56
|
Jardí F, Fernández-Blanco JA, Martínez V, Vergara P. Plasticity of dorsal root ganglion neurons in a rat model of post-infectious gut dysfunction: potential implication of nerve growth factor. Scand J Gastroenterol 2014; 49:1296-303. [PMID: 25259719 DOI: 10.3109/00365521.2014.958524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Intestinal infections are suggested as a risk factor for the development of irritable bowel syndrome (IBS)-like visceral hypersensitivity. The mechanisms implicated might involve long-term changes in visceral afferents, with implication of nerve growth factor (NGF). We explored plastic changes in dorsal root ganglia (DRGs) receiving innervation from the gut and the potential implication of NGF in a rat model of IBS-like post-infectious gut dysfunction. MATERIALS AND METHODS Rats were infected with Trichinella spiralis larvae. Thirty days post-infection, inflammatory markers, including interleukins (ILs) and mucosal mast cell infiltration (rat mast cell protease II [RMCPII]), and NGF and TrkA expression was determined in the jejunum and colon (RT-qPCR). In the same animals, morphometry (neuronal body size) and NGF content (immunofluorescence) were assessed in thoracolumbar DRG neurons. RESULTS In infected animals, a low-grade inflammatory-like response, characterized by up-regulated levels of RMCPII and IL-6, was observed in the jejunum and colon. TrkA expression was increased in the jejunum, whereas the colon showed a slight reduction. NGF levels remained unaltered regardless the gut region. Overall, the mean cross-sectional area of DRG neurons was increased in T. spiralis-infected animals, with a reduction in both TrkA and NGF staining. CONCLUSIONS Results suggest that during T. spiralis infection in rats, there is a remodeling of sensory afferents that might imply a NGF-mediated mechanism. Plastic changes in sensory afferents might mediate the long-lasting functional alterations that characterize this model of IBS. Similar mechanisms might be operating in patients with post-infectious-IBS.
Collapse
Affiliation(s)
- Ferran Jardí
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona , Barcelona , Spain
| | | | | | | |
Collapse
|
57
|
McGlothlin JW, Chuckalovcak JP, Janes DE, Edwards SV, Feldman CR, Brodie ED, Pfrender ME, Brodie ED. Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis. Mol Biol Evol 2014; 31:2836-46. [PMID: 25135948 PMCID: PMC4209135 DOI: 10.1093/molbev/msu237] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav’s, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1–1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood–brain barrier. We also report the exon–intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations.
Collapse
Affiliation(s)
- Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA Department of Biology, University of Virginia
| | - John P Chuckalovcak
- Department of Biology, University of Virginia Bio-Rad Laboratories, Hercules, CA
| | - Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University Division of Genetics and Developmental Biology, National Institutes of Health, Bethesda, MD
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
| | | | | | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Edmund D Brodie
- Department of Biology, University of Virginia Mountain Lake Biological Station, University of Virginia
| |
Collapse
|
58
|
Hockley JRF, Boundouki G, Cibert-Goton V, McGuire C, Yip PK, Chan C, Tranter M, Wood JN, Nassar MA, Blackshaw LA, Aziz Q, Michael GJ, Baker MD, Winchester WJ, Knowles CH, Bulmer DC. Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain 2014; 155:1962-75. [PMID: 24972070 PMCID: PMC4220011 DOI: 10.1016/j.pain.2014.06.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/28/2014] [Accepted: 06/19/2014] [Indexed: 01/17/2023]
Abstract
Chronic visceral pain affects millions of individuals worldwide and remains poorly understood, with current therapeutic options constrained by gastrointestinal adverse effects. Visceral pain is strongly associated with inflammation and distension of the gut. Here we report that the voltage-gated sodium channel subtype NaV1.9 is expressed in half of gut-projecting rodent dorsal root ganglia sensory neurons. We show that NaV1.9 is required for normal mechanosensation, for direct excitation and for sensitization of mouse colonic afferents by mediators from inflammatory bowel disease tissues, and by noxious inflammatory mediators individually. Excitatory responses to ATP or PGE2 were substantially reduced in NaV1.9(-/-) mice. Deletion of NaV1.9 substantially attenuates excitation and subsequent mechanical hypersensitivity after application of inflammatory soup (IS) (bradykinin, ATP, histamine, PGE2, and 5HT) to visceral nociceptors located in the serosa and mesentery. Responses to mechanical stimulation of mesenteric afferents were also reduced by loss of NaV1.9, and there was a rightward shift in stimulus-response function to ramp colonic distension. By contrast, responses to rapid, high-intensity phasic distension of the colon are initially unaffected; however, run-down of responses to repeat phasic distension were exacerbated in NaV1.9(-/-) afferents. Finally colonic afferent activation by supernatants derived from inflamed human tissue was greatly reduced in NaV1.9(-/-) mice. These results demonstrate that NaV1.9 is required for persistence of responses to intense mechanical stimulation, contributes to inflammatory mechanical hypersensitivity, and is essential for activation by noxious inflammatory mediators, including those from diseased human bowel. These observations indicate that NaV1.9 represents a high-value target for development of visceral analgesics.
Collapse
Affiliation(s)
- James R F Hockley
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK; National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - George Boundouki
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK; National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Vincent Cibert-Goton
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Cian McGuire
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Ping K Yip
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Christopher Chan
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Michael Tranter
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Mohammed A Nassar
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - L Ashley Blackshaw
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK; National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Qasim Aziz
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Gregory J Michael
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mark D Baker
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Wendy J Winchester
- Neusentis (Pfizer Ltd), The Portway Building, Granta Science Park, Cambridge CB21 6GS, UK
| | - Charles H Knowles
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - David C Bulmer
- Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK; National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
59
|
Persistent modification of Nav1.9 following chronic exposure to insecticides and pyridostigmine bromide. Toxicol Appl Pharmacol 2014; 277:298-309. [DOI: 10.1016/j.taap.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
|
60
|
Brouwer BA, Merkies ISJ, Gerrits MM, Waxman SG, Hoeijmakers JGJ, Faber CG. Painful neuropathies: the emerging role of sodium channelopathies. J Peripher Nerv Syst 2014; 19:53-65. [PMID: 25250524 DOI: 10.1111/jns5.12071] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pain is a frequent debilitating feature reported in peripheral neuropathies with involvement of small nerve (Aδ and C) fibers. Voltage-gated sodium channels are responsible for the generation and conduction of action potentials in the peripheral nociceptive neuronal pathway where NaV 1.7, NaV 1.8, and NaV 1.9 sodium channels (encoded by SCN9A, SCN10A, and SCN11A) are preferentially expressed. The human genetic pain conditions inherited erythromelalgia and paroxysmal extreme pain disorder were the first to be linked to gain-of-function SCN9A mutations. Recent studies have expanded this spectrum with gain-of-function SCN9A mutations in patients with small fiber neuropathy and in a new syndrome of pain, dysautonomia, and small hands and small feet (acromesomelia). In addition, painful neuropathies have been recently linked to SCN10A mutations. Patch-clamp studies have shown that the effect of SCN9A mutations is dependent upon the cell-type background. The functional effects of a mutation in dorsal root ganglion (DRG) neurons and sympathetic neuron cells may differ per mutation, reflecting the pattern of expression of autonomic symptoms in patients with painful neuropathies who carry the mutation in question. Peripheral neuropathies may not always be length-dependent, as demonstrated in patients with initial facial and scalp pain symptoms with SCN9A mutations showing hyperexcitability in both trigeminal ganglion and DRG neurons. There is some evidence suggesting that gain-of-function SCN9A mutations can lead to degeneration of peripheral axons. This review will focus on the emerging role of sodium channelopathies in painful peripheral neuropathies, which could serve as a basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Brigitte A Brouwer
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
61
|
Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JGJ, Gerrits MM, Tyrrell L, Lauria G, Faber CG, Dib-Hajj SD, Merkies ISJ, Waxman SG. Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy. Brain 2014; 137:1627-42. [DOI: 10.1093/brain/awu079] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
62
|
Watanabe K, Larsson K, Rydevik B, Konno SI, Nordborg C, Olmarker K. Increase of sodium channels (nav 1.8 and nav 1.9) in rat dorsal root ganglion neurons exposed to autologous nucleus pulposus. Open Orthop J 2014; 8:69-73. [PMID: 24843387 PMCID: PMC4023406 DOI: 10.2174/1874325001408010069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/12/2014] [Accepted: 03/29/2014] [Indexed: 12/19/2022] Open
Abstract
Purpose: It has been assumed that nucleus pulposus-induced activation of the dorsal root ganglion (DRG) may
be related to an activation of sodium channels in the DRG neurons. In this study we assessed the expression of Nav 1.8
and Nav 1.9 following disc puncture. Method: Thirty female Sprague-Dawley rats were used. The L4/L5 disc was punctured by a needle (n=12) and compared
to a sham group without disc puncture (n=12) and a naive group (n=6). At day 1 and 7, sections of the left L4 DRG were
immunostained with anti-Nav 1.8 and Nav 1.9 antibodies. Result: At day 1 after surgery, both Nav 1.8-IR neurons and Nav 1.9-IR neurons were significantly increased in the disc
puncture group compared to the sham and naive groups (p<0.05), but not at day 7. Conclusion: The findings in the present study demonstrate a neuronal mechanism that may be of importance in the
pathophysiology of sciatic pain in disc herniation.
Collapse
Affiliation(s)
- Kazuyuki Watanabe
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ; Department of Orthopaedic Surgery, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Karin Larsson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Rydevik
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shin-Ichi Konno
- Department of Orthopaedic Surgery, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Claes Nordborg
- Department of Pathology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Olmarker
- Musculoskeletal Research, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
63
|
Black J, Vasylyev D, Dib-Hajj S, Waxman S. Nav1.9 expression in magnocellular neurosecretory cells of supraoptic nucleus. Exp Neurol 2014; 253:174-9. [DOI: 10.1016/j.expneurol.2014.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/19/2022]
|
64
|
Cummins TR, Rush AM. Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 2014; 7:1597-612. [DOI: 10.1586/14737175.7.11.1597] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
65
|
Abstract
The pseudounipolar sensory neurons of the dorsal root ganglia (DRG) give rise to peripheral branches that convert thermal, mechanical, and chemical stimuli into electrical signals that are transmitted via central branches to the spinal cord. These neurons express unique combinations of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) channels that contribute to the resting membrane potential, action potential threshold, and regulate neuronal firing frequency. The small-diameter neurons (<25 μm) isolated from the DRG represent the cell bodies of C-fiber nociceptors that express both TTX-S and TTX-R Na(+) currents. The large-diameter neurons (>35 μm) are typically low-threshold A-fibers that predominately express TTX-S Na(+) currents. Peripheral nerve damage, inflammation, and metabolic diseases alter the expression and function of these Na(+) channels leading to increases in neuronal excitability and pain. The Na(+) channels expressed in these neurons are the target of intracellular signaling cascades that regulate the trafficking, cell surface expression, and gating properties of these channels. Post-translational regulation of Na(+) channels by protein kinases (PKA, PKC, MAPK) alter the expression and function of the channels. Injury-induced changes in these signaling pathways have been linked to sensory neuron hyperexcitability and pain. This review examines the signaling pathways and regulatory mechanisms that modulate the voltage-gated Na(+) channels of sensory neurons.
Collapse
Affiliation(s)
- Mohamed Chahine
- Centre de recherche, Institut en santé mentale de Québec, Local F-6539, 2601, chemin de la Canardière, QC City, QC, Canada, G1J 2G3,
| | | |
Collapse
|
66
|
Galbavy W, Safaie E, Rebecchi MJ, Puopolo M. Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors. Mol Pain 2013; 9:60. [PMID: 24283218 PMCID: PMC4220807 DOI: 10.1186/1744-8069-9-60] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022] Open
Abstract
Background Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood. Results The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297. Conclusions We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli.
Collapse
Affiliation(s)
| | | | | | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
67
|
Rijnierse A, Kraneveld AD, Salemi A, Zwaneveld S, Goumans AP, Rychter JW, Thio M, Redegeld FA, Westerink RH, Kroese AB. Immunoglobulinfree light chains reduce in an antigen-specific manner the rate of rise of action potentials of mouse non-nociceptive dorsal root ganglion neurons. J Neuroimmunol 2013; 264:14-23. [DOI: 10.1016/j.jneuroim.2013.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022]
|
68
|
Kalezic I, Steffens H. Changes in tetrodotoxin-resistant C-fibre activity during fatiguing isometric contractions in the rat. PLoS One 2013; 8:e73980. [PMID: 24040134 PMCID: PMC3764014 DOI: 10.1371/journal.pone.0073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
It is by now well established that tetrodotoxin-resistant (TTX-R) afferent fibres from muscle in the rat exhibit a multisensitive profile, including nociception. TTX-R afferent fibres play an important role in motor control, via spinal and supraspinal loops, but their activation and function during muscle exercise and fatigue are still unknown. Therefore, the specific effect of isometric fatiguing muscle contraction on the responsiveness of TTX-R C-fibres has been investigated in this study. To quantify the TTX-R afferent input we recorded the cord dorsum potential (CDP), which is the result of the electrical fields set up within the spinal cord by the depolarisation of the interneurons located in the dorsal horn, activated by an incoming volley of TTX-R muscle afferents. The changes in TTX-R CDP size before, during and after fatiguing electrical stimulation of the gastrocnemius-soleus (GS) muscle have been taken as a measure of TTX-R C-unit activation. At the end of the fatiguing protocol, following an exponential drop in force, TTX-R CDP area decreased in the majority of trials (9/14) to 0.75±0.03% (mean ± SEM) of the pre-fatigue value. Recovery to the control size of the TTX-R CDP was incomplete after 10 min. Furthermore, fatiguing trials could sensitise a fraction of the TTX-R C-fibres responding to muscle pinch. The results suggest a long-lasting activation of the TTX-R muscle afferents after fatiguing stimulation. The role of this behaviour in chronic muscle fatigue in connection with pain development is discussed. Accumulation of metabolites released into the interstitium during fatiguing stimulation might be one of the reasons underlying the C-fibres’ long-lasting activation.
Collapse
Affiliation(s)
- Ivana Kalezic
- Department of Surgical and Perioperative Science, Sport Medicine Unit, Umeå University, Umeå, Sweden
- Centre for Musculoskeletal Research, University of Gävle, Umeå, Sweden
- * E-mail:
| | - Heinz Steffens
- Institute of Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
69
|
Huang F, Wang X, Ostertag EM, Nuwal T, Huang B, Jan YN, Basbaum AI, Jan LY. TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat Neurosci 2013; 16:1284-90. [PMID: 23872594 PMCID: PMC4034143 DOI: 10.1038/nn.3468] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/09/2013] [Indexed: 01/28/2023]
Abstract
TMEM16C belongs to the TMEM16 family, which includes the Ca2+-activated Cl– channels (CaCCs) TMEM16A and TMEM16B and a small conductance Ca2+-activated, non-selective cation channel (SCAN), TMEM16F. Here we report that in rat dorsal root ganglia (DRG) TMEM16C is expressed mainly in the IB4 positive, non-peptidergic nociceptors that also express the sodium-activated potassium (KNa) channel Slack. Together these channel proteins promote KNa channel activity and dampen neuronal excitability. DRG from TMEM16C knock out rats have reduced Slack expression, broadened action potential and increased excitability. Moreover, the TMEM16C knock out rats as well as rats with Slack knockdown via intrathecal injection of siRNA exhibit increased thermal and mechanical sensitivity. Experiments involving heterologous expression in HEK293 cells further show that TMEM16C modulates the single channel activity of Slack channels and increases its sodium sensitivity. Our study thus reveals that TMEM16C enhances KNa channel activity in DRG neurons and regulate the processing of pain messages.
Collapse
Affiliation(s)
- Fen Huang
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Vanoye CG, Kunic JD, Ehring GR, George AL. Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling. ACTA ACUST UNITED AC 2013; 141:193-202. [PMID: 23359282 PMCID: PMC3557314 DOI: 10.1085/jgp.201210919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tetrodotoxin (TTX)-resistant voltage-gated Na (Na(V)) channels have been implicated in nociception. In particular, Na(V)1.9 contributes to expression of persistent Na current in small diameter, nociceptive sensory neurons in dorsal root ganglia and is required for inflammatory pain sensation. Using ND7/23 cells stably expressing human Na(V)1.9, we elucidated the biophysical mechanisms responsible for potentiation of channel activity by G-protein signaling to better understand the response to inflammatory mediators. Heterologous Na(V)1.9 expression evoked TTX-resistant Na current with peak activation at -40 mV with extensive overlap in voltage dependence of activation and inactivation. Inactivation kinetics were slow and incomplete, giving rise to large persistent Na currents. Single-channel recording demonstrated long openings and correspondingly high open probability (P(o)) accounting for the large persistent current amplitude. Channels exposed to intracellular GTPγS, a proxy for G-protein signaling, exhibited twofold greater current density, slowing of inactivation, and a depolarizing shift in voltage dependence of inactivation but no change in activation voltage dependence. At the single-channel level, intracellular GTPγS had no effect on single-channel amplitude but caused an increased mean open time and greater P(o) compared with recordings made in the absence of GTPγS. We conclude that G-protein activation potentiates human Na(V)1.9 activity by increasing channel open probability and mean open time, causing the larger peak and persistent current, respectively. Our results advance our understanding about the mechanism of Na(V)1.9 potentiation by G-protein signaling during inflammation and provide a cellular platform useful for the discovery of Na(V)1.9 modulators with potential utility in treating inflammatory pain.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
71
|
Molecular and cellular influences of permethrin on mammalian nociceptors at physiological temperatures. Neurotoxicology 2013; 37:207-19. [DOI: 10.1016/j.neuro.2013.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/15/2022]
|
72
|
Shen KF, Zhu HQ, Wei XH, Wang J, Li YY, Pang RP, Liu XG. Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp Neurol 2013; 247:466-75. [PMID: 23357618 DOI: 10.1016/j.expneurol.2013.01.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/17/2012] [Accepted: 01/16/2013] [Indexed: 12/20/2022]
Abstract
The over-expression of voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury contributes to neuropathic pain by generation of the ectopic discharges of action potentials. However, mechanisms underlying the change in VGSCs' expression are poorly understood. Our previous work has demonstrated that the pro-inflammatory cytokine TNF-α up-regulates VGSCs. In the present work we tested if anti-inflammatory cytokine IL-10, which had been proven to be effective for treating neuropathic pain, had the opposite effect. Western blot and immunofluorescence results showed that IL-10 receptor was localized in DRG neurons. Recombinant rat IL-10 (200 pg/ml) not only reduced the densities of TTX-sensitive and Nav1.8 currents in control DRG neurons, but also reversed the increase of the sodium currents induced by rat recombinant TNF-α (100 pg/ml), as revealed by patch-clamp recordings. Consistent with the electrophysiological results, real-time PCR and western blot revealed that IL-10 (200 pg/ml) down-regulated VGSCs in both mRNA and protein levels and reversed the up-regulation of VGSCs by TNF-α. Moreover, repetitive intrathecal administration of rrIL-10 for 3 days (4 times per day) attenuated mechanical allodynia in L5 spinal nerve ligation model and profoundly inhibited the excitability of DRG neurons. These results suggested that the down-regulation of the sodium channels in DRG neurons might contribute to the therapeutic effect of IL-10 on neuropathic pain.
Collapse
Affiliation(s)
- Kai-Feng Shen
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | | | | | | | | | | | | |
Collapse
|
73
|
Yu YQ, Zhao ZY, Chen XF, Xie F, Yang Y, Chen J. Activation of tetrodotoxin-resistant sodium channel NaV1.9 in rat primary sensory neurons contributes to melittin-induced pain behavior. Neuromolecular Med 2012; 15:209-17. [PMID: 23264124 DOI: 10.1007/s12017-012-8211-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/29/2012] [Indexed: 01/25/2023]
Abstract
Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in dorsal root ganglion (DRG) neurons play important roles in pathological pain. We recently reported that melittin, the major toxin of whole bee venom, induced action potential firings in DRG neurons even in the presence of a high concentration (500 nM) of TTX, indicating the contribution of TTX-R sodium channels. This hypothesis is fully investigated in the present study. After subcutaneous injection of melittin, NaV1.8 and NaV1.9 significantly upregulate mRNA and protein expressions, and related sodium currents also increase. Double immunohistochemical results show that NaV1.8-positive neurons are mainly medium- and small-sized, whereas NaV1.9-positive ones are only small-sized. Antisense oligodeoxynucleotides (AS ODNs) targeting NaV1.8 and NaV1.9 are used to evaluate functional significance of the increased expressions of TTX-R sodium channels. Behavioral tests demonstrate that AS ODN targeting NaV1.9, but not NaV1.8, reverses melittin-induced heat hypersensitivity. Neither NaV1.8 AS ODN nor NaV1.9 AS ODN affects melittin-induced mechanical hypersensitivity. These results provide previously unknown evidence that upregulation of NaV1.9, but not NaV1.8, in small-sized DRG neurons contributes to melittin-induced heat hypersensitivity. Furthermore, melittin-induced biological effect indicates a potential strategy to study properties of TTX-R sodium channels.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, #1 Xinsi Road, Baqiao, Xi'an, 710038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
74
|
Acosta C, McMullan S, Djouhri L, Gao L, Watkins R, Berry C, Dempsey K, Lawson SN. HCN1 and HCN2 in Rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression. PLoS One 2012; 7:e50442. [PMID: 23236374 PMCID: PMC3517619 DOI: 10.1371/journal.pone.0050442] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/22/2012] [Indexed: 11/26/2022] Open
Abstract
Ih, which influences neuronal excitability, has recently been measured in vivo in sensory neuron subtypes in dorsal root ganglia (DRGs). However, expression levels of HCN (hyperpolarization-activated cyclic nucleotide-gated) channel proteins that underlie Ih were unknown. We therefore examined immunostaining of the most abundant isoforms in DRGs, HCN1 and HCN2 in these neuron subtypes. This immunostaining was cytoplasmic and membrane-associated (ring). Ring-staining for both isoforms was in neurofilament-rich A-fiber neurons, but not in small neurofilament-poor C-fiber neurons, although some C-neurons showed cytoplasmic HCN2 staining. We recorded intracellularly from DRG neurons in vivo, determined their sensory properties (nociceptive or low-threshold-mechanoreceptive, LTM) and conduction velocities (CVs). We then injected fluorescent dye enabling subsequent immunostaining. For each dye-injected neuron, ring- and cytoplasmic-immunointensities were determined relative to maximum ring-immunointensity. Both HCN1- and HCN2-ring-immunointensities were positively correlated with CV in both nociceptors and LTMs; they were high in Aβ-nociceptors and Aα/β-LTMs. High HCN1 and HCN2 levels in Aα/β-neurons may, via Ih, influence normal non-painful (e.g. touch and proprioceptive) sensations as well as nociception and pain. HCN2-, not HCN1-, ring-intensities were higher in muscle spindle afferents (MSAs) than in all other neurons. The previously reported very high Ih in MSAs may relate to their very high HCN2. In normal C-nociceptors, low HCN1 and HCN2 were consistent with their low/undetectable Ih. In some C-LTMs HCN2-intensities were higher than in C-nociceptors. Together, HCN1 and HCN2 expressions reflect previously reported Ih magnitudes and properties in neuronal subgroups, suggesting these isoforms underlie Ih in DRG neurons. Expression of both isoforms was NT3-dependent in cultured DRG neurons. HCN2-immunostaining in small neurons increased 1 day after cutaneous inflammation (CFA-induced) and recovered by 4 days. This could contribute to acute inflammatory pain. HCN2-immunostaining in large neurons decreased 4 days after CFA, when NT3 was decreased in the DRG. Thus HCN2-expression control differs between large and small neurons.
Collapse
Affiliation(s)
- Cristian Acosta
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Simon McMullan
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Laiche Djouhri
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Al-Ahssa, Saudi Arabia
| | - Linlin Gao
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- Department of Physiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Roger Watkins
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Carol Berry
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Katherine Dempsey
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Sally N. Lawson
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
75
|
Tetrodotoxin-resistant fibres and spinal Fos expression: differences between input from muscle and skin. Exp Brain Res 2012. [PMID: 23178907 DOI: 10.1007/s00221-012-3337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nociceptive information from muscle and skin is differently processed at many levels of the central nervous system. In most articles on this issue, noxious stimuli were used that also excited non-nociceptive receptors. The effects of a pure nociceptive input from muscle or skin on spinal neurones are largely unknown. The aim of the study was to find out whether the Fos-protein expression in dorsal horn neurones induced by an exclusively nociceptive muscle input differs from that of the skin. Fos-proteins are transcription factors that regulate neuronal gene expression and induce neuroplastic effects that are involved in the development of chronic pain. A pure nociceptive input was achieved by tetrodotoxin (TTX) that is known to block all TTX-sensitive afferents and leave the TTX-resistant (TTX-r), presumably nociceptive, afferent fibres intact. We studied the c-Fos and FosB expression in the spinal cord following electrical stimulation of TTX-r afferent fibres in the gastrocnemius-soleus nerve (muscle) and compared it to the sural nerve (skin). In the spinal dorsal horn, the main effect of a TTX-r input from muscle was an increase in FosB (P < 0.05), but not in c-Fos expression (P = 0.51). In contrast, an input from the skin induced both FosB (P < 0.01) and c-Fos expression (P < 0.05). The data indicate that in the spinal, dorsal horn nociceptive input from skin and muscle has different effects on the Fos expression. The only effect of muscle input was an increase in FosB expression while skin input increased both c-Fos and FosB expression.
Collapse
|
76
|
Gao LL, McMullan S, Djouhri L, Acosta C, Harper AA, Lawson SN. Expression and properties of hyperpolarization-activated current in rat dorsal root ganglion neurons with known sensory function. J Physiol 2012; 590:4691-705. [PMID: 22753545 PMCID: PMC3487031 DOI: 10.1113/jphysiol.2012.238485] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 12/17/2022] Open
Abstract
The hyperpolarization-activated current (I(h)) has been implicated in nociception/pain, but its expression levels in nociceptors remained unknown. We recorded I(h) magnitude and properties by voltage clamp from dorsal root ganglion (DRG) neurons in vivo, after classifying them as nociceptive or low-threshold-mechanoreceptors (LTMs) and as having C-, Aδ- or Aα/β-conduction velocities (CVs). For both nociceptors andLTMs, I(h) amplitude and I(h) density (at -100 mV) were significantly positively correlated with CV.Median I(h) magnitudes and I(h) density in neuronal subgroupswere respectively:muscle spindle afferents(MSAs):-4.6 nA,-33 pA pF(-1); cutaneous Aα/β LTMs: -2.2 nA, -20 pA pF(-1); Aβ-nociceptors: -2.6 nA, -21 pA pF(-1); both Aδ-LTMs and nociceptors: -1.3 nA, ∼-14 pA pF(-1); C-LTMs: -0.4 nA, -7.6 pA pF(-1); and C-nociceptors: -0.26 nA, -5 pApF(-1). I(h) activation slow time constants (slow τ values) were strongly correlated with fast τ values; both were shortest in MSAs. Most neurons had τ values consistent with HCN1-related I(h); others had τ values closer to HCN1+HCN2 channels, or HCN2 in the presence of cAMP. In contrast, median half-activation voltages (V(0.5)) of -80 to -86 mV for neuronal subgroups suggest contributions of HCN2 to I(h). τ values were unrelated to CV but were inversely correlated with I(h) and I(h) density for all non-MSA LTMs, and for Aδ-nociceptors. From activation curves ∼2-7% of I(h)would be activated at normal membrane potentials. The high I(h) may be important for excitability of A-nociceptors (responsible for sharp/pricking-type pain) and Aα/β-LTMs (tactile sensations and proprioception). Underlying HCN expression in these subgroups therefore needs to be determined. Altered high I(h) may be important for excitability of A-nociceptors (responsible for sharp/pricking-type pain) and Aα/β-LTMs (tactile sensations and proprioception). Underlying HCN expression in these subgroups therefore needs to be determined. Altered Ih expression and/or properties (e.g. in chronic/pathological pain states) may influence both nociceptor and LTM excitability.expression and/or properties (e.g. in chronic/pathological pain states) may influence both nociceptor and LTM excitability.
Collapse
Affiliation(s)
- L L Gao
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
77
|
Gilchrist J, Bosmans F. Animal toxins can alter the function of Nav1.8 and Nav1.9. Toxins (Basel) 2012; 4:620-32. [PMID: 23012651 PMCID: PMC3446747 DOI: 10.3390/toxins4080620] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022] Open
Abstract
Human voltage-activated sodium (Nav) channels are adept at rapidly transmitting electrical signals across long distances in various excitable tissues. As such, they are amongst the most widely targeted ion channels by drugs and animal toxins. Of the nine isoforms, Nav1.8 and Nav1.9 are preferentially expressed in DRG neurons where they are thought to play an important role in pain signaling. Although the functional properties of Nav1.8 have been relatively well characterized, difficulties with expressing Nav1.9 in established heterologous systems limit our understanding of the gating properties and toxin pharmacology of this particular isoform. This review summarizes our current knowledge of the role of Nav1.8 and Nav1.9 in pain perception and elaborates on the approaches used to identify molecules capable of influencing their function.
Collapse
Affiliation(s)
- John Gilchrist
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Frank Bosmans
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-410-955-4428
| |
Collapse
|
78
|
Hoeijmakers JGJ, Merkies ISJ, Gerrits MM, Waxman SG, Faber CG. Genetic aspects of sodium channelopathy in small fiber neuropathy. Clin Genet 2012; 82:351-8. [PMID: 22803682 DOI: 10.1111/j.1399-0004.2012.01937.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Small fiber neuropathy (SFN) is a disorder typically dominated by neuropathic pain and autonomic dysfunction, in which the thinly myelinated Aδ-fibers and unmyelinated C-fibers are selectively injured. The diagnosis SFN is based on a reduced intraepidermal nerve fiber density and/or abnormal thermal thresholds in quantitative sensory testing. The etiologies of SFN are diverse, although no apparent cause is frequently seen. Recently, SCN9A-gene variants (single amino acid substitutions) have been found in ∼30% of a cohort of idiopathic SFN patients, producing gain-of-function changes in sodium channel Na(V)1.7, which is preferentially expressed in small diameter peripheral axons. Functional testing showed that these variants altered fast inactivation, slow inactivation or resurgent current and rendered dorsal root ganglion neurons hyperexcitable. In this review, we discuss the role of Na(V)1.7 in pain and highlight the molecular genetics and pathophysiology of SCN9A-gene variants in SFN. With increasing knowledge regarding the underlying pathophysiology in SFN, the development of specific treatment in these patients seems a logical target for future studies.
Collapse
Affiliation(s)
- J G J Hoeijmakers
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
79
|
Ramachandra R, McGrew SY, Baxter JC, Kiveric E, Elmslie KS. Tetrodotoxin-resistant voltage-dependent sodium channels in identified muscle afferent neurons. J Neurophysiol 2012; 108:2230-41. [PMID: 22855776 DOI: 10.1152/jn.00219.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscle afferents are critical regulators of motor function (Group I and II) and cardiovascular responses to exercise (Group III and IV). However, little is known regarding the expressed voltage-dependent ion channels. We identified muscle afferent neurons in dorsal root ganglia (DRGs), using retrograde labeling to examine voltage-dependent sodium (Na(V)) channels. In patch-clamp recordings, we found that the dominant Na(V) current in the majority of identified neurons was insensitive to tetrodotoxin (TTX-R), with Na(V) current in only a few (14%) neurons showing substantial (>50%) TTX sensitivity (TTX-S). The TTX-R current was sensitive to a Na(V)1.8 channel blocker, A803467. Immunocytochemistry demonstrated labeling of muscle afferent neurons by a Na(V)1.8 antibody, which further supported expression of these channels. A portion of the TTX-R Na(V) current appeared to be noninactivating during our 25-ms voltage steps, which suggested activity of Na(V)1.9 channels. The majority of the noninactivating current was insensitive to A803467 but sensitive to extracellular sodium. Immunocytochemistry showed labeling of muscle afferent neurons by a Na(V)1.9 channel antibody, which supports expression of these channels. Further examination of the muscle afferent neurons showed that functional TTX-S channels were expressed, but were largely inactivated at physiological membrane potentials. Immunocytochemistry showed expression of the TTX-S channels Na(V)1.6 and Na(V)1.7 but not Na(V)1.1. Na(V)1.8 and Na(V)1.9 appear to be the dominant functional sodium channels in small- to medium-diameter muscle afferent neurons. The expression of these channels is consistent with the identification of these neurons as Group III and IV, which mediate the exercise pressor reflex.
Collapse
Affiliation(s)
- Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, AT Still University of Health Sciences, Kirksville, MO 63501, USA
| | | | | | | | | |
Collapse
|
80
|
Scroggs RS. The distribution of low-threshold TTX-resistant Na⁺ currents in rat trigeminal ganglion cells. Neuroscience 2012; 222:205-14. [PMID: 22800565 DOI: 10.1016/j.neuroscience.2012.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/23/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022]
Abstract
The distribution of low-threshold tetrodotoxin-resistant (TTX-r) Na(+) current and its co-expression with high-threshold TTX-r Na(+) current were studied in randomly selected acutely dissociated rat trigeminal ganglion (non-identified TG cells) and TG cells serving the temporomandibular joint (TMJ-TG cells). Conditions previously shown to enhance Na(V)1.9 channel-mediated currents (holding potential (HP) -80 mV, 130-mM fluoride internally) were employed to amplify the low-threshold Na(+) current. Under these conditions, detectable low-threshold Na(+) current was exhibited by 16 out of 21 non-identified TG cells (average, 1810 ± 358 pA), and by nine of 14 TMJ-TG cells (average, 959 ± 525 pA). The low-threshold Na(+) current began to activate around -55 mV and was inactivated by holding TG cells at -60 mV and delivering 40-ms test potentials (TPs) to 0 mV. The inactivation was long lasting, recovering only 8 ± 3% over a 5-min period after the HP was returned to -80 mV. Following low-threshold Na(+) current inactivation, high-threshold TTX-r Na(+) current, evoked from HP -60 mV, was observed. High-threshold Na(+) current amplitude averaged 16,592 ± 3913 pA for TPs to 0 mV, was first detectable at an average TP of -34 ± 1.3 mV, and was ½ activated at -7.1 ± 2.3 mV. In TG cells expressing prominent low-threshold Na(+) currents, changing the external solution to one containing 0 mM Na(+) reduced the amount of current required to hold the cells at -80 mV through -50 mV, the peak effect being observed at HP -60 mV. TG cells recorded from with a more physiological pipette solution containing chloride instead of fluoride exhibited small low-threshold Na(+) currents, which were greatly increased upon superfusion of the TG cells with the adenylyl cyclase (AC) activator forskolin. These data suggest two hypotheses: (1) low- and high-threshold Na(V)1.9 and Na(V)1.8 channels, respectively, are frequently co-expressed in TG neurons serving the TMJ and other structures, and (2), Na(V)1.9 channel-mediated currents are small under physiological conditions, but may be enhanced by inflammatory mediators that increase AC activity, and may mediate an inward leak that depolarizes TG neurons, increasing their excitability.
Collapse
Affiliation(s)
- R S Scroggs
- University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, 855 Monroe Avenue, TN, USA.
| |
Collapse
|
81
|
Djouhri L, Fang X, Koutsikou S, Lawson SN. Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 2012; 153:1824-1836. [PMID: 22721911 PMCID: PMC3425771 DOI: 10.1016/j.pain.2012.04.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 03/25/2012] [Accepted: 04/23/2012] [Indexed: 01/24/2023]
Abstract
Partial nerve injury leads to peripheral neuropathic pain. This injury results in conducting/uninterrupted (also called uninjured) sensory fibres, conducting through the damaged nerve alongside axotomised/degenerating fibres. In rats seven days after L5 spinal nerve axotomy (SNA) or modified-SNA (added loose-ligation of L4 spinal nerve with neuroinflammation-inducing chromic-gut), we investigated a) neuropathic pain behaviours and b) electrophysiological changes in conducting/uninterrupted L4 dorsal root ganglion (DRG) neurons with receptive fields (called: L4-receptive-field-neurons). Compared to pretreatment, modified-SNA rats showed highly significant increases in spontaneous-foot-lifting duration, mechanical-hypersensitivity/allodynia, and heat-hypersensitivity/hyperalgesia, that were significantly greater than after SNA, especially spontaneous-foot-lifting. We recorded intracellularly in vivo from normal L4/L5 DRG neurons and ipsilateral L4-receptive-field-neurons. After SNA or modified-SNA, L4-receptive-field-neurons showed the following: a) increased percentages of C-, Ad-, and Ab-nociceptors and cutaneous Aa/b-low-threshold mechanoreceptors with ongoing/spontaneous firing; b) spontaneous firing in C-nociceptors that originated peripherally; this was at a faster rate in modified-SNA than SNA; c) decreased electrical thresholds in A-nociceptors after SNA; d) hyperpolarised membrane potentials in A-nociceptors and Aa/b-low-threshold-mechanoreceptors after SNA, but not C-nociceptors; e) decreased somatic action potential rise times in C- and A-nociceptors, not Aa/b-low-threshold-mechanoreceptors. We suggest that these changes in subtypes of conducting/uninterrupted neurons after partial nerve injury contribute to the different aspects of neuropathic pain as follows: spontaneous firing in nociceptors to ongoing/spontaneous pain; spontaneous firing in Aa/b-low-threshold-mechanoreceptors to dysesthesias/paresthesias; and lowered A-nociceptor electrical thresholds to A-nociceptor sensitization, and greater evoked pain.
Collapse
Affiliation(s)
- Laiche Djouhri
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
82
|
Wu Q, Henry JL. Functional changes in muscle afferent neurones in an osteoarthritis model: implications for impaired proprioceptive performance. PLoS One 2012; 7:e36854. [PMID: 22606297 PMCID: PMC3351471 DOI: 10.1371/journal.pone.0036854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/14/2012] [Indexed: 01/02/2023] Open
Abstract
Background Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of OA and to determine whether changes also occur in muscle afferent neurones. Methodology/Principal Findings Intracellular recordings were made in functionally identified dorsal root ganglion neurones in acute electrophysiological experiments on the anaesthetized animal following measurements of hind limb weight bearing in the incapacitance test. OA rats but not naïve control rats stood with less weight on the ipsilateral hind leg (P = 0.02). In the acute electrophysiological experiments that followed weight bearing measurements, action potentials (AP) elicited by electrical stimulation of the dorsal roots differed in OA rats, including longer AP duration (P = 0.006), slower rise time (P = 0.001) and slower maximum rising rate (P = 0.03). Depolarizing intracellular current injection elicited more APs in models than in naïve muscle afferent neurones (P = 0.01) indicating greater excitability. Axonal conduction velocity in model animals was slower (P = 0.04). Conclusions/Significance The present study demonstrates changes in hind limb stance accompanied by changes in the functional properties of muscle afferent neurones in this derangement model of OA. This may provide a possible avenue to explore mechanisms underlying the impaired proprioceptive performance and perhaps other sensory disorders in people with OA.
Collapse
Affiliation(s)
- Qi Wu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - James L. Henry
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
83
|
Jennings EA, Williams MC, Staikopoulos V, Ivanusic JJ. Neurobiology of Temporomandibular Joint Pain: Therapeutic Implications. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2011.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Weng X, Smith T, Sathish J, Djouhri L. Chronic inflammatory pain is associated with increased excitability and hyperpolarization-activated current (Ih) in C- but not Aδ-nociceptors. Pain 2012; 153:900-914. [PMID: 22377439 DOI: 10.1016/j.pain.2012.01.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/30/2011] [Accepted: 01/18/2012] [Indexed: 01/30/2023]
Abstract
Inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive (damage-sensing) dorsal root ganglion (DRG) neurons innervating inflamed tissue. However, most of the evidence for this is derived from experiments using acute inflammatory states. Herein, we used several approaches to examine the impact of chronic or persistent inflammation on the excitability of nociceptive DRG neurons and on their expression of I(h) and the underlying hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which regulate neuronal excitability. Using in vivo intracellular recordings of somatic action potentials from L4/L5 DRG neurons in normal rats and rats with hindlimb inflammation induced by complete Freund's adjuvant (CFA), we demonstrate increased excitability of C- but not Aδ-nociceptors, 5 to 7 days after CFA. This included an afterdischarge response to noxious pinch, which may contribute to inflammatory mechanohyperalgesia, and increased incidence of spontaneous activity (SA) and decreased electrical thresholds, which are likely to contribute to spontaneous pain and nociceptor sensitization, respectively. We also show, using voltage clamp in vivo, immunohistochemistry and behavioral assays that (1) the inflammation-induced nociceptor hyperexcitability is associated, in C- but not Aδ-nociceptors, with increases in the mean I(h) amplitude/density and in the proportion of I(h) expressing neurons, (2) increased proportion of small DRG neurons (mainly IB4-negative) expressing HCN2 but not HCN1 or HCN3 channel protein, (3) increased HCN2- immunoreactivity in the spinal dorsal horn, and (4) attenuation of inflammatory mechanoallodynia with the selective I(h) antagonist, ZD7288. Taken together, the findings suggest that C- but not Aδ-nociceptors sustain chronic inflammatory pain and that I(h)/HCN2 channels contribute to inflammation-induced C-nociceptor hyperexcitability.
Collapse
Affiliation(s)
- Xiechuan Weng
- Department of Clinical and Molecular Pharmacology, Institute of Translational Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
85
|
Kulagina IB, Myakoushko VA. Influence of the State of TTX-Resistant Sodium Channels on Electrical Activity of a Nociceptive Sensory Fiber: A Model Study. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
86
|
Dai Y, Jordan LM. Tetrodotoxin-, dihydropyridine-, and riluzole-resistant persistent inward current: novel sodium channels in rodent spinal neurons. J Neurophysiol 2011; 106:1322-40. [PMID: 21653721 DOI: 10.1152/jn.00918.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, we reported the tetrodotoxin (TTX)- and dihydropyridine (DHP)-resistant (TDR) inward currents in neonatal mouse spinal neurons. In this study, we further characterized these currents in the presence of 1-5 μM TTX and 20-30 μM DHP (nifedipine, nimodipine, or isradipine). TDR inward currents were recorded by voltage ramp (persistent inward current, TDR-PIC) and step (TDR-I(p)) protocols. TDR-PIC and TDR-I(p) were found in 80.2% of recorded neurons (101/126) crossing laminae I to X from T12 to L6. TDR-PIC activated at -28.6 ± 13 mV with an amplitude of 80.6 ± 75 pA and time constant of 470.6 ± 240 ms (n = 75). TDR-I(p) had an amplitude of 151.2 ± 151 pA and a voltage threshold of -17.0 ± 9 mV (n = 54) with a wide range of kinetics parameters. The half-maximal activation was -21.5 ± 8 mV (-37 to -12 mV, n = 29) with a time constant of 5.2 ± 2 ms (1.2-11.2 ms, n = 19), whereas the half-maximal inactivation was -26.9 ± 9 mV (-39 to -18 mV, n = 14) with a time constant of 1.4 ± 0.4 s (0.5-2.2 s, n = 19). TDR-PIC and TDR-I(p) could be reduced by 60% in zero calcium and completely removed in zero sodium solutions, suggesting that they were mediated by sodium ions. Furthermore, the reversal potential of TDR-I(p) was estimated as 56.6 ± 3 mV (n = 10). TDR-PIC and TDR-I(p) persisted in 1-205 μM TTX, 20-100 μM DHP, 3-30 μM riluzole, 50-300 μM flufenamic acid, and 2-30 mM intracellular BAPTA. They also persisted with T-, N-, P/Q-, and R-type calcium channel blockers. In conclusion, we demonstrated novel TTX-, DHP-, and riluzole-resistant sodium channels in neonatal rodent spinal neurons. The unique pharmacological and electrophysiological properties would allow these channels to play a functional role in spinal motor system.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
87
|
Scroggs RS. Up-regulation of low-threshold tetrodotoxin-resistant Na+ current via activation of a cyclic AMP/protein kinase A pathway in nociceptor-like rat dorsal root ganglion cells. Neuroscience 2011; 186:13-20. [PMID: 21549179 DOI: 10.1016/j.neuroscience.2011.04.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 11/15/2022]
Abstract
The effects of forskolin on low-threshold tetrodotoxin-resistant (TTX-r) Na(+) currents was studied in small diameter (average ≈ 25 μm) dorsal root ganglion (DRG) cells. All DRG cells included in the study were categorized as type-2 or non-type-2 based on the expression of a low-threshold A-current. In all type-2 and some non-type-2 DRG cells held at -80 mV, the adenylyl cyclase (AC) activator forskolin (10 μM) up-regulated TTX-r Na(+) currents evoked with steps to -55 mV through -35 mV (low-threshold current). Up-regulation of low-threshold current by forskolin was mimicked by the protein kinase A (PKA) agonist Sp-cAMPs and the inflammatory mediator serotonin, and blocked by the PKA antagonist Rp-cAMPs. Forskolin-induced up-regulation of low-threshold current evoked from a holding potential of -60 mV was blocked by 40 ms steps to 0 mV, which presumably induced a long lasting inactivation of the low-threshold channels. Reducing to 3 ms the duration of steps to 0 mV, significantly increased the number of DRG cells where low-threshold current was up-regulated by forskolin, presumably by reducing the long-lasting inactivation of the low-threshold channels. In the same cells, high-threshold current, evoked by 40 ms or 3 ms steps to 0 mV, was consistently up-regulated by forskolin. The selective Na(V)1.8 channel blocker A-803467 markedly blocked high-threshold current but not low-threshold current. The different voltage protocols observed to activate and inactivate the low- and high-threshold currents, and the observation that A-803467 blocked high- but not low-threshold current suggests that the two currents were mediated by different channels, possibly Na(V)1.8 and Na(V)1.9, respectively. Inflammatory mediators may simultaneously up-regulate Na(V)1.8 and Na(V)1.9 channels in the same nociceptor via a AC/PKA signaling pathway, increasing nociceptor signaling strength, and lowering nociceptor threshold, respectively.
Collapse
Affiliation(s)
- R S Scroggs
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
88
|
Chen X, Pang RP, Shen KF, Zimmermann M, Xin WJ, Li YY, Liu XG. TNF-α enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury. Exp Neurol 2011; 227:279-86. [DOI: 10.1016/j.expneurol.2010.11.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 01/28/2023]
|
89
|
Ho C, O'Leary ME. Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 2011; 46:159-66. [PMID: 20816971 PMCID: PMC3005531 DOI: 10.1016/j.mcn.2010.08.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 01/08/2023] Open
Abstract
Sensory neurons of the dorsal root ganglia (DRG) express multiple voltage-gated sodium (Na) channels that substantially differ in gating kinetics and pharmacology. Small-diameter (<25 μm) neurons isolated from the rat DRG express a combination of fast tetrodotoxin-sensitive (TTX-S) and slow TTX-resistant (TTX-R) Na currents while large-diameter neurons (>30 μm) predominately express fast TTX-S Na current. Na channel expression was further investigated using single-cell RT-PCR to measure the transcripts present in individually harvested DRG neurons. Consistent with cellular electrophysiology, the small neurons expressed transcripts encoding for both TTX-S (Nav1.1, Nav1.2, Nav1.6, and Nav1.7) and TTX-R (Nav1.8 and Nav1.9) Na channels. Nav1.7, Nav1.8 and Nav1.9 were the predominant Na channels expressed in the small neurons. The large neurons highly expressed TTX-S isoforms (Nav1.1, Nav1.6, and Nav1.7) while TTX-R channels were present at comparatively low levels. A unique subpopulation of the large neurons was identified that expressed TTX-R Na current and high levels of Nav1.8 transcript. DRG neurons also displayed substantial differences in the expression of neurofilaments (NF200, peripherin) and Necl-1, a neuronal adhesion molecule involved in myelination. The preferential expression of NF200 and Necl-1 suggests that large-diameter neurons give rise to thick myelinated axons. Small-diameter neurons expressed peripherin, but reduced levels of NF200 and Necl-1, a pattern more consistent with thin unmyelinated axons. Single-cell analysis of Na channel transcripts indicates that TTX-S and TTX-R Na channels are differentially expressed in large myelinated (Nav1.1, Nav1.6, and Nav1.7) and small unmyelinated (Nav1.7, Nav1.8, and Nav1.9) sensory neurons.
Collapse
Affiliation(s)
- Cojen Ho
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, JAH 265, Philadelphia, PA 19107, USA
| | | |
Collapse
|
90
|
Jiang N, Cooper BY. Frequency-dependent interaction of ultrashort E-fields with nociceptor membranes and proteins. Bioelectromagnetics 2010; 32:148-63. [PMID: 21225892 DOI: 10.1002/bem.20620] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/29/2010] [Indexed: 12/14/2022]
Abstract
We examined the influence of ultrashort pulses (USP) on sensory neurons. Single and high frequency bursts of 12 ns E-fields were presented to rat skin nociceptors that expressed distinct combinations of voltage-sensitive proteins. A single E-field pulse produced action potentials in all nociceptor subtypes at a critical threshold (E(c) ) of 403 V/cm. When configured into high frequency bursts, USP charge integrated to reduce the action potential threshold in a frequency and burst duration-dependent manner with E(c) as low as 16 V/cm (4000 Hz, 25 ms burst). There was no evidence of electroporation at field intensities near the E(c) for nociceptor activation. USP bursts activated a late, persistent Ca(++) flux that was identified as a dantrolene-sensitive Ca(++) -induced Ca(++) release (CICR). Influx of Ca(++) into the cell was required for the CICR and resulted in a reduction of the single pulse E(c) by about 50%.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Division of Neuroscience, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
91
|
Pulpitis increases the proportion of atypical nodes of Ranvier in human dental pulp axons without a change in Nav1.6 sodium channel expression. Neuroscience 2010; 169:1881-7. [DOI: 10.1016/j.neuroscience.2010.06.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/07/2010] [Accepted: 06/16/2010] [Indexed: 11/22/2022]
|
92
|
Parekh A, Campbell AJM, Djouhri L, Fang X, McMullan S, Berry C, Acosta C, Lawson SN. Immunostaining for the α3 isoform of the Na+/K+-ATPase is selective for functionally identified muscle spindle afferents in vivo. J Physiol 2010; 588:4131-43. [PMID: 20807787 PMCID: PMC3002446 DOI: 10.1113/jphysiol.2010.196386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Muscle spindle afferent (MSA) neurons can show rapid and sustained firing. Immunostaining for the α3 isoform of the Na+/K+-ATPase (α3) in some large dorsal root ganglion (DRG) neurons and large intrafusal fibres suggested α3 expression in MSAs (Dobretsov et al. 2003), but not whether α3-immunoreactive DRG neuronal somata were exclusively MSAs. We found that neuronal somata with high α3 immunointensity were neurofilament-rich, suggesting they have A-fibres; we therefore focussed on A-fibre neurons to determine the sensory properties of α3-immunoreactive neurons. We examined α3 immunointensity in 78 dye-injected DRG neurons whose conduction velocities and hindlimb sensory receptive fields were determined in vivo. A dense perimeter or ring of staining in a subpopulation of neurons was clearly overlying the soma membrane and not within satellite cells. Neurons with clear α3 rings (n = 23) were all MSAs (types I and II); all MSAs had darkly stained α3 rings, that tended to be darker in MSA1 than MSA2 units. Of 52 non-MSA A-fibre neurons including nociceptive and cutaneous low-threshold mechanoreceptive (LTM) neurons, 50 had no discernable ring, while 2 (Aα/β cutaneous LTMs) had weakly stained rings. Three of three C-nociceptors had no rings. MSAs with strong ring immunostaining also showed the strongest cytoplasmic staining. These findings suggest that α3 ring staining is a selective marker for MSAs. The α3 isoform of the Na+/K+-ATPase has previously been shown to be activated by higher Na+ levels and to have greater affinity for ATP than the α1 isoform (in all DRG neurons). The high α3 levels in MSAs may enable the greater dynamic firing range in MSAs.
Collapse
Affiliation(s)
- A Parekh
- Department of Physiology and Pharmacology, Medical School, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Miao XR, Gao XF, Wu JX, Lu ZJ, Huang ZX, Li XQ, He C, Yu WF. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells. BMC Cancer 2010; 10:216. [PMID: 20482896 PMCID: PMC2894792 DOI: 10.1186/1471-2407-10-216] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/20/2010] [Indexed: 12/19/2022] Open
Abstract
Background Rapid and effective treatment of cancer-induced bone pain remains a clinical challenge and patients with bone metastasis are more likely to experience severe pain. The voltage-gated sodium channel Nav1.8 plays a critical role in many aspects of nociceptor function. Therefore, we characterized a rat model of cancer pain and investigated the potential role of Nav1.8. Methods Adult female Wistar rats were used for the study. Cancer pain was induced by inoculation of Walker 256 breast carcinosarcoma cells into the tibia. After surgery, mechanical and thermal hyperalgesia and ambulation scores were evaluated to identify pain-related behavior. We used real-time RT-PCR to determine Nav1.8 mRNA expression in bilateral L4/L5 dorsal root ganglia (DRG) at 16-19 days after surgery. Western blotting and immunofluorescence were used to compare the expression and distribution of Nav1.8 in L4/L5 DRG between tumor-bearing and sham rats. Antisense oligodeoxynucleotides (ODNs) against Nav1.8 were administered intrathecally at 14-16 days after surgery to knock down Nav1.8 protein expression and changes in pain-related behavior were observed. Results Tumor-bearing rats exhibited mechanical hyperalgesia and ambulatory-evoked pain from day 7 after inoculation of Walker 256 cells. In the advanced stage of cancer pain (days 16-19 after surgery), normalized Nav1.8 mRNA levels assessed by real-time RT-PCR were significantly lower in ipsilateral L4/L5 DRG of tumor-bearing rats compared with the sham group. Western-blot showed that the total expression of Nav1.8 protein significantly decreased bilaterally in DRG of tumor-bearing rats. Furthermore, as revealed by immunofluorescence, only the expression of Nav1.8 protein in small neurons down regulated significantly in bilateral DRG of cancer pain rats. After administration of antisense ODNs against Nav1.8, Nav1.8 protein expression decreased significantly and tumor-bearing rats showed alleviated mechanical hyperalgesia and ambulatory-evoked pain. Conclusions These findings suggest that Nav1.8 plays a role in the development and maintenance of bone cancer pain.
Collapse
Affiliation(s)
- Xue-Rong Miao
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Nociception is essential for survival whereas pathological pain is maladaptive and often unresponsive to pharmacotherapy. Voltage-gated sodium channels, Na(v)1.1-Na(v)1.9, are essential for generation and conduction of electrical impulses in excitable cells. Human and animal studies have identified several channels as pivotal for signal transmission along the pain axis, including Na(v)1.3, Na(v)1.7, Na(v)1.8, and Na(v)1.9, with the latter three preferentially expressed in peripheral sensory neurons and Na(v)1.3 being upregulated along pain-signaling pathways after nervous system injuries. Na(v)1.7 is of special interest because it has been linked to a spectrum of inherited human pain disorders. Here we review the contribution of these sodium channel isoforms to pain.
Collapse
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
95
|
Linley JE, Rose K, Ooi L, Gamper N. Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflugers Arch 2010; 459:657-69. [DOI: 10.1007/s00424-010-0784-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 02/06/2023]
|
96
|
Zhang XL, Mok LP, Katz EJ, Gold MS. BKCa currents are enriched in a subpopulation of adult rat cutaneous nociceptive dorsal root ganglion neurons. Eur J Neurosci 2010; 31:450-62. [PMID: 20105244 DOI: 10.1111/j.1460-9568.2009.07060.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The biophysical properties and distribution of voltage-dependent, Ca(2+) -modulated K(+) (BK(Ca)) currents among subpopulations of acutely dissociated DiI-labeled cutaneous sensory neurons from the adult rat were characterized with whole-cell patch-clamp techniques. BK(Ca) currents were isolated from total K(+) current with iberiotoxin, charybdotoxin or paxilline. There was considerable variability in biophysical properties of BK(Ca) currents. There was also variability in the distribution of BK(Ca) current among subpopulations of cutaneous dorsal root ganglia (DRG) neurons. While present in each of the subpopulations defined by cell body size, IB4 binding or capsaicin sensitivity, BK(Ca) current was present in the vast majority (> 90%) of small-diameter IB4+ neurons, but was present in only a minority of neurons in subpopulations defined by other criteria (i.e. small-diameter IB4-). Current-clamp analysis indicated that in IB4+ neurons, BK(Ca) currents contribute to the repolarization of the action potential and adaptation in response to sustained membrane depolarization, while playing little role in the determination of action potential threshold. Reverse transcriptase-polymerase chain reaction analysis of mRNA collected from whole DRG revealed the presence of multiple splice variants of the BK(Ca) channel alpha-subunit, rslo and all four of the accessory beta-subunits, suggesting that heterogeneity in the biophysical and pharmacological properties of BK(Ca) current in cutaneous neurons reflects, at least in part, the differential distribution of splice variants and/or beta-subunits. Because even a small decrease in BK(Ca) current appears to have a dramatic influence on excitability, modulation of this current may contribute to sensitization of nociceptive afferents observed following tissue injury.
Collapse
Affiliation(s)
- Xiu-Lin Zhang
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
97
|
Scroggs RS. Serotonin upregulates low- and high-threshold tetrodotoxin-resistant sodium channels in the same subpopulation of rat nociceptors. Neuroscience 2009; 165:1293-300. [PMID: 19932889 DOI: 10.1016/j.neuroscience.2009.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/27/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
The modulation by serotonin (5-HT) of low- and high-threshold tetrodotoxin- (TTX) resistant Na(+) currents was studied in small-diameter (approximately 25 microm) acutely-isolated rat dorsal root ganglion (DRG) cells. Each DRG cell included in the study was classified as type 2 or non-type 2, based on expression of a low-threshold A-type K(+) current. When cells of either type were recorded from using a CsF based internal solution and a holding potential (HP) of -80 mV, the apparent threshold for activation of TTX-resistant Na(+) currents ranged from -75 to -60 mV. A 500 ms prepulse to -60 mV greatly suppressed currents evoked by test potentials (TPs) to -75 through -35 mV. A similar scenario was observed when the CsF based internal solution was changed for one that contained CsCl, except that the apparent threshold of activation was shifted by about +25 mV, and currents evoked by TPs to -55 to -35 mV in the absence of a prepulse were much smaller than their counterparts observed with the CsF internal. These data suggest two types of TTX-resistant Na(+) currents; one with a low-threshold for activation that is enhanced by the presence of fluoride inside the cell and is inactivated by holding at -60 mV, and one with a higher threshold for activation that is not inactivated by holding at -60 mV. In type 2 DRG cells, 10 microM 5-HT upregulated low-threshold currents evoked by TPs to -55 to -35 mV from HP -80 mV, as well as high-threshold currents evoked by more depolarized TPs from HP -60 mV. However, when cells were held at -60 mV, 5-HT did not upregulate currents evoked by TPs to -35 or -30 mV, suggesting that the low-threshold current was nearly completely inactivated. Previous studies have suggested that type 2 DRG cells are nociceptor cell bodies. If 5-HT produces similar effects in type 2 DRG cell peripheral receptors, the upregulation of the low-threshold currents may serve to lower the threshold for nociception, while the upregulation of the high-threshold current may strengthen nociceptive signals.
Collapse
Affiliation(s)
- R S Scroggs
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38139, USA.
| |
Collapse
|
98
|
Suckow SK, Caudle RM. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity. Mol Pain 2009; 5:54. [PMID: 19772634 PMCID: PMC2758842 DOI: 10.1186/1744-8069-5-54] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/22/2009] [Indexed: 01/02/2023] Open
Abstract
Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs contribute to visceral hypersensitivity during inflammation.
Collapse
Affiliation(s)
- Shelby K Suckow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | |
Collapse
|
99
|
Krishnan AV, Lin CSY, Park SB, Kiernan MC. Axonal ion channels from bench to bedside: a translational neuroscience perspective. Prog Neurobiol 2009; 89:288-313. [PMID: 19699774 DOI: 10.1016/j.pneurobio.2009.08.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/13/2022]
Abstract
Over recent decades, the development of specialised techniques such as patch clamping and site-directed mutagenesis have established the contribution of neuronal ion channel dysfunction to the pathophysiology of common neurological conditions including epilepsy, multiple sclerosis, spinal cord injury, peripheral neuropathy, episodic ataxia, amyotrophic lateral sclerosis and neuropathic pain. Recently, these insights from in vitro studies have been translated into the clinical realm. In keeping with this progress, novel clinical axonal excitability techniques have been developed to provide information related to the activity of a variety of ion channels, energy-dependent pumps and ion exchange processes activated during impulse conduction in peripheral axons. These non-invasive techniques have been extensively applied to the study of the biophysical properties of human peripheral nerves in vivo and have provided important insights into axonal ion channel function in health and disease. This review will provide a translational perspective, focusing on an overview of the investigational method, the clinical utility in assessing the biophysical basis of ectopic symptom generation in peripheral nerve disease and a review of the major findings of excitability studies in acquired and inherited neurological disease states.
Collapse
Affiliation(s)
- Arun V Krishnan
- Translational Neuroscience Facility, University of New South Wales, Randwick, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
100
|
Henry MA, Luo S, Foley BD, Rzasa RS, Johnson LR, Levinson SR. Sodium channel expression and localization at demyelinated sites in painful human dental pulp. THE JOURNAL OF PAIN 2009; 10:750-8. [PMID: 19559391 PMCID: PMC2750027 DOI: 10.1016/j.jpain.2009.01.264] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/09/2008] [Accepted: 01/12/2009] [Indexed: 11/18/2022]
Abstract
UNLABELLED The expression of sodium channels (NaCh(s)) change after inflammatory and nerve lesions, and this change has been implicated in the generation of pain states. Here we examine NaCh expression within nerve fibers from normal and painful extracted human teeth with special emphasis on their localization within large accumulations, like those seen at nodes of Ranvier. Pulpal tissue sections from normal wisdom teeth and from teeth with large carious lesions associated with severe and spontaneous pain were double-stained with pan-specific NaCh antibody and caspr (paranodal protein used to visualize nodes of Ranvier) antibody, while additional sections were triple-stained with NaCh, caspr and myelin basic protein (MBP) antibodies. Z-series of images were obtained with the confocal microscope and evaluated with NIH ImageJ software to quantify the density and size of NaCh accumulations, and to characterize NaCh localization at caspr-identified typical and atypical nodal sites. Although the results showed variability in the overall density and size of NaCh accumulations in painful samples, a common finding included the remodeling of NaChs at atypical nodal sites. This remodeling of NaChs included prominent NaCh expression within nerve regions that showed a selective loss of MBP staining in a pattern consistent with a demyelinating process. PERSPECTIVE This study identifies the remodeling of NaChs at demyelinated sites within the painful human dental pulp and suggests that the contribution of NaChs to spontaneous pulpal pain generation may be dependant not only on total NaCh density but may also be related to NaCh expression at atypical nodal sites.
Collapse
Affiliation(s)
- Michael A Henry
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|