51
|
Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD. PLoS One 2013; 8:e60012. [PMID: 23593159 PMCID: PMC3617160 DOI: 10.1371/journal.pone.0060012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related.
Collapse
|
52
|
Maiuri T, Woloshansky T, Xia J, Truant R. The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Hum Mol Genet 2013; 22:1383-94. [PMID: 23297360 PMCID: PMC3596850 DOI: 10.1093/hmg/dds554] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/14/2012] [Accepted: 12/27/2012] [Indexed: 11/12/2022] Open
Abstract
The first 17 amino acids of Huntington's disease (HD) protein, huntingtin, comprise an amphipathic alpha-helical domain that can target huntingtin to the endoplasmic reticulum (ER). N17 is phosphorylated at two serines, shown to be important for disease development in genetic mouse models, and shown to be modified by agents that reverse the disease phenotype in an HD mouse model. Here, we show that the hydrophobic face of N17 comprises a consensus CRM1/exportin-dependent nuclear export signal, and that this nuclear export activity can be affected by serine phospho-mimetic mutants. We define the precise residues that comprise this nuclear export sequence (NES) as well as the interaction of the NES, but not phospho-mimetic mutants, with the CRM1 nuclear export factor. We show that the nuclear localization of huntingtin depends upon the RanGTP/GDP gradient, and that N17 phosphorylation can also distinguish localization of endogenous huntingtin between the basal body and stalk of the primary cilium. We present a mechanism and multifunctional role for N17 in which phosphorylation of N17 not only releases huntingtin from the ER to allow nuclear entry, but also prevents nuclear export during a transient stress response event to increase the levels of nuclear huntingtin and to regulate huntingtin access to the primary cilium. Thus, N17 is a master localization signal of huntingtin that can mediate huntingtin localization between the cytoplasm, nucleus and primary cilium. This localization can be regulated by signaling, and is misregulated in HD.
Collapse
Affiliation(s)
| | | | | | - R. Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, CanadaL8N3Z5
| |
Collapse
|
53
|
Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 2012; 46:393-429. [PMID: 22956270 PMCID: PMC3461215 DOI: 10.1007/s12035-012-8315-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/23/2022]
Abstract
Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.
Collapse
Affiliation(s)
- Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | |
Collapse
|
54
|
Gong B, Kielar C, Morton AJ. Temporal separation of aggregation and ubiquitination during early inclusion formation in transgenic mice carrying the Huntington's disease mutation. PLoS One 2012; 7:e41450. [PMID: 22848498 PMCID: PMC3404089 DOI: 10.1371/journal.pone.0041450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 06/26/2012] [Indexed: 12/01/2022] Open
Abstract
Abnormal insoluble ubiqitinated protein aggregates are found in the brains of Huntington’s disease (HD) patients and in mice transgenic for the HTT mutation. Here, we describe the earliest stages of visible NII formation in brains of R6/2 mice killed between 2 and 6 weeks of age. We found that huntingtin-positive aggregates formed rapidly (within 24–48 hours) in a spatiotemporal manner similar to that we described previously for ubiquitinated inclusions. However, in most neurons, aggregates are not ubiquitinated when they first form. It has always been assumed that mutant huntingtin is recognised as ‘foreign’ and consequently ubiquitinated and targeted for degradation by the ubiquitin-proteasome system pathway. Our data, however, suggest that aggregation and ubiquitination are separate processes, and that mutant huntingtin fragment is not recognized as ‘abnormal’ by the ubiquitin-proteasome system before aggregation. Rather, mutant Htt appears to aggregate before it is ubiquitinated, and then either aggregated huntingtin is ubiquitinated or ubiquitinated proteins are recruited into aggregates. Our findings have significant implications for the role of the ubiquitin-proteasome system in the formation of aggregates, as they suggest that this system is not involved until after the first aggregates form.
Collapse
Affiliation(s)
- Belvin Gong
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- UC Davis/NIH NeuroMab Facility, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California, United States of America
| | - Catherine Kielar
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - A. Jennifer Morton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
55
|
Li XJ, Li S. Influence of species differences on the neuropathology of transgenic Huntington's disease animal models. J Genet Genomics 2012; 39:239-45. [PMID: 22749010 PMCID: PMC5426814 DOI: 10.1016/j.jgg.2012.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 01/15/2023]
Abstract
Transgenic animal models have revealed much about the pathogenesis of age-dependent neurodegenerative diseases and proved to be a useful tool for uncovering therapeutic targets. Huntington's disease is a well-characterized neurodegenerative disorder that is caused by expansion of a CAG repeat, which results in expansion of a polyglutamine tract in the N-terminal region of huntingtin (HTT). Similar CAG/glutamine expansions are also found to cause eight other neurodegenerative diseases that affect distinct brain regions in an age-dependent manner. Identification of this CAG/glutamine expansion has led to the generation of a variety of transgenic animal models. Of these different animal models, transgenic mice have been investigated extensively, and they show similar neuropathology and phenotypes as seen in their respective diseases. The common pathological hallmark of age-dependent neurodegeneration is the formation of aggregates or inclusions consisting of misfolded proteins in the affected brain regions; however, overt or striking neurodegeneration and apoptosis have not been reported in most transgenic mouse models for age-dependent diseases, including HD. By comparing the neuropathology of transgenic HD mouse, pig, and monkey models, we found that mutant HTT is more toxic to larger animals than mice, and larger animals also show neuropathology that has not been uncovered by transgenic mouse models. This review will discuss the importance of transgenic large animal models for analyzing the pathogenesis of neurodegenerative diseases and developing effective treatments.
Collapse
Affiliation(s)
- Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St 347, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
56
|
Brooks S, Higgs G, Jones L, Dunnett SB. Longitudinal analysis of the behavioural phenotype in HdhQ92 Huntington's disease knock-in mice. Brain Res Bull 2012; 88:148-55. [DOI: 10.1016/j.brainresbull.2010.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/27/2010] [Accepted: 05/02/2010] [Indexed: 01/01/2023]
|
57
|
Brooks S, Higgs G, Janghra N, Jones L, Dunnett SB. Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington's disease transgenic mice. Brain Res Bull 2012; 88:113-20. [DOI: 10.1016/j.brainresbull.2010.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/27/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
|
58
|
Selective cognitive impairment in the YAC128 Huntington's disease mouse. Brain Res Bull 2012; 88:121-9. [DOI: 10.1016/j.brainresbull.2011.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 01/01/2023]
|
59
|
Brooks SP, Janghra N, Workman VL, Bayram-Weston Z, Jones L, Dunnett SB. Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington's disease transgenic mice. Brain Res Bull 2012; 88:94-103. [DOI: 10.1016/j.brainresbull.2011.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 11/16/2022]
|
60
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Res Bull 2012; 88:104-12. [DOI: 10.1016/j.brainresbull.2011.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/19/2011] [Accepted: 07/12/2011] [Indexed: 12/20/2022]
|
61
|
Ghiglieri V, Bagetta V, Calabresi P, Picconi B. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience 2012; 211:165-84. [DOI: 10.1016/j.neuroscience.2011.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/17/2022]
|
62
|
Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S, Franich NR, Maiti P, Frautschy SA, Zeitlin S, Levine MS, Chesselet MF. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease. Mol Neurodegener 2012; 7:12. [PMID: 22475209 PMCID: PMC3348060 DOI: 10.1186/1750-1326-7-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Backgound No disease modifying treatment currently exists for Huntington's disease (HD), a fatal neurodegenerative disorder characterized by the formation of amyloid-like aggregates of the mutated huntingtin protein. Curcumin is a naturally occurring polyphenolic compound with Congo red-like amyloid binding properties and the ability to cross the blood brain barrier. CAG140 mice, a knock-in (KI) mouse model of HD, display abnormal aggregates of mutant huntingtin and striatal transcriptional deficits, as well as early motor, cognitive and affective abnormalities, many months prior to exhibiting spontaneous gait deficits, decreased striatal volume, and neuronal loss. We have examined the ability of life-long dietary curcumin to improve the early pathological phenotype of CAG140 mice. Results KI mice fed a curcumin-containing diet since conception showed decreased huntingtin aggregates and increased striatal DARPP-32 and D1 receptor mRNAs, as well as an amelioration of rearing deficits. However, similar to other antioxidants, curcumin impaired rotarod behavior in both WT and KI mice and climbing in WT mice. These behavioral effects were also noted in WT C57Bl/6 J mice exposed to the same curcumin regime as adults. However, neither locomotor function, behavioral despair, muscle strength or food utilization were affected by curcumin in this latter study. The clinical significance of curcumin's impairment of motor performance in mice remains unclear because curcumin has an excellent blood chemistry and adverse event safety profile, even in the elderly and in patients with Alzheimer's disease. Conclusion Together with this clinical experience, the improvement in several transgene-dependent parameters by curcumin in our study supports a net beneficial effect of dietary curcumin in HD.
Collapse
Affiliation(s)
- Miriam A Hickey
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Zarringhalam K, Ka M, Kook YH, Terranova JI, Suh Y, King OD, Um M. An open system for automatic home-cage behavioral analysis and its application to male and female mouse models of Huntington's disease. Behav Brain Res 2012; 229:216-25. [DOI: 10.1016/j.bbr.2012.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/01/2012] [Accepted: 01/05/2012] [Indexed: 12/13/2022]
|
64
|
Ehrlich ME. Huntington's disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics 2012; 9:270-84. [PMID: 22441874 PMCID: PMC3337013 DOI: 10.1007/s13311-012-0112-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Huntington's disease is an autosomal dominant disorder caused by a mutation in the gene encoding the protein huntingtin on chromosome 4. The mutation is an expanded CAG repeat in the first exon, encoding a polyglutamine tract. If the polyglutamine tract is > 40, penetrance is 100% and death is inevitable. Despite the widespread expression of huntingtin, HD has long been considered primarily as a disease of the striatum. It is characterized by selective vulnerability with dysfunction followed by death of the medium size spiny neuron. Considerable effort is being expended to determine whether striatal damage is cell-autonomous, non-cell-autonomous, requiring cell-cell and region to region communication, or both. We review data supporting both mechanisms. We also attempt to organize the data into common mechanisms that may arise outside the medium, spiny neuron, but ultimately have their greatest impact in the striatum.
Collapse
Affiliation(s)
- Michelle E Ehrlich
- Department of Pediatrics, Mount Sinai School of Medicine, Annenberg 14-44, 1 Gustave L. Levy Place, New York, NY 10019, USA.
| |
Collapse
|
65
|
Pouladi MA, Stanek LM, Xie Y, Franciosi S, Southwell AL, Deng Y, Butland S, Zhang W, Cheng SH, Shihabuddin LS, Hayden MR. Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum Mol Genet 2012; 21:2219-32. [PMID: 22328089 DOI: 10.1093/hmg/dds037] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of animal models of Huntington disease (HD) has enabled studies that help define the molecular aberrations underlying the disease. The BACHD and YAC128 transgenic mouse models of HD harbor a full-length mutant huntingtin (mHTT) and recapitulate many of the behavioural and neuropathological features of the human condition. Here, we demonstrate that while BACHD and YAC128 animals exhibit similar deficits in motor learning and coordination, depressive-like symptoms, striatal volume loss and forebrain weight loss, they show obvious differences in key features characteristic of HD. While YAC128 mice exhibit significant and widespread accumulation of mHTT striatal aggregates, these mHTT aggregates are absent in BACHD mice. Furthermore, the levels of several striatally enriched mRNA for genes, such as DARPP-32, enkephalin, dopamine receptors D1 and D2 and cannabinoid receptor 1, are significantly decreased in YAC128 but not BACHD mice. These findings may reflect sequence differences in the human mHTT transgenes harboured by the BACHD and YAC128 mice, including both single nucleotide polymorphisms as well as differences in the nature of CAA interruptions of the CAG tract. Our findings highlight a similar profile of HD-like behavioural and neuropathological deficits and illuminate differences that inform the use of distinct endpoints in trials of therapeutic agents in the YAC128 and BACHD mice.
Collapse
Affiliation(s)
- Mahmoud A Pouladi
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, and Child and Family Research Institute, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Nucleic Acid-Based Therapy Approaches for Huntington's Disease. Neurol Res Int 2012; 2012:358370. [PMID: 22288011 PMCID: PMC3263636 DOI: 10.1155/2012/358370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/28/2011] [Accepted: 10/05/2011] [Indexed: 01/30/2023] Open
Abstract
Huntington's disease (HD) is caused by a dominant mutation that results in an unstable expansion of a CAG repeat in the huntingtin gene leading to a toxic gain of function in huntingtin protein which causes massive neurodegeneration mainly in the striatum and clinical symptoms associated with the disease. Since the mutation has multiple effects in the cell and the precise mechanism of the disease remains to be elucidated, gene therapy approaches have been developed that intervene in different aspects of the condition. These approaches include increasing expression of growth factors, decreasing levels of mutant huntingtin, and restoring cell metabolism and transcriptional balance. The aim of this paper is to outline the nucleic acid-based therapeutic strategies that have been tested to date.
Collapse
|
67
|
Raymond LA, André VM, Cepeda C, Gladding CM, Milnerwood AJ, Levine MS. Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011; 198:252-73. [PMID: 21907762 PMCID: PMC3221774 DOI: 10.1016/j.neuroscience.2011.08.052] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/31/2011] [Accepted: 08/22/2011] [Indexed: 01/27/2023]
Abstract
Huntington's disease (HD) is a progressive, fatal neurological condition caused by an expansion of CAG (glutamine) repeats in the coding region of the Huntington gene. To date, there is no cure but great strides have been made to understand pathophysiological mechanisms. In particular, genetic animal models of HD have been instrumental in elucidating the progression of behavioral and physiological alterations, which had not been possible using classic neurotoxin models. Our groups have pioneered the use of transgenic HD mice to examine the excitotoxicity hypothesis of striatal neuronal dysfunction and degeneration, as well as alterations in excitation and inhibition in striatum and cerebral cortex. In this review, we focus on synaptic and receptor alterations of striatal medium-sized spiny (MSNs) and cortical pyramidal neurons in genetic HD mouse models. We demonstrate a complex series of alterations that are region-specific and time-dependent. In particular, many changes are bidirectional depending on the degree of disease progression, that is, early vs. late, and also on the region examined. Early synaptic dysfunction is manifested by dysregulated glutamate release in striatum followed by progressive disconnection between cortex and striatum. The differential effects of altered glutamate release on MSNs originating the direct and indirect pathways is also elucidated, with the unexpected finding that cells of the direct striatal pathway are involved early in the course of the disease. In addition, we review evidence for early N-methyl-D-aspartate receptor (NMDAR) dysfunction leading to enhanced sensitivity of extrasynaptic receptors and a critical role of GluN2B subunits. Some of the alterations in late HD could be compensatory mechanisms designed to cope with early synaptic and receptor dysfunctions. The main findings indicate that HD treatments need to be designed according to the stage of disease progression and should consider regional differences.
Collapse
Affiliation(s)
- Lynn A. Raymond
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Véronique M. André
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Clare M. Gladding
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Austen J. Milnerwood
- Department of Psychiatry and Brain Research Centre, University of British Columbia, Vancouver, Canada
| | - Michael S. Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
68
|
Roux JC, Zala D, Panayotis N, Borges-Correia A, Saudou F, Villard L. Modification of Mecp2 dosage alters axonal transport through the Huntingtin/Hap1 pathway. Neurobiol Dis 2011; 45:786-95. [PMID: 22127389 DOI: 10.1016/j.nbd.2011.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/22/2011] [Accepted: 11/07/2011] [Indexed: 01/08/2023] Open
Abstract
Mecp2 deficiency or overexpression causes a wide spectrum of neurological diseases in humans among which Rett Syndrome is the prototype. Pathogenic mechanisms are thought to involve transcriptional deregulation of target genes such as Bdnf together with defects in the general transcriptional program of affected cells. Here we found that two master genes, Huntingtin (Htt) and huntingtin-associated protein (Hap1), involved in the control of Bdnf axonal transport, are altered in the brain of Mecp2-deficient mice. We also revealed an in vivo defect of Bdnf transport throughout the cortico striatal pathway of Mecp2-deficient animals. We found that the velocity of Bdnf-containing vesicles is reduced in vitro in the Mecp2-deficient axons and this deficit can be rescued by the re-expression of Mecp2. The defect in axonal transport is not restricted to Bdnf since transport of the amyloid precursor protein (App) that is Htt and Hap1-dependent is also altered. Finally, treating Mecp2-deficient mice with cysteamine, a molecule increasing the secretion of Bdnf vesicles, improved the lifespan and reduced motor defects, suggesting a new therapeutic strategy for Rett syndrome.
Collapse
Affiliation(s)
- Jean-Christophe Roux
- INSERM, UMR_S 910, Faculté de Médecine de La Timone, Marseille, F-13385, France.
| | | | | | | | | | | |
Collapse
|
69
|
Cummings DM, Alaghband Y, Hickey MA, Joshi PR, Hong SC, Zhu C, Ando TK, André VM, Cepeda C, Watson JB, Levine MS. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease. J Neurophysiol 2011; 107:677-91. [PMID: 22072510 DOI: 10.1152/jn.00762.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The R6/2 mouse is the most frequently used model for experimental and preclinical drug trials in Huntington's disease (HD). When the R6/2 mouse was first developed, it carried exon 1 of the huntingtin gene with ~150 cytosine-adenine-guanine (CAG) repeats. The model presented with a rapid and aggressive phenotype that shared many features with the human condition and was particularly similar to juvenile HD. However, instability in the CAG repeat length due to different breeding practices has led to both decreases and increases in average CAG repeat lengths among colonies. Given the inverse relationship in human HD between CAG repeat length and age at onset and to a degree, the direct relationship with severity of disease, we have investigated the effect of altered CAG repeat length. Four lines, carrying ~110, ~160, ~210, and ~310 CAG repeats, were examined using a battery of tests designed to assess the basic R6/2 phenotype. These included electrophysiological properties of striatal medium-sized spiny neurons, motor activity, inclusion formation, and protein expression. The results showed an unpredicted, inverted "U-shaped" relationship between CAG repeat length and phenotype; increasing the CAG repeat length from 110 to 160 exacerbated the R6/2 phenotype, whereas further increases to 210 and 310 CAG repeats greatly ameliorated the phenotype. These findings demonstrate that the expected relationship between CAG repeat length and disease severity observed in humans is lost in the R6/2 mouse model and highlight the importance of CAG repeat-length determination in preclinical drug trials that use this model.
Collapse
Affiliation(s)
- Damian M Cummings
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Brooks SP, Jones L, Dunnett SB. Comparative analysis of pathology and behavioural phenotypes in mouse models of Huntington's disease. Brain Res Bull 2011; 88:81-93. [PMID: 22004616 DOI: 10.1016/j.brainresbull.2011.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/03/2011] [Indexed: 12/30/2022]
Abstract
The longitudinal characterisation of Huntington's disease (HD) mouse lines is essential for the understanding of the differential developmental time course, nature and severity of phenotype progression over time. This overview outlines detailed behavioural, neuropathological and gene expression studies in four HD mouse lines: R6/1, YAC128, HdhQ92 and HdhQ150 and outlines their relevance to human HD. The review describes the similarities and differences between the models at the behavioural, anatomical and genetic levels of pathology and how these phenotypes interact in the development of disease in the lines. The HdhQ150 mouse demonstrates the most similarities to the functional deficits observed in human HD. The neuropathological profile with early cortical development of intense aggregate/inclusion pathology in the YAC128 mouse suggests that this line most resembles the development of inclusion pathology in the human disease. The gene expression analyses of the mouse lines find significant similarities between each of the lines and human HD, which converge as the mice age. In the YAC128 and HdhQ92 mouse lines some severe functional deficits are progressive whilst others are not, despite the concomitant ongoing development of neuropathological and gene expression changes. We suggest that the YAC128 and R6/1 lines may be more representative of the juvenile form of HD. The suitability of the different mouse models studied here for different types of pre-clinical therapeutic trials is discussed.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, School of Biosciences, Cardiff University, Wales, UK.
| | | | | |
Collapse
|
71
|
Ruiz M, Déglon N. Viral-mediated overexpression of mutant huntingtin to model HD in various species. Neurobiol Dis 2011; 48:202-11. [PMID: 21889981 DOI: 10.1016/j.nbd.2011.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/11/2011] [Accepted: 08/18/2011] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin (Htt) gene. Despite intensive efforts devoted to investigating the mechanisms of its pathogenesis, effective treatments for this devastating disease remain unavailable. The lack of suitable models recapitulating the entire spectrum of the degenerative process has severely hindered the identification and validation of therapeutic strategies. The discovery that the degeneration in HD is caused by a mutation in a single gene has offered new opportunities to develop experimental models of HD, ranging from in vitro models to transgenic primates. However, recent advances in viral-vector technology provide promising alternatives based on the direct transfer of genes to selected sub-regions of the brain. Rodent studies have shown that overexpression of mutant human Htt in the striatum using adeno-associated virus or lentivirus vectors induces progressive neurodegeneration, which resembles that seen in HD. This article highlights progress made in modeling HD using viral vector gene transfer. We describe data obtained with of this highly flexible approach for the targeted overexpression of a disease-causing gene. The ability to deliver mutant Htt to specific tissues has opened pathological processes to experimental analysis and allowed targeted therapeutic development in rodent and primate pre-clinical models.
Collapse
Affiliation(s)
- Marta Ruiz
- Atomic Energy Commission (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | | |
Collapse
|
72
|
Brooks SP, Jones L, Dunnett SB. Longitudinal analyses of operant performance on the serial implicit learning task (SILT) in the YAC128 Huntington's disease mouse line. Brain Res Bull 2011; 88:130-6. [PMID: 21763407 DOI: 10.1016/j.brainresbull.2011.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
Abstract
Huntington's disease is a genetic disorder characterised by progressive striatal and cortical neurodegeneration, resulting in a broad range of motor, cognitive and behavioural abnormalities. The disease is caused by a single mutation in the gene responsible for the protein huntingtin, increasing the number of polyQ repeats and conferring a toxic gain of function to the mutant protein, which ultimately induces cell death. Several mouse models of HD are available. The YAC128 mouse model carries 128 CAG repeats and is known to develop several HD-like symptoms. This model has been well characterised on the FVB/N background strain, a strain that develops severe retinal degeneration. We have therefore sought to characterise YAC128 deficit in mice backcrossed onto the C57BL/6j background strain which is free of visual deficits and therefore more amenable to behavioural testing. In a parallel study (this special issue) we have provided a longitudinal characterisation of the emergence of a motor phenotype in the YAC128/C57BL mice. In the present paper, we have undertaken a more detailed characterisation of cognitive impairment in this mouse line at 6, 12, and 18 months of age using the operant serial implicit learning task (SILT), a task that was first designed to assess impairments in mice similar to the implicit serial learning impairments in HD patients task, and which has subsequently been shown to be highly sensitive to cortico-striatal disruption in mice. On the SILT task, the mouse must attain rewards by correctly nose-poking to 2 stimulus lights (S1 and S2) presented randomly and sequentially in 5 holes (deemed A-E) on a light array. Performance is measured by accuracy and speed of response to the S1 and S2 stimuli. Embedded within the random sequences, was a predictable sequence whereby an S1 in hole B is always followed by the S2 in hole D, which constitutes an implicit learning probe. The YAC128 carriers were less accurate in their responses to both S1 and S2 stimuli in the absence of response latency deficits. The deficits in accuracy to the S2 stimuli were present from 6 months of age and were progressive. There was no difference between the wildtype and the YAC128 carriers in the benefits gained from identifying the predictable B-D sequence. The results suggest that the YAC128 mice have a motor-learning deficit that may reflect impulsive responding and/or impaired visuo-spatial attention consistent with a model of HD.
Collapse
Affiliation(s)
- Simon P Brooks
- Brain Repair Group, School of Biosciences, Cardiff University, Wales, UK.
| | | | | |
Collapse
|
73
|
Lalonde R, Strazielle C. Brain regions and genes affecting limb-clasping responses. ACTA ACUST UNITED AC 2011; 67:252-9. [DOI: 10.1016/j.brainresrev.2011.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/14/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
|
74
|
Bolivar VJ. Book Review: "Neurobiology of Grooming Behavior" Allan V. Kalueff, Justin L. LaPorte and Carisa L. Bergner, eds. (2010). J Integr Neurosci 2011. [DOI: 10.1142/s0219635211002713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
75
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in YAC128 Huntington's disease transgenic mice. Brain Res Bull 2011; 88:137-47. [PMID: 21620935 DOI: 10.1016/j.brainresbull.2011.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/21/2011] [Accepted: 05/08/2011] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease caused by the insertion of an expanded polyglutamine sequence within the huntingtin protein. This mutation induces the formation of abnormal protein fragment aggregations and intra-nuclear neuronal inclusions in the brain. The present study aimed to produce a detailed longitudinal characterization of the neuronal pathology in the YAC128 transgenic mouse brain, to determine the similarity of this mouse model to other mouse models and the human condition in the spatial and temporal deposition pattern of the mutant protein fragments. Brain samples were taken from mice aged between 4 and 27 months of age, and assessed using S830 and GFAP immunohistochemistry, stereology and electron microscopy. Four month old mice did not exhibit intra-nuclear or extra-nuclear inclusions using the S830 antibody. Diffuse nuclear staining was present in the cortex, hippocampus and cerebellum from 6 months of age onwards. By 15 months of age, intra-nuclear inclusions were visible in most brain regions including nucleus accumbens, ventral striatum, lateral striatum, motor cortex, sensory cortex and cerebellum. The ventral striatum had a greater density of inclusions than the dorsal striatum. At 15 and 24 months of age, the mice showed increased reactive astrogliosis in the cortex, but no differences were found in the striatum. Necrotic cell death with vacuolation, uneven cell membrane and degenerated Golgi apparatus were detected ultrastructurally at 14 months of age, with some cells showing signs of apoptosis. By 26 months of age, most cells were degenerated in the transgenic animals, with lipofuscin granules being more abundant and larger in these mice than in their wildtype littermates. Our results demonstrate a progressive and widespread neuropathology in the YAC128 mice line that shares some similarity to the human condition. This article is part of a Special Issue entitled 'HD Transgenic Mouse'.
Collapse
|
76
|
Abstract
Mouse models for Huntington's Disease (HD) and HD patients demonstrate motor and behavioral dysfunctions, such as progressive loss of coordination and memory, and share similar transcriptional profiles and striatal neuron atrophy. Clear differences between the mouse and human diseases include almost complete striatal degeneration and rarity of intranuclear inclusions in HD, and the fact that mice expressing full-length mutant huntingtin do not demonstrate a shortened life span characteristic of HD. While no clinical interventions tested in mouse models to date have delayed disease progression, the mouse models provide an invaluable tool for both investigating the underlying pathogenic processes and developing new effective therapies. Inherent differences between humans and mice must be considered in the search for efficacious treatments for HD, but the striking similarities between human HD and mouse models support the view that these models are a biologically relevant system to support the identification and testing of potential clinical therapies.
Collapse
Affiliation(s)
- Zachary R Crook
- The David H. Koch Institute for Integrative Cancer Research at MIT, 500 Main Street, Building 76-553, Cambridge, MA 02139, USA
| | | |
Collapse
|
77
|
Tebbenkamp ATN, Swing D, Tessarollo L, Borchelt DR. Premature death and neurologic abnormalities in transgenic mice expressing a mutant huntingtin exon-2 fragment. Hum Mol Genet 2011; 20:1633-42. [PMID: 21307087 PMCID: PMC3063989 DOI: 10.1093/hmg/ddr040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease characterized pathologically by aggregates composed of N-terminal fragments of the mutant form of the protein huntingtin (htt). The role of these N-terminal fragments in disease pathogenesis has been questioned based in part on studies in transgenic mice. In one important example, mice that express an N-terminal fragment of mutant htt terminating at the C-terminus of exon 2 (termed the Shortstop mouse) were reported to develop robust inclusion pathology without developing phenotypic abnormalities seen in the R6/2 or N171-82Q models of HD, which are also based on expression of mutant N-terminal htt fragments. To further explore the capacity of mutant exon-2 htt fragments to produce neurologic abnormalities (N-terminal 118 amino acids; N118), we generated transgenic mice expressing cDNA that encodes htt N118-82Q with the mouse prion promoter vector. In mice generated in this manner, we demonstrate robust inclusion pathology accompanied by early death and failure to gain weight. These phenotypes are the most robust abnormalities identified in the R6/2 and N171-82Q models. We conclude that the lack of an overt phenotype in the initial Shortstop mice cannot be completely explained by the properties of mutant htt N118 fragments.
Collapse
Affiliation(s)
- Andrew T N Tebbenkamp
- Department of Neuroscience, SantaFe HealthCare Alzheimer's Disease Research Center, McKnight Brain Institute, University of Florida, 100 Newell Dr, Rm. L1-100, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
78
|
Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L, Saft C, Gold R, Linker RA. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington's disease. PLoS One 2011; 6:e16172. [PMID: 21297955 PMCID: PMC3031519 DOI: 10.1371/journal.pone.0016172] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 12/09/2010] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly inherited progressive neurodegenerative disease. The exact sequel of events finally resulting in neurodegeneration is only partially understood and there is no established protective treatment so far. Some lines of evidence speak for the contribution of oxidative stress to neuronal tissue damage. The fumaric acid ester dimethylfumarate (DMF) is a new disease modifying therapy currently in phase III studies for relapsing-remitting multiple sclerosis. DMF potentially exerts neuroprotective effects via induction of the transcription factor “nuclear factor E2-related factor 2” (Nrf2) and detoxification pathways. Thus, we investigated here the therapeutic efficacy of DMF in R6/2 and YAC128 HD transgenic mice which mimic many aspects of HD and are characterized by an enhanced generation of free radicals in neurons. Treatment with DMF significantly prevented weight loss in R6/2 mice between postnatal days 80–90. At the same time, DMF treatment led to an attenuated motor impairment as measured by the clasping score. Average survival in the DMF group was 100.5 days vs. 94.0 days in the placebo group. In the histological analysis on day 80, DMF treatment resulted in a significant preservation of morphologically intact neurons in the striatum as well as in the motor cortex. DMF treatment resulted in an increased Nrf2 immunoreactivity in neuronal subpopulations, but not in astrocytes. These beneficial effects were corroborated in YAC128 mice which, after one year of DMF treatment, also displayed reduced dyskinesia as well as a preservation of neurons. In conclusion, DMF may exert beneficial effects in mouse models of HD. Given its excellent side effect profile, further studies with DMF as new therapeutic approach in HD and other neurodegenerative diseases are warranted.
Collapse
Affiliation(s)
- Gisa Ellrichmann
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
80
|
Hickey MA, Chesselet MF. Behavioral Assessment of Genetic Mouse Models of Huntington’s Disease. NEUROMETHODS 2011. [DOI: 10.1007/978-1-61779-301-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
81
|
Jones L, Hughes A. Pathogenic mechanisms in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:373-418. [PMID: 21907095 DOI: 10.1016/b978-0-12-381328-2.00015-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder presenting in midlife. Multiple pathogenic mechanisms which hypothesise how the expanded CAG repeat causes manifest disease have been suggested since the mutation was first detected. These mechanisms include events that operate at both the gene and protein levels. It has been proposed that somatic instability of the CAG repeat could underlie the striatal-specific pathology observed in HD, although how this occurs and what consequences this has in the disease state remain unknown. The form in which the Htt protein exists within the cell has been extensively studied in terms of both its role in aggregate formation and its cellular processing. Protein-protein interactions, post-translational modifications and protein cleavage have all been suggested to contribute to HD pathogenesis. The potential downstream effects of the mutant Htt protein are also noted here. In particular, the adverse effect of the mutant Htt protein on cellular protein degradation, subcellular transport and transcription are explored, and its role in energy metabolism and excitotoxicity investigated. Elucidating the mechanisms at work in HD pathogenesis and determining when they occur in relation to disease is an important step in the pathway to therapeutic interventions.
Collapse
Affiliation(s)
- Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK
| | | |
Collapse
|
82
|
Harvey BK, Richie CT, Hoffer BJ, Airavaara M. Transgenic animal models of neurodegeneration based on human genetic studies. J Neural Transm (Vienna) 2010; 118:27-45. [PMID: 20931247 DOI: 10.1007/s00702-010-0476-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/23/2010] [Indexed: 12/11/2022]
Abstract
The identification of genes linked to neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) has led to the development of animal models for studying mechanism and evaluating potential therapies. None of the transgenic models developed based on disease-associated genes have been able to fully recapitulate the behavioral and pathological features of the corresponding disease. However, there has been enormous progress made in identifying potential therapeutic targets and understanding some of the common mechanisms of neurodegeneration. In this review, we will discuss transgenic animal models for AD, ALS, HD and PD that are based on human genetic studies. All of the diseases discussed have active or complete clinical trials for experimental treatments that benefited from transgenic models of the disease.
Collapse
Affiliation(s)
- Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
83
|
Proteasome and oxidative phoshorylation changes may explain why aging is a risk factor for neurodegenerative disorders. J Proteomics 2010; 73:2230-8. [DOI: 10.1016/j.jprot.2010.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 01/17/2023]
|
84
|
Braunstein KE, Eschbach J, Ròna-Vörös K, Soylu R, Mikrouli E, Larmet Y, René F, Gonzalez De Aguilar JL, Loeffler JP, Müller HP, Bucher S, Kaulisch T, Niessen HG, Tillmanns J, Fischer K, Schwalenstöcker B, Kassubek J, Pichler B, Stiller D, Petersen A, Ludolph AC, Dupuis L. A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Hum Mol Genet 2010; 19:4385-98. [PMID: 20807776 DOI: 10.1093/hmg/ddq361] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The molecular motor dynein and its associated regulatory subunit dynactin have been implicated in several neurodegenerative conditions of the basal ganglia, such as Huntington's disease (HD) and Perry syndrome, an atypical Parkinson-like disease. This pathogenic role has been largely postulated from the existence of mutations in the dynactin subunit p150(Glued). However, dynactin is also able to act independently of dynein, and there is currently no direct evidence linking dynein to basal ganglia degeneration. To provide such evidence, we used here a mouse strain carrying a point mutation in the dynein heavy chain gene that impairs retrograde axonal transport. These mice exhibited motor and behavioural abnormalities including hindlimb clasping, early muscle weakness, incoordination and hyperactivity. In vivo brain imaging using magnetic resonance imaging showed striatal atrophy and lateral ventricle enlargement. In the striatum, altered dopamine signalling, decreased dopamine D1 and D2 receptor binding in positron emission tomography SCAN and prominent astrocytosis were observed, although there was no neuronal loss either in the striatum or substantia nigra. In vitro, dynein mutant striatal neurons displayed strongly impaired neuritic morphology. Altogether, these findings provide a direct genetic evidence for the requirement of dynein for the morphology and function of striatal neurons. Our study supports a role for dynein dysfunction in the pathogenesis of neurodegenerative disorders of the basal ganglia, such as Perry syndrome and HD.
Collapse
|
85
|
Zuccato C, Valenza M, Cattaneo E. Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease. Physiol Rev 2010; 90:905-81. [DOI: 10.1152/physrev.00041.2009] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding for huntingtin protein. A lot has been learned about this disease since its first description in 1872 and the identification of its causative gene and mutation in 1993. We now know that the disease is characterized by several molecular and cellular abnormalities whose precise timing and relative roles in pathogenesis have yet to be understood. HD is triggered by the mutant protein, and both gain-of-function (of the mutant protein) and loss-of-function (of the normal protein) mechanisms are involved. Here we review the data that describe the emergence of the ancient huntingtin gene and of the polyglutamine trait during the last 800 million years of evolution. We focus on the known functions of wild-type huntingtin that are fundamental for the survival and functioning of the brain neurons that predominantly degenerate in HD. We summarize data indicating how the loss of these beneficial activities reduces the ability of these neurons to survive. We also review the different mechanisms by which the mutation in huntingtin causes toxicity. This may arise both from cell-autonomous processes and dysfunction of neuronal circuitries. We then focus on novel therapeutical targets and pathways and on the attractive option to counteract HD at its primary source, i.e., by blocking the production of the mutant protein. Strategies and technologies used to screen for candidate HD biomarkers and their potential application are presented. Furthermore, we discuss the opportunities offered by intracerebral cell transplantation and the likely need for these multiple routes into therapies to converge at some point as, ideally, one would wish to stop the disease process and, at the same time, possibly replace the damaged neurons.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Marta Valenza
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
86
|
Brooks S, Higgs G, Jones L, Dunnett SB. Longitudinal analysis of the behavioural phenotype in Hdh(CAG)150 Huntington's disease knock-in mice. Brain Res Bull 2010; 88:182-8. [PMID: 20457230 DOI: 10.1016/j.brainresbull.2010.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/08/2010] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
Abstract
In people with Huntington's disease, an expanded CAG repeat sequence on the HTT gene confers a toxic gain function resulting in a progressive and fatal neurodegeneration. The Hdh((CAG)Q150) Huntington's disease mouse line is a knock-in model of the disease that carries ∼150 CAG repeats on the normal mouse Htt locus. To determine that these mice are a useful model of the disease, they were assessed longitudinally for motor and cognitive deficits relevant to the human disease state. Each test was conducted bi-monthly across the lifespan of the animal. The results indicate that the Hdh(Q150/Q150) mice were impaired on each of the measures used, with deficits appearing on a 3-stage water maze test at 4 months of age and on prepulse inhibition at 6 months of age, both of which were prior to the manifestation of motor abnormalities. Grip strength, as measured by the inverted cage lid test, was reduced in the Hdh(Q150/Q150) mice from 10 months of age, when the male mice also exhibited weight loss relative to their wildtype littermates. On the accelerating rotarod, deficits in the carrier mice did not appear until they were 21 months old. Our results demonstrate that the Hdh((CAG)150) is a valid model of HD that displays early and progressive cognitive deficits that precede the onset of motor abnormalities.
Collapse
Affiliation(s)
- Simon Brooks
- Brain Repair Group, School of Biosciences, Cardiff University, Wales, UK.
| | | | | | | |
Collapse
|
87
|
Genetic mouse models of Huntington's disease: focus on electrophysiological mechanisms. ASN Neuro 2010; 2:e00033. [PMID: 20396376 PMCID: PMC2850512 DOI: 10.1042/an20090058] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022] Open
Abstract
The discovery of the HD (Huntington’s disease) gene in 1993 led to the creation of genetic mouse models of the disease and opened the doors for mechanistic studies. In particular, the early changes and progression of the disease could be followed and examined systematically. The present review focuses on the contribution of these genetic mouse models to the understanding of functional changes in neurons as the HD phenotype progresses, and concentrates on two brain areas: the striatum, the site of most conspicuous pathology in HD, and the cortex, a site that is becoming increasingly important in understanding the widespread behavioural abnormalities. Mounting evidence points to synaptic abnormalities in communication between the cortex and striatum and cell–cell interactions as major determinants of HD symptoms, even in the absence of severe neuronal degeneration and death.
Collapse
Key Words
- AMPA, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
- BAC, bacterial artificial chromosome
- BDNF, brain-derived neurotrophic factor
- DA, dopamine
- EPSC, excitatory postsynaptic current
- GABA, γ-aminobutyric acid
- HD, Huntington’s disease
- Huntington’s disease
- IPSC, inhibitory postsynaptic current
- IR-DIC, infrared differential interference contrast
- MSSN, medium-sized spiny projection neuron
- NII, neuronal intranuclear inclusion
- NMDA, N-methyl-d-aspartate
- WT, wild-type
- YAC, yeast artificial chromosome
- enk, enkephalin
- excitatory amino acid
- htt, huntingtin
- mouse model
- neurodegeneration
- striatum
- synaptic activity
Collapse
|
88
|
Abstract
The production of functional spermatozoa is a complex process requiring the coordinated expression of thousands of genes. It is likely that the intricate nature of these interactions contributes to the large number of idiopathic male infertility cases seen in humans. Conversely, the complexity of the highly regulated and interconnected processes of spermatogenesis and posttesticular sperm maturation events offers opportunities for the development of male-based contraceptive targets. The recent advances in genetic manipulation technologies and the completion of the human and mouse genome sequencing programs have provided scientists with sophisticated ways to generate mouse models for the study of basic biological mechanisms, in order to understand disease pathology and develop novel therapeutic approaches. The three common types of mouse model used for medical research are transgenic, knockout/knockin, and chemical-induced point mutant mice. Each type has relative strengths and weaknesses with respect to its fidelity to the disease processes in humans. In this chapter, we focus on the utility of the different types of mouse model in obtaining a better understanding of the mechanisms that control spermatogenesis and developing male-based contraceptive regimens.
Collapse
|
89
|
|
90
|
Trueman R, Brooks S, Jones L, Dunnett S. Rule learning, visuospatial function and motor performance in the HdhQ92 knock-in mouse model of Huntington's disease. Behav Brain Res 2009; 203:215-22. [DOI: 10.1016/j.bbr.2009.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 01/25/2023]
|
91
|
Sturrock A, Leavitt BR. Murine models of Huntington disease. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington disease is an inherited neurodegenerative disorder associated with inexorable progression. To date, no therapy has proved effective in modifying the disease course or improving survival. We present here an evaluation of our most valuable asset in the development of a cure – the mouse model. In particular, we will reflect on the relative strengths and weaknesses of current models in reprising Huntington disease pathology, evaluate their role in the development of novel therapeutic agents through preclinical trials and consider their future impact on Huntington disease research.
Collapse
Affiliation(s)
- Aaron Sturrock
- Department of Medical Genetics, UBC, Vancouver, British Columbia, Canada V6T 2B5
| | - Blair R Leavitt
- Department of Medical Genetics, UBC, Vancouver, British Columbia, Canada V6T 2B5
| |
Collapse
|
92
|
Ehrnhoefer DE, Butland SL, Pouladi MA, Hayden MR. Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2009; 2:123-9. [PMID: 19259385 DOI: 10.1242/dmm.002451] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An accepted prerequisite for clinical trials of a compound in humans is the successful alleviation of the disease in animal models. For some diseases, however, successful translation of drug effects from mouse models to the bedside has been limited. One question is whether the current models accurately reproduce the human disease. Here, we examine the mouse models that are available for therapeutic testing in Huntington disease (HD), a late-onset neurodegenerative disorder for which there is no effective treatment. The current mouse models show different degrees of similarity to the human condition. Significant phenotypic differences are seen in mouse models that express either truncated or full-length human, or full-length mouse, mutant huntingtin (mHTT). These differences in phenotypic expression may be attributable to the influences of protein context, mouse strain and a difference in regulatory sequences between the mouse Htt and human HTT genes.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
93
|
Bauer PO, Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009; 110:1737-65. [PMID: 19650870 DOI: 10.1111/j.1471-4159.2009.06302.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expansion of CAG trinucleotide repeat within the coding region of several genes results in the production of proteins with expanded polyglutamine (PolyQ) stretch. The expression of these pathogenic proteins leads to PolyQ diseases, such as Huntington's disease or several types of spinocerebellar ataxias. This family of neurodegenerative disorders is characterized by constant progression of the symptoms and molecularly, by the accumulation of mutant proteins inside neurons causing their dysfunction and eventually death. So far, no effective therapy actually preventing the physical and/or mental decline has been developed. Experimental therapeutic strategies either target the levels or processing of mutant proteins in an attempt to prevent cellular deterioration, or they are aimed at the downstream pathologic effects to reverse or ameliorate the caused damages. Certain pathomechanistic aspects of PolyQ disorders are discussed here. Relevance of disease models and recent knowledge of therapeutic possibilities is reviewed and updated.
Collapse
Affiliation(s)
- Peter O Bauer
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | | |
Collapse
|
94
|
Kegel KB, Sapp E, Alexander J, Valencia A, Reeves P, Li X, Masso N, Sobin L, Aronin N, DiFiglia M. Polyglutamine expansion in huntingtin alters its interaction with phospholipids. J Neurochem 2009; 110:1585-97. [PMID: 19566678 DOI: 10.1111/j.1471-4159.2009.06255.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Huntingtin has an expanded polyglutamine tract in patients with Huntington's disease. Huntingtin localizes to intracellular and plasma membranes but the function of huntingtin at membranes is unknown. Previously we reported that exogenously expressed huntingtin bound pure phospholipids using protein-lipid overlays. Here we show that endogenous huntingtin from normal (Hdh(7Q/7Q)) mouse brain and mutant huntingtin from Huntington's disease (Hdh(140Q/140Q)) mouse brain bound to large unilamellar vesicles containing phosphoinositol (PI) PI 3,4-bisphosphate, PI 3,5-bisphosphate, and PI 3,4,5-triphosphate [PI(3,4,5)P3]. Huntingtin interactions with multivalent phospholipids were similar to those of dynamin. Mutant huntingtin associated more with phosphatidylethanolamine and PI(3,4,5)P3 than did wild-type huntingtin, and associated with other phospholipids not recognized by wild-type huntingtin. Wild-type and mutant huntingtin also bound to large unilamellar vesicles containing cardiolipin, a phospholipid specific to mitochondrial membranes. Maximal huntingtin-phospholipid association required inclusion of huntingtin amino acids 171-287. Endogenous huntingtin recruited to the plasma membrane in cells that incorporated exogenous PI 3,4-bisphosphate and PI(3,4,5)P3 or were stimulated by platelet-derived growth factor or insulin growth factor 1, which both activate PI 3-kinase. These data suggest that huntingtin interacts with membranes through specific phospholipid associations and that mutant huntingtin may disrupt membrane trafficking and signaling at membranes.
Collapse
Affiliation(s)
- Kimberly B Kegel
- Laboratory of Cellular Neurobiology, Department of Neurology, Massachusetts General Hospital, 11416th Street, Room 2150, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 2009; 10:519-29. [DOI: 10.1038/nrn2652] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
96
|
Brooks S, Fielding S, Döbrössy M, von Hörsten S, Dunnett S. Subtle but progressive cognitive deficits in the female tgHD hemizygote rat as demonstrated by operant SILT performance. Brain Res Bull 2009; 79:310-5. [DOI: 10.1016/j.brainresbull.2009.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/05/2009] [Accepted: 03/16/2009] [Indexed: 02/06/2023]
|
97
|
Menalled L, El-Khodor BF, Patry M, Suárez-Fariñas M, Orenstein SJ, Zahasky B, Leahy C, Wheeler V, Yang XW, MacDonald M, Morton AJ, Bates G, Leeds J, Park L, Howland D, Signer E, Tobin A, Brunner D. Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models. Neurobiol Dis 2009; 35:319-36. [PMID: 19464370 DOI: 10.1016/j.nbd.2009.05.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/04/2009] [Accepted: 05/15/2009] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease (HD) is one of the few neurodegenerative diseases with a known genetic cause, knowledge that has enabled the creation of animal models using genetic manipulations that aim to recapitulate HD pathology. The study of behavioral and neuropathological phenotypes of these HD models, however, has been plagued by inconsistent results across laboratories stemming from the lack of standardized husbandry and testing conditions, in addition to the intrinsic differences between the models. We have compared different HD models using standardized conditions to identify the most robust phenotypic differences, best suited for preclinical therapeutic efficacy studies. With a battery of tests of sensory-motor function, such as the open field and prepulse inhibition tests, we replicate previous results showing a strong and progressive behavioral deficit in the R6/2 line with an average of 129 CAG repeats in a mixed CBA/J and C57BL/6J background. We present the first behavioral characterization of a new model, an R6/2 line with an average of 248 CAG repeats in a pure C57BL/6J background, which also showed a progressive and robust phenotype. The BACHD in a FVB/N background showed robust and progressive behavioral phenotype, while the YAC128 full-length model on either an FVB/N or a C57BL/6J background generally showed milder deficits. Finally, the Hdh(Q111) knock-in mouse on a CD1 background showed very mild deficits. This first extensive standardized cross-characterization of several HD animal models under standardized conditions highlights several behavioral outcomes, such as hypoactivity, amenable to standardized preclinical therapeutic drug screening.
Collapse
|
98
|
Lawhorn C, Smith DM, Brown LL. Partial ablation of mu-opioid receptor rich striosomes produces deficits on a motor-skill learning task. Neuroscience 2009; 163:109-19. [PMID: 19463902 DOI: 10.1016/j.neuroscience.2009.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/24/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Basal ganglia striosomes, or patches, are rich in mu opioid receptors (MOR) and form a three-dimensional labyrinth of cells that extend throughout the mid- and anterior striatum in mice. Though previous studies have suggested that striosomes could affect drug-induced motor output in rodents, the functional role of these compartmentalized MOR-rich striosomes is not well understood. To investigate any relationship between the striosomes and motor behavior we used the toxin dermorphin-saporin (DS) to selectively ablate MOR-rich striosomal cells. FVB mice were bilaterally infused with DS in the midstriatum alone or in the mid- and anterior striatum, and were tested on three motor tasks and in an open field. Two volume measurement procedures and stereological cell counts were used to confirm the induced pathology. Mice that received DS injections showed significantly smaller volumes (-26% to -44%) and fewer cells (-30% to -49%) in the striosome compartment compared to mice that received control injections of saline or saporin. Striosome pathology was greatest in the dorsolateral striatum. The extrastriosomal matrix was not significantly affected, resulting in an imbalance in the ratio of striosome-to-matrix cells. Behaviorally, toxin injections caused deficits on an accelerating rotarod task and the deficit was worse in mice that received mid and anterior injections than those that received midstriatal injections alone. However, DS-injected mice did not differ from control mice on other motor tasks. We conclude that the MOR-rich cells of the striosomes are necessary for optimal rotarod performance, including learning and/or improvement on the task.
Collapse
Affiliation(s)
- C Lawhorn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
99
|
Fecke W, Gianfriddo M, Gaviraghi G, Terstappen GC, Heitz F. Small molecule drug discovery for Huntington's Disease. Drug Discov Today 2009; 14:453-64. [DOI: 10.1016/j.drudis.2009.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
|
100
|
Heng MY, Detloff PJ, Albin RL. Rodent genetic models of Huntington disease. Neurobiol Dis 2008; 32:1-9. [DOI: 10.1016/j.nbd.2008.06.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/13/2008] [Accepted: 06/15/2008] [Indexed: 01/31/2023] Open
|