51
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Xing C, Ye DW, Tian YK. The Role of CXCR3 in Neurological Diseases. Curr Neuropharmacol 2019; 17:142-150. [PMID: 29119926 PMCID: PMC6343204 DOI: 10.2174/1570159x15666171109161140] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases. METHODS English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews. RESULTS The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer's disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases. CONCLUSION These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Rong Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Xing
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
52
|
Sanchez JJ, Sanchez JE, Noor S, Ruffaner-Hanson CD, Davies S, Wagner CR, Jantzie LL, Mellios N, Savage DD, Milligan ED. Targeting the β2-integrin LFA-1, reduces adverse neuroimmune actions in neuropathic susceptibility caused by prenatal alcohol exposure. Acta Neuropathol Commun 2019; 7:54. [PMID: 30961664 PMCID: PMC6454692 DOI: 10.1186/s40478-019-0701-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, moderate prenatal alcohol exposure (PAE) was shown to be a risk factor for peripheral neuropathy following minor nerve injury. This effect coincides with elevated spinal cord astrocyte activation and ex vivo immune cell reactivity assessed by proinflammatory cytokine interleukin (IL) -1β protein expression. Additionally, the β2-integrin adhesion molecule, lymphocyte function-associated antigen-1 (LFA-1), a factor that influences the expression of the proinflammatory/anti-inflammatory cytokine network is upregulated. Here, we examine whether PAE increases the proinflammatory immune environment at specific anatomical sites critical in the pain pathway of chronic sciatic neuropathy; the damaged sciatic nerve (SCN), the dorsal root ganglia (DRG), and the spinal cord. Additionally, we examine whether inhibiting LFA-1 or IL-1β actions in the spinal cord (intrathecal; i.t., route) could alleviate chronic neuropathic pain and reduce spinal and DRG glial activation markers, proinflammatory cytokines, and elevate anti-inflammatory cytokines. Results show that blocking the actions of spinal LFA-1 using BIRT-377 abolishes allodynia in PAE rats with sciatic neuropathy (CCI) of a 10 or 28-day duration. This effect is observed (utilizing immunohistochemistry; IHC, with microscopy analysis and protein quantification) in parallel with reduced spinal glial activation, IL-1β and TNFα expression. DRG from PAE rats with neuropathy reveal significant increases in satellite glial activation and IL-1β, while IL-10 immunoreactivity is reduced by half in PAE rats under basal and neuropathic conditions. Further, blocking spinal IL-1β with i.t. IL-1RA transiently abolishes allodynia in PAE rats, suggesting that IL-1β is in part, necessary for the susceptibility of adult-onset peripheral neuropathy caused by PAE. Chemokine mRNA analyses from SCN, DRG and spinal cord reveal that increased CCL2 occurs following CCI injury regardless of PAE and BIRT-377 treatment. These data demonstrate that PAE creates dysregulated proinflammatory IL-1β and TNFα /IL-10 responses to minor injury in the sciatic-DRG-spinal pain pathway. PAE creates a risk for developing peripheral neuropathies, and LFA-1 may be a novel therapeutic target for controlling dysregulated neuroimmune actions as a consequence of PAE.
Collapse
Affiliation(s)
- Joshua J. Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Jacob E. Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Chaselyn D. Ruffaner-Hanson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Suzy Davies
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN 55455 USA
| | - Lauren L. Jantzie
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Nikolaos Mellios
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Daniel D. Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Erin D. Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| |
Collapse
|
53
|
Xu W, Liu W, Yu W. The involvement of iron responsive element (-) divalent metal transporter 1-mediated the spinal iron overload via CXCL10/CXCR3 pathway in neuropathic pain in rats. Neurosci Lett 2019; 694:154-160. [DOI: 10.1016/j.neulet.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/28/2023]
|
54
|
Chemokine CXCL10/CXCR3 signaling contributes to neuropathic pain in spinal cord and dorsal root ganglia after chronic constriction injury in rats. Neurosci Lett 2019; 694:20-28. [DOI: 10.1016/j.neulet.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/27/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
55
|
MicroRNA-1224 Splicing CircularRNA-Filip1l in an Ago2-Dependent Manner Regulates Chronic Inflammatory Pain via Targeting Ubr5. J Neurosci 2019; 39:2125-2143. [PMID: 30651325 DOI: 10.1523/jneurosci.1631-18.2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
Dysfunctions of gene transcription and translation in the nociceptive pathways play the critical role in development and maintenance of chronic pain. Circular RNAs (circRNAs) are emerging as new players in regulation of gene expression, but whether and how circRNAs are involved in chronic pain remain elusive. We showed here that complete Freund's adjuvant-induced chronic inflammation pain significantly increased circRNA-Filip1l (filamin A interacting protein 1-like) expression in spinal neurons of mice. Blockage of this increase attenuated complete Freund's adjuvant-induced nociceptive behaviors, and overexpression of spinal circRNA-Filip1l in naive mice mimicked the nociceptive behaviors as evidenced by decreased thermal and mechanical nociceptive threshold. Furthermore, we found that mature circRNA-Filip1l expression was negatively regulated by miRNA-1224 via binding and splicing of precursor of circRNA-Filip1l (pre-circRNA-Filip1l) in the Argonaute-2 (Ago2)-dependent manner. Increase of spinal circRNA-Filip1l expression resulted from the decrease of miRNA-1224 expression under chronic inflammation pain state. miRNA-1224 knockdown or Ago2 overexpression induced nociceptive behaviors in naive mice, which was prevented by the knockdown of spinal circRNA-Filip1l. Finally, we demonstrated that a ubiquitin protein ligase E3 component n-recognin 5 (Ubr5), validated as a target of circRNA-Filip1l, plays a pivotal role in regulation of nociception by spinal circRNA-Filip1l. These data suggest that miRNA-1224-mediated and Ago2-dependent modulation of spinal circRNA-Filip1l expression regulates nociception via targeting Ubr5, revealing a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.SIGNIFICANCE STATEMENT circRNAs are emerging as new players in regulation of gene expression. Here, we found that the increase of circRNA-Filip1l mediated by miRNA-1224 in an Ago2-dependent way in the spinal cord is involved in regulation of nociception via targeting Ubr5 Our study reveals a novel epigenetic mechanism of interaction between miRNA and circRNA in chronic inflammation pain.
Collapse
|
56
|
He Q, Shen M, Tong F, Cong M, Zhang S, Gong Y, Ding F. Differential Gene Expression in Primary Cultured Sensory and Motor Nerve Fibroblasts. Front Neurosci 2019; 12:1016. [PMID: 30686982 PMCID: PMC6333708 DOI: 10.3389/fnins.2018.01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Fibroblasts (Fbs) effectively promote Schwann cells (SCs) migration, proliferation, and neurite regeneration. Whether Fbs express different motor and sensory phenotypes that regulate the cell behavior and peripheral nerve function has not been elucidated. The present study utilized the whole rat genome microarray analysis and identified a total of 121 differentially expressed genes between the primary cultured motor and sensory Fbs. The genes with high expression in sensory Fbs were related to proliferation, migration, chemotaxis, motility activation, protein maturation, defense response, immune system, taxis, and regionalization, while those with high expression in motor Fbs were related to neuron differentiation, segmentation, and pattern specification. Thus, the significant difference in the expression of some key genes was found to be associated with cell migration and proliferation, which was further validated by quantitative real-time PCR (qPCR). The cell proliferation or migration analysis revealed a higher rate of cell migration and proliferation of sensory Fbs than motor Fbs. Moreover, the downregulated expression of chemokine (C-X-C motif) ligand 10 (CXCL10) and chemokine (C-X-C motif) ligand 3 (CXCL3) suppressed the proliferation rate of sensory Fbs, while it enhanced that of the motor Fbs. However, the migration rate of both Fbs was suppressed by the downregulated expression of CXCL10 or CXCL3. Furthermore, a higher proportion of motor or sensory SCs migrated toward their respective (motor or sensory) Fbs; however, few motor or sensory SCs co-cultured with the other type of Fbs (sensory or motor, respectively), migrated toward the Fbs. The current findings indicated that Fbs expressed the distinct motor and sensory phenotypes involved in different patterns of gene expression, biological processes, and effects on SCs. Thus, this study would provide insights into the biological differences between motor and sensory Fbs, including the role in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Fang Tong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shibo Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yanpei Gong
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
57
|
Jeong H, Moye LS, Southey BR, Hernandez AG, Dripps I, Romanova EV, Rubakhin SS, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Gene Network Dysregulation in the Trigeminal Ganglia and Nucleus Accumbens of a Model of Chronic Migraine-Associated Hyperalgesia. Front Syst Neurosci 2018; 12:63. [PMID: 30618656 PMCID: PMC6305622 DOI: 10.3389/fnsys.2018.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The pharmacological agent nitroglycerin (NTG) elicits hyperalgesia and allodynia in mice. This model has been used to study the neurological disorder of trigeminovascular pain or migraine, a debilitating form of hyperalgesia. The present study validates hyperalgesia in an established mouse model of chronic migraine triggered by NTG and advances the understanding of the associated molecular mechanisms. The RNA-seq profiles of two nervous system regions associated with pain, the trigeminal ganglia (TG) and the nucleus accumbens (NAc), were compared in mice receiving chronic NTG treatment relative to control (CON) mice. Among the 109 genes that exhibited an NTG treatment-by-region interaction, solute carrier family 32 (GABA vesicular transporter) member 1 (Slc32a1) and preproenkephalin (Penk) exhibited reversal of expression patterns between the NTG and CON groups. Erb-b2 receptor tyrosine kinase 4 (Erbb4) and solute carrier family 1 (glial high affinity glutamate transporter) member 2 (Slc1a2) exhibited consistent differential expression between treatments across regions albeit at different magnitude. Period circadian clock 1 (Per1) was among the 165 genes that exhibited significant NTG treatment effect. Biological processes disrupted by NTG in a region-specific manner included adaptive and innate immune responses; whereas glutamatergic and dopaminergic synapses and rhythmic process were disrupted in both regions. Regulatory network reconstruction highlighted the widespread role of several transcription factors (including Snrnp70, Smad1, Pax6, Cebpa, and Smpx) among the NTG-disrupted target genes. These results advance the understanding of the molecular mechanisms of hyperalgesia that can be applied to therapies to ameliorate chronic pain and migraine.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laura S. Moye
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
58
|
Demethylation of G-Protein-Coupled Receptor 151 Promoter Facilitates the Binding of Krüppel-Like Factor 5 and Enhances Neuropathic Pain after Nerve Injury in Mice. J Neurosci 2018; 38:10535-10551. [PMID: 30373770 DOI: 10.1523/jneurosci.0702-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors are considered to be cell-surface sensors of extracellular signals, thereby having a crucial role in signal transduction and being the most fruitful targets for drug discovery. G-protein-coupled receptor 151 (GPR151) was reported to be expressed specifically in the habenular area. Here we report the expression and the epigenetic regulation of GRP151 in the spinal cord after spinal nerve ligation (SNL) and the contribution of GPR151 to neuropathic pain in male mice. SNL dramatically increased GPR151 expression in spinal neurons. GPR151 mutation or spinal inhibition by shRNA alleviated SNL-induced mechanical allodynia and heat hyperalgesia. Interestingly, the CpG island in the GPR151 gene promoter region was demethylated, the expression of DNA methyltransferase 3b (DNMT3b) was decreased, and the binding of DNMT3b with GPR151 promoter was reduced after SNL. Overexpression of DNMT3b in the spinal cord decreased GPR151 expression and attenuated SNL-induced neuropathic pain. Furthermore, Krüppel-like factor 5 (KLF5), a transcriptional factor of the KLF family, was upregulated in spinal neurons, and the binding affinity of KLF5 with GPR151 promoter was increased after SNL. Inhibition of KLF5 reduced GPR151 expression and attenuated SNL-induced pain hypersensitivity. Further mRNA microarray analysis revealed that mutation of GPR151 reduced the expression of a variety of pain-related genes in response to SNL, especially mitogen-activated protein kinase (MAPK) signaling pathway-associated genes. This study reveals that GPR151, increased by DNA demethylation and the enhanced interaction with KLF5, contributes to the maintenance of neuropathic pain via increasing MAPK pathway-related gene expression.SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are targets of various clinically approved drugs. Here we report that SNL increased GPR151 expression in the spinal cord, and mutation or inhibition of GPR151 alleviated SNL-induced neuropathic pain. In addition, SNL downregulated the expression of DNMT3b, which caused demethylation of GPR151 gene promoter, facilitated the binding of transcriptional factor KLF5 with the GPR151 promoter, and further increased GPR151 expression in spinal neurons. The increased GPR151 may contribute to the pathogenesis of neuropathic pain via activating MAPK signaling and increasing pain-related gene expression. Our study reveals an epigenetic mechanism underlying GPR151 expression and suggests that targeting GPR151 may offer a new strategy for the treatment of neuropathic pain.
Collapse
|
59
|
Chemokine receptor CCR2 contributes to neuropathic pain and the associated depression via increasing NR2B-mediated currents in both D1 and D2 dopamine receptor-containing medium spiny neurons in the nucleus accumbens shell. Neuropsychopharmacology 2018; 43:2320-2330. [PMID: 29993042 PMCID: PMC6135748 DOI: 10.1038/s41386-018-0115-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Patients with neuropathic pain are usually accompanied by depression. Chemokine-mediated neuroinflammation is involved in a variety of diseases, including neurodegenerative diseases, depression, and chronic pain. The nucleus accumbens (NAc) is an important area in mediating pain sensation and depression. Here we report that spinal nerve ligation (SNL) induced upregulation of chemokine CCL2 and its major receptor CCR2 in both dopamine D1 and D2 receptor (D1R and D2R)-containing neurons in the NAc. Inhibition of CCR2 by shRNA lentivirus in the NAc shell attenuated SNL-induced pain hypersensitivity and depressive behaviors. Conversely, intra-NAc injection of CCL2-expressing lentivirus-induced nociceptive and depressive behaviors in naïve mice. Whole-cell patch clamp recording of D1R-positive or D2R-positive medium spiny neurons (MSNs) showed that SNL increased NMDA receptor (NMDAR)-mediated currents that are induced by stimulation of prefrontal cortical afferents to MSNs, which was inhibited by a CCR2 antagonist. Furthermore, Ccr2 shRNA also reduced NMDAR-mediated currents, and this reduction was mainly mediated via NR2B subunit. Consistently, NR2B, colocalized with CCR2 in the NAc, was phosphorylated after SNL and was inhibited by intra-NAc injection of Ccr2 shRNA. Furthermore, SNL or CCL2 induced ERK activation in the NAc. Inhibition of ERK by a MEK inhibitor reduced NR2B phosphorylation induced by SNL or CCL2. Finally, intra-NAc injection of NR2B antagonist or MEK inhibitor attenuated SNL-induced pain hypersensitivity and depressive behaviors. Collectively, these results suggest that CCL2/CCR2 signaling in the NAc shell is important in mediating neuropathic pain and depression via regulating NR2B-mediated NMDAR function in D1R- and D2R-containing neurons following peripheral nerve injury.
Collapse
|
60
|
High levels of cerebrospinal fluid chemokines point to the presence of neuroinflammation in peripheral neuropathic pain: a cross-sectional study of 2 cohorts of patients compared with healthy controls. Pain 2018; 158:2487-2495. [PMID: 28930774 PMCID: PMC5690569 DOI: 10.1097/j.pain.0000000000001061] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to animal models, neuroinflammation is a major feature of neuropathic pain. The present findings confirm that this hypothesis is of relevance to humans. Animal models suggest that chemokines are important mediators in the pathophysiology of neuropathic pain. Indeed, these substances have been called “gliotransmitters,” a term that illustrates the close interplay between glial cells and neurons in the context of neuroinflammation and pain. However, evidence in humans is scarce. The aim of the study was to determine a comprehensive cerebrospinal fluid (CSF) inflammatory profile of patients with neuropathic pain. Our hypothesis was that we would thereby find indications of a postulated on-going process of central neuroinflammation. Samples of CSF were collected from 2 cohorts of patients with neuropathic pain (n = 11 and n = 16, respectively) and healthy control subjects (n = 11). The samples were analyzed with a multiplex proximity extension assay in which 92 inflammation-related proteins were measured simultaneously (Proseek Multiplex Inflammation I; Olink Bioscience, Uppsala, Sweden). Univariate testing with control of false discovery rate, as well as orthogonal partial least squares discriminant analysis, were used for statistical analyses. Levels of chemokines CXCL6, CXCL10, CCL8, CCL11, CCL23 in CSF, as well as protein LAPTGF-beta-1, were significantly higher in both neuropathic pain cohorts compared with healthy controls, pointing to neuroinflammation in patients. These 6 proteins were also major results in a recent similar study in patients with fibromyalgia. The findings need to be confirmed in larger cohorts, and the question of causality remains to be settled. Because it has been suggested that prevalent comorbidities to chronic pain (eg, depression, anxiety, poor sleep, and tiredness) also are associated with neuroinflammation, it will be important to determine whether neuroinflammation is a common mediator.
Collapse
|
61
|
Piotrowska A, Rojewska E, Pawlik K, Kreiner G, Ciechanowska A, Makuch W, Zychowska M, Mika J. Pharmacological blockade of CXCR3 by (±)-NBI-74330 reduces neuropathic pain and enhances opioid effectiveness - Evidence from in vivo and in vitro studies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3418-3437. [PMID: 30076959 DOI: 10.1016/j.bbadis.2018.07.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
It has been suggested that CXCR3 is important for nociception. Our experiments were conducted to evaluate involvement of CXCR3 and its ligands (CXCL4, CXCL9, CXCL10, CXCL11/CCL21) in neuropathic pain. Our studies give new evidence that intrathecal administration of each CXCR3 ligand induces pain-like behaviour in naive mice that occurs shortly after injection due to its location of neurons, which is confirmed by immunofluorescent staining. Moreover, intrathecal administrations of CXCL9, CXCL10, CCL21 neutralizing antibodies diminished pain-related behaviour. RT-PCR/Western blot analysis unprecedentedly showed spinal elevated levels of CXCR3 after chronic constriction injury of the sciatic nerve in rats in parallel with different time-course changes of its endogenous ligands. Initially, on day 2 we observed spinal increased levels of CXCL10 and CXCL11 indicating that these chemokines have important roles in triggering neuropathy. Then, on day 7, we observed increased levels of CXCL4, CXCL9, CXCL10. Interestingly, changes in CXCL9 level persisted until day 28, suggesting that these chemokines are responsible for long-term, persistent neuropathy. Additionally, in DRG the CXCL4, CXCL9 were elevated. The results obtained from primary glial cultures, suggests that all CXCR3 ligands can be produced in microglia, but also, except for CXCL4, in astrocytes. We provide the first evidence that in neuropathy chronic intrathecal administration of CXCR3 antagonist, (±)-NBI-74330, attenuates hypersensitivity with concomitant occurrence of microglial and some of CXCR3 ligands activation observed in the spinal cord and/or DRG level. This paper underlies the significance of CXCR3 in neuropathic pain and shows therapeutic potential of its blockade for enhancement of morphine analgesia as the major novelty of this work.
Collapse
Affiliation(s)
- Anna Piotrowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Grzegorz Kreiner
- Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, Smetna Street 12, 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Wioletta Makuch
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Magdalena Zychowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Smetna Street 12, 31-343 Krakow, Poland.
| |
Collapse
|
62
|
Wang W, Li C, Cai Y, Pan ZZ. Pain vulnerability and DNA methyltransferase 3a involved in the affective dimension of chronic pain. Mol Pain 2018; 13:1744806917726713. [PMID: 28849714 PMCID: PMC5580851 DOI: 10.1177/1744806917726713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic pain with comorbid emotional disorders is a prevalent neurological disease in patients under various pathological conditions, yet patients show considerable difference in their vulnerability to developing chronic pain. Understanding the neurobiological basis underlying this pain vulnerability is essential to develop targeted therapies of higher efficiency in pain treatment of precision medicine. However, this pain vulnerability has not been addressed in preclinical pain research in animals to date. In this study, we investigated individual variance in both sensory and affective/emotional dimensions of pain behaviors in response to chronic neuropathic pain condition in a mouse model of chronic pain. We found that mice displayed considerably diverse sensitivities in the chronic pain-induced anxiety- and depression-like behaviors of affective pain. Importantly, the mouse group that was more vulnerable to developing anxiety was also more vulnerable to developing depressive behavior under the chronic pain condition. In contrast, there was relatively much less variance in individual responses in the sensory dimension of pain sensitization. Molecular analysis revealed that those mice vulnerable to developing the emotional disorders showed a significant reduction in the protein level of DNA methyltransferase 3a in the emotion-processing central nucleus of the amygdala. In addition, social stress also revealed significant individual variance in anxiety behavior in mice. These findings suggest that individual pain vulnerability may be inherent mostly in the emotional/affective component of chronic pain and remain consistent in different aspects of negative emotion, in which adaptive changes in the function of DNA methyltransferase 3a for DNA methylation in central amygdala may play an important role. This may open a new avenue of basic research into the neurobiological mechanisms underlying pain vulnerability.
Collapse
Affiliation(s)
- Wei Wang
- 1 Department of Anesthesiology and Pain Medicine, 4002 The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Caiyue Li
- 1 Department of Anesthesiology and Pain Medicine, 4002 The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Youqing Cai
- 1 Department of Anesthesiology and Pain Medicine, 4002 The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Zhizhong Z Pan
- 1 Department of Anesthesiology and Pain Medicine, 4002 The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
63
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
64
|
Wu XB, He LN, Jiang BC, Shi H, Bai XQ, Zhang WW, Gao YJ. Spinal CXCL9 and CXCL11 are not involved in neuropathic pain despite an upregulation in the spinal cord following spinal nerve injury. Mol Pain 2018; 14:1744806918777401. [PMID: 29712506 PMCID: PMC5967156 DOI: 10.1177/1744806918777401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemokines-mediated neuroinflammation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. Chemokine CXCL9, CXCL10, and CXCL11 have been identified as a same subfamily chemokine which bind to CXC chemokine receptor 3 to exert functions. Our recent work found that CXCL10 is upregulated in spinal astrocytes after spinal nerve ligation (SNL) and acts on chemokine receptor CXCR3 on neurons to contribute to central sensitization and neuropathic pain, but less is known about CXCL9 and CXCL11 in the maintenance of neuropathic pain. Here, we report that CXCL9 and CXCL11, same as CXCL10, were increased in spinal astrocytes after SNL. Surprisingly, inhibition of CXCL9 or CXCL11 by spinal injection of shRNA lentivirus did not attenuate SNL-induced neuropathic pain. In addition, intrathecal injection of CXCL9 and CXCL11 did not produce hyperalgesia or allodynia behaviors, and neither of them induced ERK activation, a marker of central sensitization. Whole-cell patch clamp recording on spinal neurons showed that CXCL9 and CXCL11 enhanced both excitatory synaptic transmission and inhibitory synaptic transmission, whereas CXCL10 only produced an increase in excitatory synaptic transmission. These results suggest that, although the expression of CXCL9 and CXCL11 are increased after SNL, they may not contribute to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li-Na He
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bao-Chun Jiang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xue-Qiang Bai
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wen-Wen Zhang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,2 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
65
|
Phosphorylated CCAAT/Enhancer Binding Protein β Contributes to Rat HIV-Related Neuropathic Pain: In Vitro and In Vivo Studies. J Neurosci 2017; 38:555-574. [PMID: 29196315 DOI: 10.1523/jneurosci.3647-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. Here, we used a neuropathic pain model of perineural HIV envelope glycoprotein gp120 application onto the rat sciatic nerve to test the role of phosphorylated C/EBPβ (pC/EBPβ) and its upstream pathway in the spinal cord dorsal horn (SCDH). HIV gp120 induced overexpression of pC/EBPβ in the ipsilateral SCDH compared with contralateral SCDH. Inhibition of C/EBPβ using siRNA against C/EBPβ reduced mechanical allodynia. HIV gp120 also increased TNFα, TNFRI, mitochondrial superoxide (mtO2·-), and pCREB in the ipsilateral SCDH. ChIP-qPCR assay showed that pCREB enrichment on the C/EBPβ gene promoter regions in rats with gp120 was higher than that in sham rats. Intrathecal TNF soluble receptor I (functionally blocking TNFα bioactivity) or knockdown of TNFRI using antisense oligodeoxynucleotide against TNFRI reduced mechanical allodynia, and decreased mtO2·-, pCREB and pC/EBPβ. Intrathecal Mito-tempol (a mitochondria-targeted O2·-scavenger) reduced mechanical allodynia and decreased pCREB and pC/EBPβ. Knockdown of CREB with antisense oligodeoxynucleotide against CREB reduced mechanical allodynia and lowered pC/EBPβ. These results suggested that the pathway of TNFα/TNFRI-mtO2·--pCREB triggers pC/EBPβ in the HIV gp120-induced neuropathic pain state. Furthermore, we confirmed the pathway using both cultured neurons treated with recombinant TNFα in vitro and repeated intrathecal injection of recombinant TNFα in naive rats. This finding provides new insights in the understanding of the HIV neuropathic pain mechanisms and treatment.SIGNIFICANCE STATEMENT Painful HIV-associated sensory neuropathy is a neurological complication of HIV infection. Phosphorylated C/EBPβ (pC/EBPβ) influences AIDS progression, but it is still not clear about the exact role of pC/EBPβ and the detailed upstream factors of pC/EBPβ in HIV-related pain. In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.
Collapse
|
66
|
Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 2017; 74:3275-3291. [PMID: 28389721 PMCID: PMC11107618 DOI: 10.1007/s00018-017-2513-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, China
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
67
|
Jing PB, Cao DL, Li SS, Zhu M, Bai XQ, Wu XB, Gao YJ. Chemokine Receptor CXCR3 in the Spinal Cord Contributes to Chronic Itch in Mice. Neurosci Bull 2017; 34:54-63. [PMID: 28401489 DOI: 10.1007/s12264-017-0128-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
Recent studies have shown that the chemokine receptor CXCR3 and its ligand CXCL10 in the dorsal root ganglion mediate itch in experimental allergic contact dermatitis (ACD). CXCR3 in the spinal cord also contributes to the maintenance of neuropathic pain. However, whether spinal CXCR3 is involved in acute or chronic itch remains unclear. Here, we report that Cxcr3 -/- mice showed normal scratching in acute itch models but reduced scratching in chronic itch models of dry skin and ACD. In contrast, both formalin-induced acute pain and complete Freund's adjuvant-induced chronic inflammatory pain were reduced in Cxcr3 -/- mice. In addition, the expression of CXCR3 and CXCL10 was increased in the spinal cord in the dry skin model induced by acetone and diethyl ether followed by water (AEW). Intrathecal injection of a CXCR3 antagonist alleviated AEW-induced itch. Furthermore, touch-elicited itch (alloknesis) after compound 48/80 or AEW treatment was suppressed in Cxcr3 -/- mice. Finally, AEW-induced astrocyte activation was inhibited in Cxcr3 -/- mice. Taken together, these data suggest that spinal CXCR3 mediates chronic itch and alloknesis, and targeting CXCR3 may provide effective treatment for chronic pruritus.
Collapse
Affiliation(s)
- Peng-Bo Jing
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - De-Li Cao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Si-Si Li
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Meixuan Zhu
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Xue-Qiang Bai
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Xiao-Bo Wu
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226019, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|