51
|
Hodge JJL, Mullasseril P, Griffith LC. Activity-dependent gating of CaMKII autonomous activity by Drosophila CASK. Neuron 2006; 51:327-37. [PMID: 16880127 DOI: 10.1016/j.neuron.2006.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/17/2006] [Accepted: 06/19/2006] [Indexed: 11/16/2022]
Abstract
The ability of CaMKII to act as a molecular switch, becoming Ca(2+) independent after activation and autophosphorylation at T287, is critical for experience-dependent plasticity. Here, we show that the Drosophila homolog of CASK, also known as Camguk, can act as a gain controller on the transition to calcium-independence in vivo. Genetic loss of dCASK significantly increases synapse-specific, activity-dependent autophosphorylation of CaMKII T287. In wild-type adult animals, simple and complex sensory stimuli cause region-specific increases in pT287. dCASK-deficient adults have a reduced dynamic range for activity-dependent T287 phosphorylation and have circuit-level defects that result in inappropriate activation of the kinase. dCASK control of the CaMKII switch occurs via its ability to induce autophosphorylation of T306 in the kinase's CaM binding domain. Phosphorylation of T306 blocks Ca(2+)/CaM binding, lowering the probability of intersubunit T287 phosphorylation, which requires CaM binding to both the substrate and catalytic subunits. dCASK is the first CaMKII-interacting protein other than CaM found to regulate this plasticity-controlling molecular switch.
Collapse
Affiliation(s)
- James J L Hodge
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
52
|
Pattinson D, Baccei M, Karadottir R, Torsney C, Moss A, McCutcheon J, Giese KP, Fitzgerald M. Aberrant dendritic branching and sensory inputs in the superficial dorsal horn of mice lacking CaMKIIα autophosphorylation. Mol Cell Neurosci 2006; 33:88-95. [PMID: 16875841 DOI: 10.1016/j.mcn.2006.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/09/2006] [Accepted: 06/16/2006] [Indexed: 11/27/2022] Open
Abstract
Superficial dorsal horn neurones undergo marked structural and functional activity-dependent development during the early postnatal period, but little is known about the molecular mechanisms underlying these changes. Calcium signalling, through activation and autophosphorylation of CaMKII, has been shown to play a major role in the maturation of neuronal morphology and connectivity in the cortex. Here, we show that the normal structural and functional development of superficial dorsal horn neurones requires CaMKII autophosphorylation at the Thr286 residue. The dendritic branching of neurones from mice containing a point mutation at this site (T286A) was significantly increased compared with wild-type littermates. This was accompanied by significant increases in receptive field size, recorded from intact preparations. Whole-cell patch clamp recordings of superficial dorsal horn slices revealed a selective deficit in low-threshold A fibre-evoked synaptic input. These results show that CaMKII autophosphorylation is required for the normal development of spinal sensory circuits.
Collapse
Affiliation(s)
- Damian Pattinson
- Department of Anatomy and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Biology, Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
54
|
Scott HL, Braud S, Bannister NJ, Isaac JTR. Synaptic strength at the thalamocortical input to layer IV neonatal barrel cortex is regulated by protein kinase C. Neuropharmacology 2006; 52:185-92. [PMID: 16890249 DOI: 10.1016/j.neuropharm.2006.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022]
Abstract
Long-term synaptic plasticity is an important mechanism underlying the development of cortical circuits in a number of brain regions. In barrel cortex NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD) play a critical role in the development and experience-dependent plasticity of the topographical map of the rodent whiskers. However, the mechanisms underlying the induction and expression of these forms of plasticity are poorly characterised. Here we investigate the role of PKC in the regulation of synaptic strength in neonatal barrel cortex using patch-clamp recordings in brain slices. We demonstrate that PKC activity tonically maintains AMPA receptor-mediated transmission at thalamocortical synapses, and that basal transmission can be potentiated by PKC activation using postsynaptic infusion of phorbol ester. Furthermore, we show that induction of NMDAR-dependent LTP requires PKC activity. These findings demonstrate that PKC is required for the regulation of transmission at thalamocortical synapses, the major ascending sensory input to barrel cortex. Thalamocortical inputs in barrel cortex only express LTP during the first postnatal week during a critical period for experience-dependent plasticity in layer IV. Therefore, the requirement for PKC in LTP suggests an important role for this kinase in the development of the barrel cortex sensory map.
Collapse
Affiliation(s)
- Helen L Scott
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
55
|
Irvine EE, von Hertzen LSJ, Plattner F, Giese KP. alphaCaMKII autophosphorylation: a fast track to memory. Trends Neurosci 2006; 29:459-65. [PMID: 16806507 DOI: 10.1016/j.tins.2006.06.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 03/20/2006] [Accepted: 06/08/2006] [Indexed: 11/29/2022]
Abstract
Alpha Ca(2+)/calmodulin-dependent kinase II (alphaCaMKII), the major synaptic protein in the forebrain, can switch into a state of autonomous activity upon autophosphorylation. It has been proposed that alphaCaMKII autophosphorylation mediates long-term memory (LTM) storage. However, recent evidence shows that synaptic stimulation and behavioural training only transiently increase the autonomous alphaCaMKII activity, implicating alphaCaMKII autophosphorylation in LTM formation rather than storage. Consistent with this, mutant mice deficient in alphaCaMKII autophosphorylation can store LTM after a massed training protocol, but cannot form LTM after a single trial. Here, we review evidence that the role of alphaCaMKII autophosphorylation is in fact to enable LTM formation after a single training trial, possibly by regulating LTM consolidation-specific transcription.
Collapse
Affiliation(s)
- Elaine E Irvine
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
56
|
Cooke SF, Wu J, Plattner F, Errington M, Rowan M, Peters M, Hirano A, Bradshaw KD, Anwyl R, Bliss TVP, Giese KP. Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse. J Physiol 2006; 574:805-18. [PMID: 16728448 PMCID: PMC1817742 DOI: 10.1113/jphysiol.2006.111559] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Autophosphorylation of alpha-Ca2+/calmodulin kinase II (alphaCaMKII) at Thr286 is thought to be a general effector mechanism for sustaining transcription-independent long-term potentiation (LTP) at pathways where LTP is NMDA receptor-dependent. We have compared LTP at two such hippocampal pathways in mutant mice with a disabling point mutation at the Thr286 autophosphorylation site. We find that autophosphorylation of alphaCaMKII is essential for induction of LTP at Schaffer commissural-CA1 synapses in vivo, but is not required for LTP that can be sustained over days at medial perforant path-granule cell synapses in awake mice. At these latter synapses LTP is supported by cyclic AMP-dependent signalling in the absence of alphaCaMKII signalling. Thus, the autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse.
Collapse
Affiliation(s)
- Sam F Cooke
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Harwell C, Burbach B, Svoboda K, Nedivi E. Regulation of cpg15 expression during single whisker experience in the barrel cortex of adult mice. ACTA ACUST UNITED AC 2005; 65:85-96. [PMID: 16010668 PMCID: PMC3062911 DOI: 10.1002/neu.20176] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Regulation of gene transcription by neuronal activity is thought to be key to the translation of sensory experience into long-term changes in synaptic structure and function. Here we show that cpg15, a gene encoding an extracellular signaling molecule that promotes dendritic and axonal growth and synaptic maturation, is regulated in the somatosensory cortex by sensory experience capable of inducing cortical plasticity. Using in situ hybridization, we monitored cpg15 expression in 4-week-old mouse barrel cortex after trimming all whiskers except D1. We found that cpg15 expression is depressed in the deprived barrels and enhanced in the barrel column corresponding to the spared D1 whisker. Changes in cpg15 mRNA levels first appear in layer IV, peak 12 h after deprivation, and then decline rapidly. In layers II/III, changes in cpg15 expression appear later, peak at 24 h, and persist for days. Induction of cpg15 expression is significantly diminished in adolescent as well as adult CREB knockout mice. cpg15's spatio-temporal expression pattern and its regulation by CREB are consistent with a role in experience-dependent plasticity of cortical circuits. Our results suggest that local structural and/or synaptic changes may be a mechanism by which the adult cortex can adapt to peripheral manipulations.
Collapse
Affiliation(s)
- Corey Harwell
- The Picower Center for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 50 Ames Street, E18-670, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
58
|
Toscano CD, Guilarte TR. Lead neurotoxicity: From exposure to molecular effects. ACTA ACUST UNITED AC 2005; 49:529-54. [PMID: 16269318 DOI: 10.1016/j.brainresrev.2005.02.004] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 02/11/2005] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
The effects of lead (Pb(2+)) on human health have been recognized since antiquity. However, it was not until the 1970s that seminal epidemiological studies provided evidence on the effects of Pb(2+) intoxication on cognitive function in children. During the last two decades, advances in behavioral, cellular and molecular neuroscience have provided the necessary experimental tools to begin deciphering the many and complex effects of Pb(2+) on neuronal processes and cell types that are essential for synaptic plasticity and learning and memory in the mammalian brain. In this review, we concentrate our efforts on the effects of Pb(2+) on glutamatergic synapses and specifically on the accumulating evidence that the N-methyl-D-aspartate type of excitatory amino acid receptor (NMDAR) is a direct target for Pb(2+) effects in the brain. Our working hypothesis is that disruption of the ontogenetically defined pattern of NMDAR subunit expression and NMDAR-mediated calcium signaling in glutamatergic synapses is a principal mechanism for Pb(2+)-induced deficits in synaptic plasticity and in learning and memory documented in animal models of Pb(2+) neurotoxicity. We provide an introductory overview of the magnitude of the problem of Pb(2+) exposure to bring forth the reality that childhood Pb(2+) intoxication remains a major public health problem not only in the United States but worldwide. Finally, the latest research offers some hope that the devastating effects of childhood Pb(2+) intoxication in a child's ability to learn may be reversible if the appropriate stimulatory environment is provided.
Collapse
MESH Headings
- Animals
- Child
- Humans
- Lead/toxicity
- Lead Poisoning, Nervous System/metabolism
- Lead Poisoning, Nervous System/pathology
- Lead Poisoning, Nervous System/psychology
- Lead Poisoning, Nervous System, Childhood/epidemiology
- Lead Poisoning, Nervous System, Childhood/metabolism
- Lead Poisoning, Nervous System, Childhood/pathology
- Lead Poisoning, Nervous System, Childhood/psychology
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Christopher D Toscano
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
59
|
Abstract
In the visual and somatosensory systems, maturation of neuronal circuits continues for days to weeks after sensory stimulation occurs. Deprivation of sensory input at various stages of development can induce physiological, and often structural, changes that modify the circuitry of these sensory systems. Recent studies also reveal a surprising degree of plasticity in the mature visual and somatosensory pathways. Here, we compare and contrast the effects of sensory experience on the connectivity and function of these pathways and discuss what is known to date concerning the structural, physiological, and molecular mechanisms underlying their plasticity.
Collapse
Affiliation(s)
- Kevin Fox
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, United Kingdom.
| | | |
Collapse
|
60
|
Toscano CD, O'Callaghan JP, Guilarte TR. Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats. Brain Res 2005; 1044:51-8. [PMID: 15862789 DOI: 10.1016/j.brainres.2005.02.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
In the present study, we examined whether calcium/calmodulin-dependent protein kinase II (CaMKII) is affected by chronic developmental Pb2+ exposure. The effects of Pb2+ exposure on rat hippocampal CaMKII were assessed by measuring CaMKII activity, phosphorylation of CaMKII at threonine-286, and CaMKII alpha and beta protein levels. In the hippocampus of Pb2+-exposed 50-day-old rats known to exhibit deficits in hippocampal long-term potentiation (LTP) and spatial learning, there was a marked reduction (41%) in the apparent maximal velocity (Vmax) of CaMKII and a significant increase (22%) in apparent affinity of the enzyme. These Pb2+-induced changes in CaMKII activity could not be explained by changes in enzyme phosphorylation at threonine-286 or sensitivity to calmodulin. In vitro incubation of hippocampal homogenates from control rats, but not from Pb2+-exposed rats, with Pb2+ prior to assay recapitulated the increase in the affinity of the enzyme observed with in vivo exposure to Pb2+. Western blots of cytosolic and membrane fractions from hippocampus showed a significant decrease in the levels of CaMKII-beta but not alpha protein in the cytosolic fraction of Pb2+-exposed rats. These findings indicate effects of developmental Pb2+ exposure on CaMKII, a component of calcium signaling associated with synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Christopher D Toscano
- Division of Toxicological Sciences, Department of Environmental Health Sciences, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
61
|
Zeitz KP, Giese KP, Silva AJ, Basbaum AI. The contribution of autophosphorylated alpha-calcium-calmodulin kinase II to injury-induced persistent pain. Neuroscience 2005; 128:889-98. [PMID: 15464294 DOI: 10.1016/j.neuroscience.2004.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
Increases in neuronal activity in response to tissue or nerve injury can lead to prolonged functional changes in the spinal cord resulting in an enhancement/sensitization of nociceptive processing. To assess the contribution of alpha-calcium-calmodulin kinase II (alpha-CaMKII) to injury-induced inflammation and pain, we evaluated nociceptive responses in mice that carry a point mutation in the alpha-CaMKII gene at position 286 (threonine to alanine). The mutated protein is unable to autophosphorylate and thus cannot function independently of calcium and calmodulin. Responses to acute noxious stimuli did not differ between alpha-CaMKII T286A mutant and wild type mice. However, the ongoing pain produced by formalin injury was significantly reduced in the mutant mice, as was formalin-evoked spinal Fos-immunoreactivity. In contrast, the decreased mechanical and thermal thresholds associated with nerve injury, Complete Freund's Adjuvant-induced inflammation or formalin-evoked tissue injury were manifest equally in wild-type and mutant mice. Double-labeling immunofluorescence studies revealed that in the mouse alpha-CaMKII is expressed in the superficial dorsal horn as well as in a population of small diameter primary afferent neurons. In summary, our results suggest that alpha-CaMKII, perhaps secondary to an N-methyl-D-aspartate-mediated calcium increase in postsynaptic dorsal horn nociresponsive neurons, is a critical contributor to the spontaneous/ongoing component of tissue-injury evoked persistent pain.
Collapse
Affiliation(s)
- K P Zeitz
- Departments of Anatomy and Physiology and the W. M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
62
|
Abstract
A prominent role for calcium/calmodulin-dependent protein kinase II (CaMKII) in regulation of excitatory synaptic transmission was proposed two decades ago when it was identified as a major postsynaptic density protein. Since then, fascinating mechanisms optimized to fine-tune the magnitude and locations of CaMKII activity have been revealed. The importance of CaMKII activity and autophosphorylation to synaptic plasticity in vitro, and to a variety of learning and memory paradigms in vivo has been demonstrated. Recent progress brings us closer to understanding the regulation of dendritic CaMKII activity, localization, and expression, and its role in modulating synaptic transmission and cell morphology.
Collapse
Affiliation(s)
- Roger J Colbran
- Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA.
| | | |
Collapse
|
63
|
Tzortzopoulos A, Török K. Mechanism of the T286A-mutant alphaCaMKII interactions with Ca2+/calmodulin and ATP. Biochemistry 2004; 43:6404-14. [PMID: 15157074 DOI: 10.1021/bi036224m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of adenosine 5'-triphosphate (ATP) in the activation mechanism of alpha-Ca(2+)/calmodulin-dependent protein kinase II (alphaCaMKII) was investigated using the T286A non-autophosphorylatable mutant of alphaCaMKII. Characterization of the T286A-alphaCaMKII mutant revealed k(cat) = 0.06 +/- 0.02 s(-1) for the T286A mutant, a 6 (+/- 2)-fold lower value compared to wild-type alphaCaMKII with 100 microM smooth muscle myosin light chain (MLC) as substrate. MLC phosphorylation by the T286A mutant and wild-type alphaCaMKII was cooperative, with Hill coefficients 2.3 +/- 0.1 and 2.4 +/- 0.3, respectively. K(m) values for MLC were 96 +/- 28 microM with T286A-alphaCaMKII and 49 +/- 29 microM for wild-type alphaCaMKII. Thus, while the activity of alphaCaMKII was sensitive to mutation of the Thr(286) residue to Ala, the mechanisms of the wild-type and T286A mutant enzyme appeared similar. K(d) for Ca(2+)/calmodulin was 2-fold reduced to 40 nM compared to that of wild-type alphaCaMKII (75 nM). ATP induced a 9-fold stabilization of Ca(2+)/calmodulin binding to the T286A mutant enzyme. Fluorescence stopped-flow kinetic experiments revealed that two Ca(2+)/calmodulin-enzyme complexes were formed, the first, unaffected by ATP, with association and dissociation rate constants of 2 x 10(7) M(-1) s(-1) and 5 s(-1), respectively, containing calmodulin in extended conformation. The second complex, in which calmodulin adopted a compact conformation, was formed with association rate constant 3 x 10(6) M(-1) s(-1) and dissociation at 0.15 s(-1) in the absence and 0.015 s(-1) in the presence of ATP. These data show that ATP is involved in the activation mechanism by forming two classes of Ca(2+)/calmodulin.alphaCaMKII.ATP complex. It is likely that only one of the complexes is on the activation pathway.
Collapse
|
64
|
Pahnke J, Mix E, Knoblich R, Müller J, Zschiesche M, Schubert B, Koczan D, Bauer P, Böttcher T, Thiesen HJ, Lazarov L, Wree A, Rolfs A. Overexpression of glial cell line-derived neurotrophic factor induces genes regulating migration and differentiation of neuronal progenitor cells. Exp Cell Res 2004; 297:484-94. [PMID: 15212950 DOI: 10.1016/j.yexcr.2004.03.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/16/2004] [Indexed: 12/22/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is involved in the development and maintenance of neural tissues. Mutations in components of its signaling pathway lead to severe migration deficits of neuronal crest stem cells, tumor formation, or ablation of the urinary system. In animal models of Parkinson's disease, GDNF has been recognized to be neuroprotective and to improve motor function when delivered into the cerebral ventricles or into the substantia nigra. Here, we characterize the network of 43 genes induced by GDNF overproduction of neuronal progenitor cells (ST14A), which mainly regulate migration and differentiation of neuronal progenitor cells. GDNF down-regulates doublecortin, Paf-ah1b (Lis1), dynamin, and alpha-tubulin, which are involved in neocortical lamination and cytoskeletal reorganization. Axonal guidance depends on cell-surface molecules and extracellular matrix proteins. Laminin, Mpl3, Alcam, Bin1, Id1, Id2, Id3, neuregulin1, the ephrinB2-receptor, neuritin, focal adhesion kinase (FAK), Tc10, Pdpk1, clusterin, GTP-cyclooxygenase1, and follistatin are genes up-regulated by GDNF overexpression. Moreover, we found four key enzymes of the cholesterol-synthesis pathway to be down-regulated leading to decreased farnesyl-pyrophospate production. Many proteins are anchored by farnesyl-derivates at the cell membrane. The identification of these GDNF-regulated genes may open new opportunities for directly influencing differentiation and developmental processes of neurons.
Collapse
Affiliation(s)
- Jens Pahnke
- Department of Pathology, University Hospital Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bastian J, Chacron MJ, Maler L. Plastic and nonplastic pyramidal cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron 2004; 41:767-79. [PMID: 15003176 DOI: 10.1016/s0896-6273(04)00071-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 11/25/2003] [Accepted: 01/20/2004] [Indexed: 11/25/2022]
Abstract
Pyramidal cells show marked variation in their morphology, including dendritic structure, which is correlated with physiological diversity; however, it is not known how this variation is related to a cell's role within neural networks. In this report, we describe correlations among electrosensory lateral line lobe (ELL) pyramidal cells' highly variable dendritic morphology and their ability to adaptively cancel redundant inputs via an anti-Hebbian form of synaptic plasticity. A subset of cells, those with the largest apical dendrites, are plastic, but those with the smallest dendrites are not. A model of the network's connectivity predicts that efficient redundancy reduction requires that nonplastic cells provide feedback input to those that are plastic. Anatomical results confirm the model's prediction of optimal network architecture. These results provide a demonstration of different roles for morphological/physiological variants of a single cell type within a neural network performing a well-defined function.
Collapse
Affiliation(s)
- Joseph Bastian
- Department of Zoology, University of Oklahoma, Norman, OK 73019 USA.
| | | | | |
Collapse
|
66
|
Abstract
Sensory experience drives plasticity of the body map in developing and adult somatosensory cortex, but the synaptic mechanisms underlying such plasticity are not well understood. Recently, several mechanisms that are likely to contribute to map plasticity have been directly observed in response to altered experience in vivo. These mechanisms include long-term potentiation and long-term depression at specific excitatory synapses, competition between lemniscal (barrel) and non-lemniscal (septal) processing streams, and regulation of the number of inhibitory synapses.
Collapse
Affiliation(s)
- Elisabeth Foeller
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|