51
|
Moehring F, Halder P, Seal RP, Stucky CL. Uncovering the Cells and Circuits of Touch in Normal and Pathological Settings. Neuron 2019; 100:349-360. [PMID: 30359601 DOI: 10.1016/j.neuron.2018.10.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Abstract
The sense of touch is fundamental as it provides vital, moment-to-moment information about the nature of our physical environment. Primary sensory neurons provide the basis for this sensation in the periphery; however, recent work demonstrates that touch transduction mechanisms also occur upstream of the sensory neurons via non-neuronal cells such as Merkel cells and keratinocytes. Within the spinal cord, deep dorsal horn circuits transmit innocuous touch centrally and also transform touch into pain in the setting of injury. Here non-neuronal cells play a key role in the induction and maintenance of persistent mechanical pain. This review highlights recent advances in our understanding of mechanosensation, including a growing appreciation for the role of non-neuronal cells in both touch and pain.
Collapse
Affiliation(s)
- Francie Moehring
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Priyabrata Halder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, Pittsburgh, PA 15213, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
52
|
Cowie AM, Menzel AD, O’Hara C, Lawlor MW, Stucky CL. NOD-like receptor protein 3 inflammasome drives postoperative mechanical pain in a sex-dependent manner. Pain 2019; 160:1794-1816. [PMID: 31335648 PMCID: PMC6662742 DOI: 10.1097/j.pain.0000000000001555] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postoperative pain management continues to be suboptimal because of the lack of effective nonopioid therapies and absence of understanding of sex-driven differences. Here, we asked how the NLRP3 inflammasome contributes to postoperative pain. Inflammasomes are mediators of the innate immune system that are responsible for activation and secretion of IL-1β upon stimulation by specific molecular signals. Peripheral IL-1β is known to contribute to the mechanical sensitization induced by surgical incision. However, it is not known which inflammasome mediates the IL-1β release after surgical incision. Among the 9 known inflammasomes, the NLRP3 inflammasome is ideally positioned to drive postoperative pain through IL-1β production because NLRP3 can be activated by factors that are released by incision. Here, we show that male mice that lack NLRP3 (NLRP3) recover from surgery-induced behavioral and neuronal mechanical sensitization faster and display less surgical site inflammation than mice expressing NLRP3 (wild-type). By contrast, female NLRP3 mice exhibit minimal attenuation of the postoperative mechanical hypersensitivity and no change in postoperative inflammation compared with wild-type controls. Sensory neuron-specific deletion of NLRP3 revealed that in males, NLRP3 expressed in non-neuronal cells and potentially sensory neurons drives postoperative pain. However, in females, only the NLRP3 that may be expressed in sensory neurons contributes to postoperative pain where the non-neuronal cell contribution is NLRP3 independent. This is the first evidence of a key role for NLRP3 in postoperative pain and reveals immune-mediated sex differences in postoperative pain.
Collapse
Affiliation(s)
- Ashley M. Cowie
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Anthony D. Menzel
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Crystal O’Hara
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael W. Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
53
|
Weir GA, Pettingill P, Wu Y, Duggal G, Ilie AS, Akerman CJ, Cader MZ. The Role of TRESK in Discrete Sensory Neuron Populations and Somatosensory Processing. Front Mol Neurosci 2019; 12:170. [PMID: 31379497 PMCID: PMC6650782 DOI: 10.3389/fnmol.2019.00170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022] Open
Abstract
Two-pore domain K+ (K2P) channels generate K+ leak current, which serves a vital role in controlling and modulating neuronal excitability. This diverse family of K+ channels exhibit distinct expression and function across neuronal tissues. TWIK-related spinal cord K+ channel (TRESK) is a K2P channel with a particularly enriched role in sensory neurons and in vivo pain pathways. Here, we explored the role of TRESK across molecularly distinct sensory neuron populations and assessed its contribution to different sensory modalities. We found TRESK mRNA only in select populations of C- and A-δ nociceptors, in addition to low threshold D-hair afferents. Neurons from mice in which TRESK has been ablated demonstrated marked hyperexcitability, which was amplified under inflammatory challenge. Detailed behavioral phenotyping of TRESK knockout mice revealed specific deficits in somatosensory processing of noxious and non-noxious stimuli. These results demonstrate novel roles of TRESK in somatosensory processing and offer important information to those wishing to target the channel for therapeutic means.
Collapse
Affiliation(s)
- Greg A Weir
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philippa Pettingill
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Yukyee Wu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Galbha Duggal
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Andrei-Sorin Ilie
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
54
|
Cowie AM, Dittel BN, Stucky CL. A Novel Sex-Dependent Target for the Treatment of Postoperative Pain: The NLRP3 Inflammasome. Front Neurol 2019; 10:622. [PMID: 31244767 PMCID: PMC6581722 DOI: 10.3389/fneur.2019.00622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years the innate immune system has been shown to be crucial for the pathogenesis of postoperative pain. The mediators released by innate immune cells drive the sensitization of sensory neurons following injury by directly acting on peripheral nerve terminals at the injury site. The predominate sensitization signaling pathway involves the proinflammatory cytokine interleukin-1β (IL-1β). IL-1β is known to cause pain by directly acting on sensory neurons. Evidence demonstrates that blockade of IL-1β signaling decreases postoperative pain, however complete blockade of IL-1β signaling increases the risk of infection and decreases effective wound healing. IL-1β requires activation by an inflammasome; inflammasomes are cytosolic receptors of the innate immune system. NOD-like receptor protein 3 (NLRP3) is the predominant inflammasome activated by endogenous molecules that are released by tissue injury such as that which occurs during neuropathic and inflammatory pain disorders. Given that selective inhibition of NLRP3 alleviates postoperative mechanical pain, its selective targeting may be a novel and effective strategy for the treatment of pain that would avoid complications of global IL-1β inhibition. Moreover, NLRP3 is activated in pain in a sex-dependent and cell type-dependent manner. Sex differences in the innate immune system have been shown to drive pain and sensitization through different mechanisms in inflammatory and neuropathic pain disorders, indicating that it is imperative that both sexes are studied when researchers investigate and identify new targets for pain therapeutics. This review will highlight the roles of the innate immune response, the NLRP3 inflammasome, and sex differences in neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Ashley M Cowie
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N Dittel
- Blood Research Institute, Versiti, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
55
|
Warwick CA, Shutov LP, Shepherd AJ, Mohapatra DP, Usachev YM. Mechanisms underlying mechanical sensitization induced by complement C5a: the roles of macrophages, TRPV1, and calcitonin gene-related peptide receptors. Pain 2019; 160:702-711. [PMID: 30507785 PMCID: PMC6377341 DOI: 10.1097/j.pain.0000000000001449] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complement system significantly contributes to the development of inflammatory and neuropathic pain, but the underlying mechanisms are poorly understood. Recently, we identified the signaling pathway responsible for thermal hypersensitivity induced by the complement system component C5a. Here, we examine the mechanisms of another important action of C5a, induction of mechanical hypersensitivity. We found that intraplantar injection of C5a produced a dose-dependent mechanical sensitization and that this effect was blocked by chemogenetic ablation of macrophages in both male and female mice. Knockout of TRPV1 or pretreatment with the TRPV1 antagonists, AMG9810 or 5'-iodoresiniferatoxin (5'-IRTX), significantly reduced C5a-induced mechanical sensitization. Notably, local administration of 5'-IRTX 90 minutes after C5a injection resulted in a slow, but complete, reversal of mechanical sensitization, indicating that TRPV1 activity was required for maintaining C5a-induced mechanical hypersensitivity. This slow reversal suggests that neurogenic inflammation and neuropeptide release may be involved. Indeed, pretreatment with a calcitonin gene-related peptide (CGRP) receptor antagonist (but not an antagonist of the neurokinin 1 receptor) prevented C5a-induced mechanical sensitization. Furthermore, intraplantar injection of CGRP produced significant mechanical sensitization in both wild-type and TRPV1 knockout mice. Taken together, these findings suggest that C5a produces mechanical sensitization by initiating macrophage-to-sensory-neuron signaling cascade that involves activation of TRPV1 and CGRP receptor as critical steps in this process.
Collapse
Affiliation(s)
- Charles A. Warwick
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Leonid P. Shutov
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Andrew J. Shepherd
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Durga P. Mohapatra
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Yuriy M. Usachev
- Department of Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
57
|
Megat S, Ray PR, Moy JK, Lou TF, Barragán-Iglesias P, Li Y, Pradhan G, Wanghzou A, Ahmad A, Burton MD, North RY, Dougherty PM, Khoutorsky A, Sonenberg N, Webster KR, Dussor G, Campbell ZT, Price TJ. Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. J Neurosci 2019; 39:393-411. [PMID: 30459229 PMCID: PMC6335757 DOI: 10.1523/jneurosci.2661-18.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nociceptors, sensory neurons in the DRG that detect damaging or potentially damaging stimuli, are key drivers of neuropathic pain. Injury to these neurons causes activation of translation regulation signaling, including the mechanistic target of rapamycin complex 1 (mTORC1) and mitogen-activated protein kinase interacting kinase (MNK) eukaryotic initiation factor (eIF) 4E pathways. This is a mechanism driving changes in excitability of nociceptors that is critical for the generation of chronic pain states; however, the mRNAs that are translated to lead to this plasticity have not been elucidated. To address this gap in knowledge, we used translating ribosome affinity purification in male and female mice to comprehensively characterize mRNA translation in Scn10a-positive nociceptors in chemotherapy-induced neuropathic pain (CIPN) caused by paclitaxel treatment. This unbiased method creates a new resource for the field, confirms many findings in the CIPN literature and also find extensive evidence for new target mechanisms that may cause CIPN. We provide evidence that an underlying mechanism of CIPN is sustained mTORC1 activation driven by MNK1-eIF4E signaling. RagA, a GTPase controlling mTORC1 activity, is identified as a novel target of MNK1-eIF4E signaling. This demonstrates a novel translation regulation signaling circuit wherein MNK1-eIF4E activity drives mTORC1 via control of RagA translation. CIPN and RagA translation are strongly attenuated by genetic ablation of eIF4E phosphorylation, MNK1 elimination or treatment with the MNK inhibitor eFT508. We identify a novel translational circuit for the genesis of neuropathic pain caused by chemotherapy with important implications for therapeutics.SIGNIFICANCE STATEMENT Neuropathic pain affects up to 10% of the population, but its underlying mechanisms are incompletely understood, leading to poor treatment outcomes. We used translating ribosome affinity purification technology to create a comprehensive translational profile of DRG nociceptors in naive mice and at the peak of neuropathic pain induced by paclitaxel treatment. We reveal new insight into how mechanistic target of rapamycin complex 1 is activated in neuropathic pain pointing to a key role of MNK1-eIF4E-mediated translation of a complex of mRNAs that control mechanistic target of rapamycin complex 1 signaling at the surface of the lysosome. We validate this finding using genetic and pharmacological techniques. Our work strongly suggests that MNK1-eIF4E signaling drives CIPN and that a drug in human clinical trials, eFT508, may be a new therapeutic for neuropathic pain.
Collapse
Affiliation(s)
- Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Pradipta R Ray
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Jamie K Moy
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Tzu-Fang Lou
- University of Texas at Dallas, Department of Biological Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Paulino Barragán-Iglesias
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Yan Li
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Grishma Pradhan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Andi Wanghzou
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Ayesha Ahmad
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Michael D Burton
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Robert Y North
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Patrick M Dougherty
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Arkady Khoutorsky
- McGill University, Department of Anesthesia, 001 Boulevard Décarie C05.2000, Montréal, QC H4A 3J1, Canada
| | - Nahum Sonenberg
- McGill University, Goodman Cancer Research Center, Department of Biochemistry, 1160 Pine Ave W, Montreal, QC H3A 1A3, Canada, and
| | - Kevin R Webster
- eFFECTOR Therapeutics, 11180 Roselle St, San Diego, CA 92121
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Zachary T Campbell
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080,
- University of Texas at Dallas, Department of Biological Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080,
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|